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Abstract

We introduce FocalPose, a neural render-and-compare
method for jointly estimating the camera-object 6D pose
and camera focal length given a single RGB input image
depicting a known object. The contributions of this work
are twofold. First, we derive a focal length update rule that
extends an existing state-of-the-art render-and-compare 6D
pose estimator to address the joint estimation task. Second,
we investigate several different loss functions for jointly es-
timating the object pose and focal length. We find that
a combination of direct focal length regression with a re-
projection loss disentangling the contribution of transla-
tion, rotation, and focal length leads to improved results.
We show results on three challenging benchmark datasets
that depict known 3D models in uncontrolled settings. We
demonstrate that our focal length and 6D pose estimates
have lower error than the existing state-of-the-art methods.

1. Introduction

The projection of a 3D object into an image depends not
only on the object’s relative pose to the camera, but also on
the camera’s intrinsic parameters. While it is possible to
capture objects in a controlled environment where the cam-
era’s intrinsic parameters are known (e.g., a calibrated cam-
era on a robot), for many “in-the-wild” images we do not
have control over the capture process and these parameters
are unknown, e.g., Internet pictures or archival photographs.

Given an input image, we seek to retrieve a 3D model of
a depicted object from a model library and estimate the rel-
ative camera-object 6D pose jointly with the camera’s focal
length (depicted in Figure 1). This problem has its origins
in the early days of computer vision [26,27,36] and has im-
portant modern-day applications in augmented reality and
computer graphics, such as applying in situ object overlays
or editing the position of an object via 3D compositing in
uncontrolled consumer-captured images.

The problem of 6D object pose estimation in an uncal-

Figure 1. Given a single input photograph (left) and a known 3D
model, our approach accurately estimates the 6D camera-object
pose together with the focal length of the camera (right), here
shown by overlaying the aligned 3D model over the input image.
Our approach handles a large range of focal lengths and the result-
ing perspective effects.

ibrated setting is, by its nature, challenging. First, it is
difficult to distinguish subtle changes of the camera’s fo-
cal length from changes in an object’s depth. Second, in-
cluding the camera’s focal length increases the number of
parameters that must be estimated and hence increases the
optimization complexity. Finally, “in-the-wild” consumer-
captured images may depict large appearance variation for
a particular object instance in the model library. Variation
may be due to differences in illumination and the depicted
object having slightly different, non-identical shapes or sur-
face appearance in different real-world instance captures.
For example, consider different instances of the same car
model that have a similar overall shape but may have dif-
ferent color, wear and tear, or customizable features (e.g.,
additional headlights, alloy wheels, or a spoiler).

Previous approaches for this task primarily rely on es-
tablishing local 2D-3D correspondences between an image
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and a 3D model using either hand-crafted [2, 3, 7, 8, 17, 27]
or CNN features [12,19,20,31,32,34,35,38,41,42,47,48],
followed by robust camera pose estimation using PnP [23].
These approaches often fail on scenes with large texture-
less areas where local correspondences cannot be reliably
established. In contrast, the recent best-performing 6D
object pose estimation methods are based on the render-
and-compare strategy [22, 24, 28, 30, 48], which performs
a dense alignment over all pixels of rendered views of the
3D model to its depiction in the input image. However, all
prior render-and-compare methods fall short of handling the
aforementioned desired uncontrolled, uncalibrated setting
as they assume a controlled environment where the cam-
era intrinsic parameters are fixed and known a priori. Also,
these prior methods typically operate over only a handful of
known objects.

To address these challenges, we build on the strengths of
render and compare and extend it to handle our desired un-
controlled, uncalibrated setting. We introduce FocalPose,
a novel render-and-compare approach for jointly estimat-
ing an object’s 6D pose and camera focal length based on
a monocular image input. Our contributions are twofold.
First, we extend a recent state-of-the-art [18] method for
6D pose estimation (CosyPose [22]) by deriving and inte-
grating focal length update rules in a differentiable manner,
which allows our method to overcome the added complex-
ity of including the focal length. Second, we investigate
several different loss functions for jointly estimating object
pose and focal length. We find that a combination of di-
rect focal length regression with a reprojection loss disen-
tangling the contribution of translation, rotation, and focal
length leads to the best performance and allows our method
to distinguish subtle differences due to the focal length and
the object’s depth. We apply our method to three real-world
consumer-captured image datasets with varying camera fo-
cal lengths and show that our focal length and 6D pose esti-
mates have lower error compared to the state of the art. As
an added benefit, our work is the first render-and-compare
method applied to a large collection of 3D meshes (20-200
meshes for Pix3D [39], ⇠ 150 for the car datasets [45]).

2. Related Work

6D pose estimation of rigid objects from RGB images.

This task is one of the oldest problems in computer vi-
sion [26, 27, 36] and has been successfully approached by
estimating the pose from 2D-3D correspondences obtained
via local invariant features [3, 7, 8, 27], or by template-
matching [17]. Both of these strategies rely on shal-
low hand-designed image features and have been revisited
with learnable deep convolutional neural networks (CNNs)
[19,20,31,32,34,35,38,41,42,47,48]. The best-performing
methods for 6D pose estimation from RGB images are now
based on variants of the deep render-and-compare strat-

egy [22,24,28,30,48]. However, these methods assume the
full perspective camera model is known so that the object
can be rendered and compared with the input image. We
build on the state-of-the-art render-and-compare approach
of Labbé et al. [22] and extend it to the “in-the-wild” un-
controlled set-up where the focal length of the camera is not
known and has to be estimated together with the object’s 6D
pose directly from the input image.

Camera calibration. Camera calibration techniques [1,
9, 10, 29, 33, 40, 43, 49] recover the camera model (intrin-
sic parameters) and its pose (extrinsic parameters) jointly.
A limitation is that they require estimating 2D-3D cor-
respondences in multiple images using structured object
patterns [11, 14, 40, 43], identifying specific image ele-
ments such as lines or vanishing points [6, 9, 40] or struc-
tured features (e.g., human face landmarks [4]). These re-
quirements limit their applicability to unconstrained images
where these structures are not present. Other works [46]
have considered in-the-wild images, but only focus on re-
covering the focal length of the camera. In contrast, our
approach recovers both components of the camera calibra-
tion (focal length and 6D camera pose) given a single image
of a known object.

Joint 6D pose and focal length estimation from a single

in-the-wild image. The prior work closest to our approach
establishes point correspondences, followed by robust fit-
ting of the camera model [12, 13, 45]. Wang et al. [45]
uses Faster R-CNN with a scalar regression head and L1
loss for estimating the focal length, and the 6D pose is es-
timated by predicting 2D-3D correspondences followed by
PnP. GP2C [12] extends this approach via a two-step proce-
dure that predicts initial 2D-3D correspondences and focal
length with a similar direct regression, followed by apply-
ing a PnPf solver to refine jointly the 6D pose and the focal
length. The model cannot be trained end-to-end as it relies
on a separate non-differentiable optimizer. GCVNet [13]
uses an approximation of the PnPf solver for differentiabil-
ity, but its results are limited by this approximation. In con-
trast, our work builds on the success of the recent render-
and-compare methods [22,24] for 6D rigid pose estimation.
Our 6D pose and focal length updates are learned end-to-
end using our novel focal length update parameterization
coupled with a disentangled training loss. Our approach
produces lower-error focal length and pose estimates com-
pared to the two-step approach of GP2C [12] and the prior
one-shot end-to-end approaches [13, 45].

3. Approach

Our goal is to estimate the 6D pose of objects in a pho-
tograph taken with unknown focal length. To achieve this
goal, we use a render-and-compare strategy where we esti-
mate jointly the camera focal length with the 6D pose. We

3826



.I[GIgIg

+]hI�<[G
N]E<Y�YI[OjP

kdG<jI
¥/IEjQ][�Ä�Ã¦

Ä��Z]GIY

�[dkj��Z<OI �YQO[ZI[j
[Ijq]gX

(a)

<ZIg<�N]E<Y�YI[OjP

<ZIg<�QZ<OI�dY<[I

<ZIg<�]DWIEj�
g]j<jQ][�Û�jg<[hY<jQ][

$DWIEj�E]]gGQ[<jI�hshjIZ

<ZIg<�E]]gGQ[<jI
hshjIZ

+g]WIEjIG
d]Q[j

+]hI�<[G�N]E<Y�YI[OjP�Y]hh�¥/IEjQ][�Ä�Ä¦

�QrIG  ]hh 1dG<jIG

�QrIG  ]hh 1dG<jIG

(b)
Figure 2. FocalPose overview. (a) Given a single in-the-wild RGB input image I of a known object 3D model M, parameters ✓k composed
of focal length fk and the object 6D pose (3D translation tk and 3D rotation Rk) are iteratively updated using our render-and-compare
approach. Rendering R, together with the input image I , are given to a deep neural network F that predicts update �✓k, which is then
converted into parameter update ✓k+1 using a non-linear update rule U . (b) Illustration of the camera-object setup with parameters ✓
composed of 3D translation t, 3D rotation R and focal length f . The alignment network is trained using a novel pose and focal length loss
that disentangles the focal length and pose updates. The two main contributions of this work are highlighted by red boxes in the figure.

assume knowledge of a database of 3D models that may ap-
pear in the image, but our results show that the approach is
effective even if the 3D models are only approximate.

3.1. Approach Overview

The first step of our approach, illustrated in Fig. 2, iden-
tifies the object location in the input image and retrieves a
3D model from the database that matches the depicted ob-
ject instance. We use an object detector [15] trained on real
images of these known objects. At test time, we run this
detector on the test image to obtain a 2D bounding box of
the object and its corresponding 3D model M. We describe
a render and compare approach, which iteratively estimates
the focal length and 6D pose of the identified object. We
denote the current estimate of focal length and 6D pose at
iteration k jointly as ✓k. The object model is first rendered
using the current estimates ✓k into an image R(M, ✓k) us-
ing a renderer R. The rendering R(M, ✓k) and observed
input image I are given to a deep neural network F which
predicts the pose and focal length update �✓k:

�✓k = F (I,R(M, ✓k)). (1)

The intuition is that the neural network compares the in-
put image I with the rendering R(M, ✓k) and based on
their (potentially subtle) differences predicts the update in
the rendering parameters �✓k. The pose and focal length
updates �✓k are designed to be, as much as possible, free
of non-linearities and thus easy to predict by the neural net-
work F . The pose and focal length at the next iteration k+1
is then computed by a non-linear update rule U :

✓k+1 = U(✓k,�✓k), (2)

where ✓k is the current estimate of the pose and focal length,
�✓k is the prediction by the network F given by eq. (1), and

✓k+1 are the updated pose and focal length. Note that U is
not learnt but derived from the 3D to 2D projection model
and takes into account the nonlinearities of the imaging pro-
cess. The neural network F is trained in such a way that the
updated pose and focal length ✓k+1 are progressively closer
to their ground truth. Our approach is summarized in Fig. 2

Discussion. Existing render-and-compare estimators [22,
24] require knowledge of the camera intrinsic parameters.
In our scenario, the problem is more challenging because
the rendering also depends on the unknown focal length.
We address this challenge by proposing an update rule for
the focal length as well as a modification of the update rules
for 6D pose parameters accounting for the unknown focal
length (Sec 3.2). We then introduce a novel loss function
adapted for joint focal length and 6D pose estimation, which
disentangles the effects of the pose and focal length updates
for better end-to-end training of the network (Sec. 3.3).
Please see the supp. materials for details of our implemen-
tation, ✓0 parameter initialization, and our training data.

3.2. Update rules with focal length estimation

The standard render-and-compare approach to 6D pose
estimation [22,24] considers only translation tk and rotation
Rk as parameters ✓k. We additionally estimate the focal
length fk as an unknown, and thus need to build an appro-
priate rule U (as defined in eq. (2)) for updating jointly all
parameters. In detail, we assume a pinhole camera model
with focal length fk

x
= fk

y
= fk in which the optical center

is set at the center of the image. We define the 6D pose of
the object with respect to the camera by a 3D rotation Rk

and a 3D translation tk = [xk, yk, zk]. Next, we describe
our updates for focal length and 6D pose.

Focal length update. To build an appropriate focal length
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update rule, we take into account the fact that it should re-
main strictly positive throughout the update iterations. We
consider update rules that are multiplicative, i.e., they scale
an initial guess f0 by a sequence of multiplications. Let fk

be the current estimate of the focal length at iteration k and
vk
f

be the focal length update predicted by the network F

(see eq. (1)). We define the updated focal length fk+1 as
the multiplication,

fk+1 = ev
k
f fk. (3)

The sequence of multiplicative updates can be written as
fk+1 = e

Pk
i=1 v

k
f f0, where f0 is the initial focal length and

vi
f
, i = 0, . . . , k � 1 are the individual updates. An alter-

native to the above strategy would be enforcing positivity
of the focal length update via a sigmoid function instead of
an exponential function. We found the exponential and sig-
moid functions to behave similarly, but the sigmoid update
requires setting an additional scale parameter. Hence, we
opted for the simpler exponential updates as described in
eq. (3).
6D pose update. For the update of the 6D pose, we build on
the update rule introduced in DeepIM [24] that disentangles
3D rotation and 3D translation updates. In more detail, the
network F is trained to predict a translation of the projected
object center into the image [vk

x
, vk

y
] (measured in pixels),

and a ratio vk
z

of the camera-to-object depth between the
observed and the rendered image. The 3D translation of the
object is then updated from the quantities [vk

x
, vk

y
, vk

z
] pre-

dicted by network F , taking into account the nonlinear pro-
jection equations derived from the camera model. In [24]
the focal length is known and fixed. In our scenario the
focal length is not fixed and we replace the known fixed fo-
cal length with the predicted focal length fk+1. In detail,
the updated 3D translation [xk+1, yk+1, zk+1] of the object
with respect to the camera is obtained as :

xk+1 =

✓
vk
x

fk+1
+

xk

zk

◆
zk+1 (4)

yk+1 =

 
vk
y

fk+1
+

yk

zk

!
zk+1 (5)

zk+1 = vk
z
zk, (6)

where [vk
x
, vk

y
, vk

z
] are the object translation updates pre-

dicted by network F as part of �✓ (eq. 1), [xk, yk, zk] is the
3D translation vector of the relative camera-object pose at
iteration k, [xk+1, yk+1, zk+1] is the new updated 3D trans-
lation vector, and fk+1 is the updated focal length of the
camera given by eq. (3).

To obtain the update of the rotation component of the
object pose we use directly the prediction of the alignment
network F in a multiplicative update, which does not de-
pend on the focal length. In particular, we parametrize the

rotation update using two 3-vectors vk
R,1, vk

R,2 that define
the rotation matrix R(vk

R,1, v
k

R,2) by Gram-Schmidt orthog-
onalization as described in [50]. This parametrization was
found to work well for different prediction tasks [50] in-
cluding 6D object pose estimation [22]. The resulting up-
date rule is then written as

Rk+1 = R(vk
R,1, v

k

R,2)R
k, (7)

where Rk+1 is the new updated object rotation, Rk is the
current object rotation, and R(vk

R,1, v
k

R,2) is the rotation ma-
trix obtained by Gram-Schmidt orthogonalization from the
two 3-vectors vk

R,1, vk
R,2 predicted by the alignment net-

work F as part of �✓k. Note that this rotation update is
similar to the one used in DeepIM [24].

3.3. Pose and focal length training loss

We now present our network training loss, where we as-
sume the training data consist of image and aligned model
pairs. Note that a training pair may be a real image with
a manually aligned model or a rendered image of a model
under a specified 6D pose and focal length. Given input
parameters ✓k, the output parameters ✓k+1 are fully defined
by the network outputs �✓ given by eq. (1) and the differen-
tiable update rules described by eqs. (3)-(7) in the previous
section. In the following, we consider a single network iter-
ation and denote ✓ = {R, t, f} as the estimated parameters.
For jointly learning to estimate the 6D pose and the focal
length, we use the following loss that penalizes errors in the
output 6D pose predictions (R, t) and the estimated focal
length f :

L(✓, ✓̂) = Lpose((R, t), (R̂, t̂))

+ ↵Lfocal((R, t, f), (R̂, t̂, f̂)),
(8)

where ✓ = {R, t, f} are the estimated pose and focal length
parameters, ✓̂ = {R̂, t̂, f̂} are the ground truth pose and
focal length parameters, Lpose is a loss that penalizes er-
rors in the 6D pose estimate, Lfocal is our novel loss func-
tion that jointly takes into account the errors in the focal
length and the 6D predicted pose, and ↵ is a scalar hyper-
parameter. This loss is written for a single instance, but our
model is trained to minimize the average loss over all train-
ing images. We now describe the individual losses Lfocal

and Lpose.
Focal length loss. We use the following focal length loss:

Lfocal = �LH(f, f̂) + LDR((R, t, f), (R̂, t̂, f̂)), (9)

where LH is Huber regression loss, LDR is disentangled
reprojection loss and � is a scalar hyper-parameter. The
individual terms are explained next. The Huber regression
loss LH measures the errors between the estimated and the
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ground truth focal length using a logarithmic parametriza-
tion of the focal length following the recommendations
from Grabner et al. [12] for better training:

LH(f, f̂) = || log(f)� log(f̂)||H , (10)

where again f̂ is the ground truth focal length and f is the
focal length estimated by our model.

While using only the loss LH is possible for training our
model, we found better results are obtained by also consid-
ering the 2D errors of the projected 3D model in the image
using the current estimates of the focal length and object 6D
pose. We first define the reprojection error:

Lproj.((R, t, f), (R̂, t̂, f̂)) =
X

p2M
||⇡(K(f), R, t, p)� ⇡

⇣
K(f̂), R̂, t̂, p

⌘
||1, (11)

where K(f) is the intrinsic camera matrix of our camera
model with focal length f , p 2 M are 3D points sampled
on the object model, ⇡(K(f), R, t, p) is the projection of a
3D point p using the current estimates of all the parameters,
and ⇡(K(f̂), R̂, t̂, p) is the projection of the same 3D point
p using ground truth parameters. This loss can be seen as
the counterpart of the pose loss Lpose (defined below): in-
stead of penalizing errors in 3D space, it penalizes reprojec-
tion errors in the image while also taking into account the
estimated focal length f . However, this loss does not disen-
tangle the effects of the pose and focal length predictions.
We thus introduce our disentangled reprojection loss:

LDR =
1

2
Lproj((R, t, f̂), (R̂, t̂, f̂)) (12)

+
1

2
Lproj((R̂, t̂, f), (R̂, t̂, f̂)), (13)

where each term separately measures the 2D reprojection
errors resulting from errors in the 6D pose (the first term)
and in the focal length (the second term). This disentangle-
ment leads to faster convergence and better model accuracy,
as we show in our ablation results.
6D pose loss. For Lpose (in equation (8)), we build on
the loss used in CosyPose [22]. This loss is based on the
point-matching loss [24, 47] that measures the error be-
tween the alignment of the points on the 3D model M trans-
formed with the predicted pose (R, t) and the ground truth
pose (R̂, t̂). CosyPose [22] extends this loss to take into
account object symmetries, and uses the disentanglement
ideas of [37] to separate the influence of translation errors
along the camera axis, image plane, and rotations. In our
approach, we do not consider object symmetries as they are
nontrivial to obtain for 3D models in the wild considered in
this work. In detail, for the pose loss we utilize the follow-
ing distance metric between two poses specified by {R1, t1}

and {R2, t2}:

D({R1, t1}, {R2, t2}) =
1

|M|
X

p2M
||(R1p+t1)�(R2p�t2)||1,

(14)
where || · ||1 denotes L1 norm, Ri is a rotation matrix, ti is
a translation vector and p 2 M is a point sampled from the
mesh M. Following [22], we disentangle the pose loss as

Lpose = D(U(✓k, {vk
x
, vk

y
, v̂k

z
, R̂k, v̂k

f
}), R̂, t̂)

+D(U(✓k, {v̂k
x
, v̂k

y
, vk

z
, R̂k, v̂k

f
}), R̂, t̂)

+D(U(✓k, {v̂k
x
, v̂k

y
, v̂k

z
, Rk, v̂k

f
}), R̂, t̂),

(15)

where ✓k are the pose and focal length parameters at iter-
ation k, R̂ is a ground truth rotation, t̂ is a ground truth
translation, D is a distance defined by Eq. (14) and U is
an update function defined by (2). The main idea of this
loss is to separate the influence of translation errors in the
x � y plane, depth alignment errors along the z axis, and
rotation errors. In Eq. (15) the terms {vk

x
, vk

y
, v̂k

z
, R̂k, vk

f
},

{v̂k
x
, v̂k

y
, vk

z
, R̂k, v̂k

f
} and {v̂k

x
, v̂k

y
, v̂k

z
, Rk, v̂k

f
} represent the

necessary updates that lead to such loss disentanglement.
Here [vk

x
, vk

y
, vk

z
] are translation updates at iteration k as pre-

dicted by the network F , Rk is a rotation update at iteration
k predicted by network F and vk

f
is a focal length update

at iteration k. v̂k
i

and R̂k then represent the updates needed
to transform the current parameters to the ground truth val-
ues, which leads to the disentanglement along each of the
dimensions. The first term in Eq. (15) leads to the disentan-
glement along the x � y axis, since this term provides the
gradients resulting from the x � y alignment errors. Anal-
ogously, the second and third terms provide gradients that
arise from depth and rotation alignment errors.

4. Experiments

We evaluate our method for focal length and 6D pose es-
timation on three challenging benchmarks: the Pix3D [39],
CompCars [45] and StanfordCars [45] datasets. In the re-
mainder of this section we first introduce the benchmark
datasets and give details of the full pose estimation pipeline.
Then, in Sec. 4.1 we present the ablation of the main com-
ponents of the proposed loss function. In Sec. 4.2 we com-
pare our method with the state of the art [12,13,44] address-
ing the same task. Finally, in Sec. 4.3 we discuss the main
limitations of our approach.

Datasets and evaluation criteria. We consider three real-
world in-the-wild datasets depicting objects with known 3D
models annotated with ground truth focal length and 6D
pose of the object. Following Grabner et al. [12], we con-
sider the bed, chair, sofa, and table classes in the Pix3D
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dataset [39]. The images for each object class are consid-
ered as separate datasets. The Stanford cars and CompCars
datasets [45] contain images of different car instances. Note
that for the Pix3D chair images and both cars datasets, there
are hundreds of different object instances in the dataset,
which makes the task of recognizing the object instance
challenging. We use the standard set of evaluation crite-
ria used by prior work [12, 13, 44] that include the detec-
tion accuracy and several 6D pose metrics. The results are
reported as median errors (smaller is better) between the
prediction and ground truth (e.g., the MedErrR is the me-
dian rotation error) and accuracies (higher is better), which
report the percentage of images with an error smaller than
a certain threshold (e.g., AccR⇡

6
reports the percentage of

test images with the rotation error smaller than ⇡

6 ). See the
supplemental for a detailed description of all the evaluation
criteria.
The complete pose estimation pipeline. The first step
of our pipeline returns bounding box coordinates for de-
picted model instances in the input image via a Mask R-
CNN detector. One detector is trained for each object class.
For each detected instance, we crop the input image given
the bounding box and apply an instance classifier to obtain
which 3D model instance to align. In our case we finetune
the DINO model [5] as the instance classifier. We align the
3D model instance corresponding to the top classifier score.
The classifier achieves top-1 retrieval accuracy of 62.1% for
Pix3D, 71.2% for Stanford Cars and 79.0% for CompCars
datasets. Next, we estimate the coarse 6D pose and focal
length using the full image, bounding box, and retrieved 3D
model instance. Finally, the refiner FocalPose model itera-
tively refines the estimates for N iterations given the coarse
estimates.

4.1. Loss ablation study

In this section we ablate the different components of our
proposed loss function. We train the coarse and refinement
networks with the three different losses introduced in Sec-
tion 3.3. We report the results in Table 1. First, our solution
(c.) combining the Huber regression loss with the 2D repro-
jection error taking into account the object 3D model and
its 6D pose results in significantly lower errors than simply
using the regression loss (a.) used in Grabner et al. [12].
Second, our new loss (c.), which disentangles the effects of
focal length and pose, results in lower median errors com-
pared to the standard reprojection loss that does not disen-
tangle pose and focal length (b.).

4.2. Comparison to the state-of-the-art

Below we report the results of our approach on the three
different datasets and compare with other methods for 6D
object pose and focal length estimation [12, 13, 44].
Pix3D dataset. We report the average for the four classes

Loss MedErrR MedErrt · 10 MedErrf · 10

a. LH 6.61 1.51 4.17
b. LH + Lproj 3.28 1.42 1.45
c. LH + LDR 2.98 1.29 1.36

Table 1. Training loss ablation on Pix3D sofa. The median
alignment errors for refinement models trained using different loss
functions. Our proposed combination of Huber regression loss
with a disentangled reprojection loss (c.) performs best.

(bed, chair, sofa, table) in Table 2 (top). The per-class re-
sults are in the supplementary material. On average over
all classes, our method significantly outperforms the other
methods in 5 out of the 8 metrics. In particular, we see
a clear improvement in the estimated focal length (almost
11% relative reduction in the median focal length error,
from 0.172 to 0.155). We see also a clear improvement in
the estimated 3D translation (20% relative reduction in the
median 3D translation error, from 0.185 to 0.148). Please
note that the 3D translation is related to the focal length be-
cause of the focal length/depth ambiguity. These improve-
ments are significant and validate the contribution of our
method.
CompCars and Stanford cars. A similar pattern of results
is shown in Table 2 (middle, bottom) also for the CompCars
and Stanford cars datasets that contain hundreds of differ-
ent car models. Our approach obtains the best results in 4
(CompCars) and 5 (Stanford cars) of the 8 reported metrics.
In particular, our method significantly improves the focal
length estimates (11% relative reduction on CompCars and
54% relative reduction on Stanford cars) and the 3D trans-
lation estimates (10% relative reduction on CompCars and
52% relative reduction on StanfordCars). Again, these im-
provements are significant and validate the contribution of
our method.
Qualitative results. We report examples of qualitative re-
sults for our method on the four classes of the Pix3D dataset
in Fig. 4 and qualitative results on Stanford cars and Com-
pCars datasets in Fig. 5. Please note that the renderings of
the predictions (taking into account focal length and object
6D pose) show precise alignment with the observed image
for in-the-wild photographs. Notably, these qualitative re-
sults demonstrate the robustness of our approach to large
object truncation and strong perspective effects. Please see
the supplementary material for additional qualitative re-
sults and comparisons.

4.3. Limitations

There are three main failure modes of our approach, il-
lustrated in Fig. 3. First, we observe high rotation errors for
symmetric objects such as tables or stools, where the cor-
rect orientation is ambiguous. Please note that none of the
used evaluation criteria take into account the symmetries of

3830



Detection Rotation Translation Pose Focal Projection

Method Dataset AccD0.5

MedErrR AccR⇡
6

MedErrt MedErrR,t MedErrf MedErrP AccP0.1·1 ·101 ·101 ·101 ·102

[45]

Pix3D

96.0% 7.25 87.8% 2.52 1.76 2.41 6.33 71.5%
[12]-LF 96.2% 6.92 88.4% 1.85 1.30 1.72 3.85 85.5%
[12]-BB 97.7% 6.89 90.8% 1.94 1.30 1.75 3.66 88.0%

Ours 95.5% 4.92 84.1% 1.49 1.09 1.53 2.97 79.2%

[45]

CompCars

98.9% 5.24 97.6% 3.30 2.35 3.23 7.85 73.7%
[12]-LF 98.8% 5.23 97.9% 2.61 1.86 2.97 4.21 95.1%
[12]-BB 98.9% 4.87 98.1% 2.55 1.84 2.95 3.87 95.7%

[13]-TwoStep - 4.37 98.1% 3.22 1.90 3.79 4.54 90.2%
[13]-GCVNet - 3.99 98.4% 3.18 1.89 3.76 4.31 90.5%

Ours 98.2% 3.99 98.4% 2.35 1.67 2.65 2.95 93.0%

[45]

Stanford

99.6% 5.43 98.0% 2.33 1.80 2.34 7.46 76.4%
[12]-LF 99.6% 5.38 98.3% 1.93 1.51 2.01 3.72 96.2%
[12]-BB 99.6% 5.24 98.3% 1.92 1.47 2.07 3.25 96.5%

[13]-TwoStep - 5.09 97.5% 2.29 1.52 2.52 3.78 93.6%
[13]-GCVNet - 4.92 97.5% 2.20 1.46 2.43 3.65 94.6%

Ours 99.5% 4.44 95.1% 1.00 0.84 1.09 2.55 93.8%

Table 2. Comparison with the state of the art for 6D pose and focal length prediction on the Pix3D, CompCars and Stanford cars
datasets. Bold denotes the best result among directly comparable methods. Our approach outperforms other competing methods in 4/5
out the 8 reported metrics on all three datasets. Clear improvements (ranging from 10% to 50% relative reduction in the median error) are
obtained in the focal length (“Focal”) and 3D translation (“Translation”) estimates (shaded columns) on all three datasets validating our
approach and demonstrating our method deals well with the focal length/depth ambiguity.

a

Input image Ground truth Our prediction

b

c

Figure 3. Main failure modes are: (a) symmetric objects, (b)
local minima, and (c) incorrect 3D models identified by the object
detector.

objects. Second, our iterative alignment procedure can get
stuck into a local minima where the predicted object model
in the predicted configuration is reasonably aligned but the
errors are still high, e.g., because the object is flipped up-
side down. This failure could be mitigated by running our
approach from multiple initializations or running our refine-
ment network on better coarse estimates. Finally, we ob-

serve that in some situations the 3D model retrieved by our
pipeline is incorrect. These failure modes lead to large er-
rors, which explains the lower accuracies measured by the
AccR⇡

6
and AccP0.1 metrics. Nevertheless, our approach

achieves significantly lower median errors (5 out of the 8
reported metrics) compared to the current state-of-the-art
methods, which demonstrates the high precision of our ap-
proach outside of these failure modes.
Broader impact. Our work has the potential to posi-
tively impact practical applications in augmented reality
and robotics, among them overlaying artistic effects on
viewed objects or for a robotic assistant that can manipulate
real-world objects. However, our work could also poten-
tially be used as a component for 3D-assisted manipulation
of an image or video via object compositing to create mis-
information.

5. Conclusion

We have demonstrated successful joint estimation of
camera-object 6D pose and camera focal length given a sin-
gle still image. Key to our success was our extension of
render and compare that incorporated the estimated focal
length in the iterative update rules and a disentangled loss
for training. We have shown that our approach produces
lower-error focal length and pose estimates compared to
prior art. Our approach can be extended to other camera
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1

Input image Ground truth Our prediction

2

3

4

5

6

7

8

9

Figure 4. Pix3D qualitative results. For each example (each row),
we show the input image (left), ground truth focal length and pose
annotation (center) and our prediction (right). We overlay a ren-
dering of the detected 3D model with the jointly estimated 6D pose
and focal length. Notice how our method produces precise align-
ments for truncated objects (rows 1, 2, 8, 9) and handles large
perspective effects (rows 3, 5, 6). Notice also that in row 8 our
prediction is better than the manually annotated ground truth.

intrinsic parameters besides focal length, including differ-

1

Input image Ground truth Our prediction

2

3

4

5

6

7

8

Figure 5. Example qualitative results on the CompCars (rows 1-
4) and Stanford cars (rows 5-8) datasets.

ent forms of camera distortions, provided they can be reli-
ably rendered. This work opens up the possibility of down-
stream applications in augmented reality/computer graphics
and reasoning over “in-the-wild” articulated and interacted
objects in video.
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