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Figure 1. We present a fast and learnable method for mesh simplification that generates simplified meshes in real-time.

Abstract

Despite the advent in rendering, editing and prepro-
cessing methods of 3D meshes, their real-time execution
remains still infeasible for large-scale meshes. To ease
and accelerate such processes, mesh simplification meth-
ods have been introduced with the aim to reduce the mesh
resolution while preserving its appearance. In this work we
attempt to tackle the novel task of learnable and differen-
tiable mesh simplification. Compared to traditional simpli-
fication approaches that collapse edges in a greedy itera-
tive manner, we propose a fast and scalable method that
simplifies a given mesh in one-pass. The proposed method
unfolds in three steps. Initially, a subset of the input ver-
tices is sampled using a sophisticated extension of random
sampling. Then, we train a sparse attention network to pro-
pose candidate triangles based on the edge connectivity of
the sampled vertices. Finally, a classification network es-
timates the probability that a candidate triangle will be in-
cluded in the final mesh. The fast, lightweight and differen-
tiable properties of the proposed method makes it possible
to be plugged in every learnable pipeline without introduc-
ing a significant overhead. We evaluate both the sampled
vertices and the generated triangles under several appear-
ance error measures and compare its performance against
several state-of-the-art baselines. Furthermore, we show-
case that the running performance can be up to 10× faster
than traditional methods.

1. Introduction

Triangle meshes remain the most popular 3D structure
to represent a surface. The advent of 3D scanning devices
have made feasible to collect highly detailed 3D meshes
that typically hold thousand of faces. However, extreme
details lead to enormous memory requirements that limit
their usage. A wide range of applications including render-
ing and editing along with their mobile implementations,
require lightweight meshes to enable real-time processing.
Additionally, many monocular 3D reconstruction methods
that utilize analysis-by-synthesis are required to be compu-
tational efficient and differentiable in terms of their topolo-
gies. These types of iterative optimization methods can
drastically benefit from an differentiable on-the-fly simpli-
fication technique that reduce their computational footprint.

Mesh simplification is a long studied problem, with an
immense amount of methods developed to sustainably re-
duce the size of the original mesh without extremely dis-
torting its appearance. Traditional simplification techniques
decimate the input mesh in a greedy-fashion by prioritiz-
ing vertices and edges according to a cost function [10,34].
However, in large-scale objects scenario, simplifying over
90% of the original mesh size requires iterating through
thousands of vertices resulting in an inevitable computa-
tional burden. In addition to their computational footprint,
traditional simplification techniques are non-differentiable
and thus can not be used directly in end-to-end training
processes that optimize the mesh surface. To alleviate the
aforementioned limitations we propose a learnable strategy
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for mesh simplification that reduces both time and compu-
tational requirements and provides a plug-and-play method,
ready to be adapted in any differentiable framework.

A major barrier that limits learnable simplification meth-
ods is the discrete nature of the mesh connectivity, i.e.
edges and triangles. Although mesh simplification can be
achieved in a two-step process using a learnable sampling
method followed by an off-the-shelf triangulation algorithm
(e.g. Delaunay or Ball Pivoting) [28], such setting, apart
from being time consuming, limits the direct optimization
of the mesh surface. Recently, several approaches have been
proposed to solve the non-trival task of differential triangu-
lation using soft relaxations of the discrete setting. How-
ever, most of them are considered impractical since they are
applied to volumetric representations [5], demand iterative
optimizations for the triangulation for each mesh [37] or re-
quire 2D parametrizations [30, 31]. Our aim is to utilize a
simple but intuitive differentiable process to directly trian-
gulate the 3D points in one-pass. To do so, we model the
triangulation process by generating a distribution over pos-
sible edges and triangles and select the ones that preserve
the appearance of the original mesh.

In this study we propose the first learnable mesh simpli-
fication method that generates both points and triangulation
of the simplified mesh. In contrast to previous studies [28],
we propose soft relaxation of the discrete triangulation set-
ting by learning the mesh connectivity distribution in an
unsupervised manner. The proposed method can simplify
meshes of any scale in real-time by using an extremely effi-
cient point sampling method and a lightweight triangle clas-
sifier. To follow the initial mesh appearance, we constrain
the distribution of the edges to the priors defined by the
original mesh connectivity. The proposed method is fully-
differentiable and can be adapted to any training procedure
without a significant computational footprint. Finally, the
proposed method can generalize to out-of-distribution sam-
ples exhibiting zero-shot capabilities.

The main contributions of this work are summarized as:

• We propose the first, to the best of our knowledge,
learnable mesh simplification framework that is trained
to both select vertices and generate the underlining tri-
angulation of the surface.

• The proposed model is fully differentiable and can be
directly adapted to any learnable framework.

• We introduce an efficient point selection method that
extends the naive random sampling [15] to a train-
able module that samples vertices from the underlying
multinomial distribution.

• Finally, we showcase a simple but intuitive triangula-
tion strategy that can be adapted to point cloud mesh-
ing.

2. Related Work
Mesh Simplification. Traditional simplification algo-

rithms repeatedly decimate the input mesh according to
a cost function to preserve its rendered appearance, until
the desired simplification ratio is reached. Simplification
methods can be distinguished in two major categories:
vertex clustering/decimation and edge collapse methods.
Vertex decimation methods rank vertices according to a
heuristic geometric cost function, such as their distance
from the average plane [34–36], to ensure that least impor-
tant vertices will be decimated first. However, after every
vertex deletion, a re-tessellation of the generated hole is
required, thus, making such algorithms non-practical. On
the other hand, edge collapse methods preserve the input
topology by sequentially contracting pairs of vertices (i.e.
edges). Hoppe et al. [14] pioneered an energy cost function
defined over the edges that is attempted to be minimized in
every contraction step. Following this idea, in the seminal
works of [10, 33], each vertex was associated with the set
of planes in its 1-ring neighborhood and was expressed by
a fundamental quadric matrix. The authors showcased, that
using the quadric matrix, the distance of a point from a set
of planes can be expressed using the sum of their quadrics,
which is known as Quadric Error Metric (QEM). Using this
property, edges that introduce the minimum point-to-plane
distance were the first to be collapsed. Several approaches
have been built upon QEM to incorporate texture [1, 11],
curvature [16, 17] and spectral properties [21, 23] or to
speed-up the process using parallel processing [19, 26].
Recently, Hanocka et al. [13] proposed the utilization of
an adaptive greedy edge collapse method as a learnable
pooling strategy, where edge weights are learned through
the network. However, apart from the inefficient greedy
nature of the edge collapse methods, the resulting mesh
faces can only be decimated approximately by a factor
of two and thus limiting its applicability. Potamias et
al. [28] proposed a learnable point cloud simplification
technique that preserves the curvature features of the point
cloud. They have also extended their method to mesh
simplification task by utilizing off-the-self algorithms to
triangulate the resulting simplified point cloud. Neverthe-
less, such methodology requires careful selection of the
triangulation parameters for every sample. Importantly,
the original topology of the mesh is neglected, i.e. the
mesh connectivity might be totally different, and cannot be
directly optimized in a learnable process.

Pooling. Inspired by the regular pooling layers in CNNs,
several graph pooling operators have been introduced to re-
duce the size of graphs and enable hierarchical training in
graph neural network (GNN) architectures. Most of these
methods utilize non-trainable point selection methods, such
as Graclus clustering algorithm [6–8] and Farthest Point
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Figure 2. Overview of the proposed model (bottom block). Initially, Point Sampler module (top left) samples a subset of the input vertices
from the generated multinomial distribution. To avoid isolated nodes, a k-nn graph is constructed to extend the already existing edges of the
graph. Following that, a sparse attention layer weights the connectivity between nearby vertices and generates a set of candidate triangles
(top middle). Finally, Face Classifier module defines a graph over the proposed faces and assigns a probability to each triangle based on
their relative features (top right).

Sampling (FPS) method [29], to generate hierarchical rep-
resentations of the input graph. Ying et al. [40] proposed
the first trainable task-dependent pooling layer by learning a
clustering assignment matrix. However, the dense nature of
the soft-clustering assignment matrix makes such approach
infeasible for large scale graphs [3]. To tackle such limi-
tation, several sparse pooling methods have been proposed
that select Top-K nodes based on a learnable score [3,9,20].
However, Top-K approaches retain only a subset of the edge
set of the input graph, leading to isolated nodes. Recently,
Ranjan et al. [32] utilized a sparse soft clustering matrix to
address the node connectivity issues of the previous meth-
ods. For additional details on graph pooling layers we re-
fer the reader to [12]. In an abstract sense, one may re-
gard mesh simplification as a pooling process, since the in-
put topology is known and we seek to find its simplified
version. However, in contrast to common graph pooling
architectures, mesh simplification methods should also re-
spect the surface properties of the mesh, such as smoothness
and manifoldness. A natural approach to bypass the limita-
tions is to attempt to bridge both words. In this work, we
adapt graph pooling strategies along with geometric losses
to tackle the problem of mesh simplification.

Learnable Triangulation. Albeit surface reconstruc-
tion method have been extensively studied over the years,
less attention has been devoted to learnable and differen-
tiable triangulation methods. Most of the existing tech-
niques in the literature generate mesh surfaces by estimating
implicit funtions [4, 27], calculating voxel grids and occu-
pancy fields [22, 25] or deforming a template mesh [39].
Less progress has been established to the challenging task
of direct point set triangulation, mainly due to the discrete

nature of the edges that compose the mesh connectivity.
PointTriNet [37] utilizes two models to suggest and classify
triangles in local patches, enforcing the selection of water-
tight and manifold triangles using ad-hoc losses. A simi-
lar principle is also used in [24] where the candidate trian-
gles are iteratively filtered using the estimated ratio of the
geodesic versus the euclidean distance. Recently, there has
been an exertion to employ traditional Delaunay surface tri-
angulation into the learnable triangulation process. In [31],
the authors propose to learn a parametrization that maps the
input point patches to two-dimensional spaces and triangu-
late them using Delaunay technique. In a similar manner,
a soft relaxation of weighted Delaunay triangulation was
also proposed [30] that enables gradient flow, using an in-
clusion score to discard proposed triangles from the final
mesh. Similarly to [31], the input point cloud is triangu-
lated to a spectral partitioned 2D subspace produced using
Least-Squares Conformal Map parametrization. In this pa-
per we propose a modular architecture that directly learns to
generate a triangulated version of the input vertex set with-
out adhering to any kind of 2D projection and mapping.

3. Method
The architecture of the proposed model is composed by

mainly three components: the Point Sampler, the Edge Pre-
dictor and the Face Classifier. All modules are fully differ-
entiable and are trained in an end-to-end fashion. Figure 2
illustrates an overview of the proposed method.

3.1. Point Sampler

The first module of the proposed model is a network that
samples the vertex set in a way that the structure of the mesh
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will remain intact. Previous works, utilized Farthest Point
Sampling (FPS) to sample input point sets since it has been
shown that it accurately preserves the underlying shape of
the object [29]. However, the iterative nature of FPS is not
scalable and thus impractical for large scale point sets. In
contrast, as shown in [15], random sampling is extremely
fast, size agnostic, holding an O(1) complexity opposed to
the FPS’s quadratic O(N2) complexity. Based these obser-
vations, we propose to extend random sampling to a sophis-
ticated learnable module that breaks the uniform hypothesis
of random sampling and samples nodes under the assump-
tion of a multinomial distribution. To do so, we train the
Point Sample module to assign an inclusion score to each
point in the vertex set.

Given that the simplified point set needs to approximate
the structure of the input point set, the Point Sampler mod-
ule needs to be trained to select points that provide the best
coverage of the input space. Taking into account that nearby
points will also have similar latent descriptors, we propose
to utilize a graph neural network (GNN) approach that will
intuitively provide shape insights for the vertices. We em-
ploy an update rule based on the relative vertex coordinates
that can approximate the deviation of a point from its neigh-
borhood as:

fi = σ

(
Wϕ max

j∈N (xi)
Wθ(xi − xj)

)
(1)

where N (xi) denotes the neighbouring points of xi,
Wϕ,Wθ are learnable parameters and σ(·) a non-linearity.
We refer to this GNN layer as DevConv.

With such formulation, the advantage is two-fold. Pri-
marily, the point descriptors may better describe the topo-
logical characteristics of a given point, where points in
sharp and rough regions will receive larger values compared
to smooth areas. Secondly, the sampling module gains ro-
bustness to noise, since the combination of the maximum
as aggregation function and the relative coordinates pro-
vides to the network the ability to easily identify outliers.

3.2. Edge Predictor

Following the Point Sampler, the Edge Predictor mod-
ule is responsible to predict the connectivity between the
sampled points. To do so, we initially extend the original
mesh connectivity by inserting edges defined by k-nn graph
over the sampled points to avoid isolated nodes in the final
mesh. The extended graph Gext is then processed by a De-
vConv layer followed by a sparse self-attention layer [38]
that predicts the probability that the point xi is connected
with the point xj . Such probability is formulated as:

S[i, j] =
exp

(
(Wqfj)

T
(Wkfi)

)
∑

k∈N (xi)

exp
(
(Wqfj)

T
(Wkfk)

) (2)

where Wq,Wk are learnable parameters and fi, fj are the
features of points xi,xj .

To avoid having edges of equal probability between
nearby points, we utilize DevConv to enable feature dis-
similarity between them. Finally, the estimated adjacency
matrix is defined using the product of the estimated proba-
bilities and the original adjacency matrix, following the for-
mulation of [40], as:

As[i, j] = S[i, :]AS[j, :]T , i, j ∈ Gext (3)

Our motivation behind the use of the product between the
estimated and the original connectivity is to enforce the
edges of the simplified mesh to respect the original topol-
ogy. Note that all of the aforementioned multiplication op-
erations are between the sparse matrices and can be calcu-
lated very efficiently.

The set of candidate faces can be easily constructed from
the non-zero entities of the simplified adjacency matrix As.
An initial inclusion probability pinitt is assigned to each tri-
angle defined as pinitt = 1

3 (As[i, j] +As[i, k] +As[j, k]),
where i, j, k are the vertices of triangle t. This initial in-
clusion probability can be thought as a prior that will be in-
voked by the Face Classifier to produce the final (posterior)
probability of the edge.

3.3. Face Classifier

The face classifier is responsible to assign to each trian-
gle an inclusion score pt that captures the probability that
this triangle will be present in the simplified mesh. To es-
timate this probability, we first construct a k-nn graph Gtri

that connects each candidate triangle with its k-neighbours
based on their barycenter distances. Then a GNN module,
namely TriConv, that acts on Gtri embeds faces to the latent
space. To better capture the interactions of two triangles n
and m in space, we utilize a relative position encoding rn,m
defined as:

rn,m = [(tmin
n −tmin

m )||(tmax
n − tmax

m )||(bn − bm)],

tmax
n = max(enij , e

n
ik, e

n
jk)

(4)

where tmax
n , tmin

n ∈ R3, enij the edge vectors xi − xj

for triangle n; bn, bm the barycenters of triangles n,m and
|| the concatenation operation. Finally, the update rule of
TriConv can be defined as follows:

f (l)n =
∑

k∈N (tn)

MLP ([rn,k||(f (l−1)
n − f

(l−1)
k )]) (5)

where N (tn) the neighborhood and f
(l−1)
n the previous

feature of face n. In order to generate the final inclusion
probability pt we stack three TriConv layers toped with a
softmax activation function. We use the prior probability
pinitt as the initial feature of each triangle.
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3.4. Losses

To train the proposed framework we utilize a set of loss
functions that oblige the simplified meshes to preserve
the visual appearance of the originals. The basic idea
underlying the utilized losses is to enforce the selection of
salient points that are representative of the mesh structure
and to penalize badly formed triangles.

Probabilistic Chamfer Distance: To improve uniform
sampling we force the Point Selector to assign high proba-
bilities to the points that cover the surface of the point cloud.
We mathematically formulate this by using a modified prob-
abilistic Chamfer distance:

dP,Ps
=

∑
y∈Ps

p(y)min
x∈P

∥x− y∥2

+
∑
x∈P

p(y) min
y∈Ps

∥x− y∥2
(6)

where P denotes the input vertex set, Ps the sampled points
and p(y) their respective probabilities. Note that this loss
is applied only to the Point Sampler module and therefore
can be pre-trained and adapted to any learnable framework.

Probabilistic Surfaces Distance: To avoid having tri-
angles in regions that are not existing in the original mesh
and penalize the presence of surface holes, we formulate a
Chamfer-inspired loss that measures the distance between a
ground truth and a probabilistic surface. In this setting, the
forward term of the distance, i.e. the distance between the
generated surface Ss and the original, enforces triangles to
fit the ground truth surface S . We may calculate this term
by using the barycenters of the two surfaces as follows:

dfS,Ss
=

∑
b̂∈Ss

pb̂ min
b∈P

∥b̂− b∥2 (7)

where b stands for the barycenters of the ground truth sur-
face, b̂ the barycenters of the generated triangles with re-
spective probabilities pb̂. In this manner, barycenters of
triangles in non existing regions, e.g. a triangle connect-
ing the dogs legs, will have greater distance compared to
barycenters of triangles in existing regions of the ground
truth surface.

In contrary to the forward term, the reverse term of the
distance function aims to penalize areas with small proba-
bilities, i.e. areas that when discarded may result into the
introduction of surface holes. We can capture this mathe-
matically as follows:

drS,Ss
=

∑
y∈Ss

py min
x∈P

∥x− y∥2

+ (1− py)
1

k

∑
k

ptk∥xtk − y∥2
(8)

where x denotes a point from the ground truth surface S
and y a point from the generated surface Ss with proba-
bility py. The second term of equation (8) estimates the
average distance between point y and its k-nearest triangles
tk in the generated surface Ss apart from the one that point
y belongs to. This last term can be intuitively described as
the error introduced when the triangle in which y belongs
is not present in the generated triangulation. To make
the reverse term robust, we sample a sufficient amount of
points from each generated triangle.

Triangle Collision: To avoid having triangles that pen-
etrate each other we introduce a loss term that directly pe-
nalizes the probabilities of such triangles. We measure the
collision of a triangle in terms of line segments (i.e. edges
of nearby triangles) penetrating its surface. In particular,
we compute the planes defined by each face and we penal-
ize nearby triangles formed from edges that penetrate this
plane. The penalty applied to such irregular triangle is pro-
portional to the number of planes that it penetrates and it is
defined as:

Lc =
1

|Fs|
∑
t∈Fs

ptmc(t) (9)

where pt denotes the probability of triangle t, mc(t) the
number of faces penetrated by triangle t and Fs the set of
generated triangles.

Edge Crossings and Overlaping triangles: Although
triangle collision loss may be sufficient to penalize triangles
that penetrate the surface of their neighboring triangles, it
can not capture and penalize overlaping triangles with par-
allel planes. To address this limitation we introduce two
additional losses that penalize such scenarios, namely the
edge crossings loss Le and the overlap loss Lo. We calcu-
late edge crossings of line segments (edges) of nearby tri-
angles and we directly penalize triangles that carry an edge
that crosses another edge. Finally, to avoid overlaping trian-
gles in space, we sample a sufficient number of points from
each generated face and compute an estimate that belongs to
a given face. This can be efficiently implemented by mea-
suring the sum of the areas produced by the sampled point
and the vertices of each of the k-nearest triangles. Simi-
lar to collision loss, the penalty applied to each triangle is
proportional to the number of faces that it penetrates.

Overall Objective Finally, the overall loss to be mini-
mized is formed as:

L = dP1,P2
+dfS1,S2

+drS1,S2
+λcLc+λeLe+λoLo (10)

where λc, λe, λo are hyperparameters that scale the loss
functions.
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Figure 3. Qualitative comparison of the proposed and the baseline methods. The top row contains a human shape simplified by 90% and
the bottom row shows a cat model simplified by 80%. Figure better viewed in zoom.

Table 1. Quantitative comparison of the proposed and the baseline methods under several simplification ratios. Best approaches are
highlighted in bold and second best in blue.

Ns/Norg = 0.05 Ns/Norg = 0.1 Ns/Norg = 0.2 Ns/Norg = 0.5
Method CD WA LE NE Time CD WA LE NE Time CD WA LE NE Time CD WA LE NE Time
PointTriNet [37] 1.06 12.14 0.98 0.20 107.2 0.47 11.64 0.52 0.17 238.1 0.21 11.48 0.27 0.13 581.9 0.08 14.92 0.12 0.08 1333.3
QEM [10] 0.45 0.00 0.94 0.14 45.6 0.22 0.00 0.53 0.10 31.1 0.11 0.00 0.27 0.07 28.4 0.05 0.00 0.13 0.03 25.6
DSE [30] 1.39 6.64 0.95 0.23 271.8 0.51 4.38 0.50 0.19 490.7 0.24 3.12 0.26 0.15 941.0 0.07 2.39 0.12 0.08 2245.2
Potamias el al. [28] 10.47 8.53 1.23 0.21 105.2 0.83 8.39 0.76 0.17 149.3 0.49 4.72 0.43 0.14 158.7 0.20 4.67 0.22 0.10 183.7
Proposed 1.02 2.17 0.90 0.19 4.1 0.42 2.21 0.47 0.15 4.2 0.19 2.49 0.24 0.11 4.2 0.06 3.57 0.10 0.06 4.4

4. Experiments

In this section we evaluate the simplified meshes pro-
duced by the proposed framework. We initially examine the
effect of Point Sampler and then we assess the quality of the
produced triangulation along with an assessment of the re-
spective run times. For additional experimental results we
refer the reader to the supplementary material.

Dataset: To train the proposed method we utilized the
benchmark TOSCA [2] dataset that contains 80 high reso-
lution meshes. We used the same train test split as in [28]
and test the model using topologies not present in the train-
ing set. In such setting, the devised model may be directly
utilized to out-of-distribution meshes and generalize across
different topologies.

Implementation: We trained our model for 150 epochs
with learning rate of 1e − 5 and a weight decay of 0.99 on
every epoch using the Adam optimizer [18]. The generated
simplified meshes are produced by selecting only the faces
with a probability above 0.5. We further constrain the gen-
erated meshes to be manifold by selecting for each edge the
two incident to it faces with the highest probability.

Baselines: For comparison, we selected several base-
lines with different properties. In particular, we compared
against the popular quadric mesh simplification (QEM)
[10] which remains among the most popular and efficient
methods in mesh simplification. Additionally, we selected

two learnable and differentiable triangulation methods, i.e.
PointTriNet [37] and DSE [30], to triangulate point clouds
sampled with FPS and thus introduce an alternative for dif-
ferentiable mesh simplification. Finally, we compared the
proposed method against a recently introduced learnable
point cloud simplification method [28], which utilizes the
Ball-Pivoting algorithm to triangulate the simplified point
clouds.

4.1. Evaluation of the Simplified Meshes

To assess the triangulation performance, we measure
the percentage of non-watertight edges (WA), i.e the edges
which have one, three or more incident faces. Compared
to manifoldness metric, WA better assesses the triangula-
tion quality when holes are present, given that the edges
surrounding a hole are still manifold (a watertight edge is
manifold but a manifold edge is not guaranteed to be wa-
tertight). Additionally, to evaluate the simplification per-
formance of each method we sample 50K points from the
surface of every simplified mesh and measure the Cham-
fer distance (CD) and normal dissimilarity (NE) from its
corresponding points in the original mesh. Finally, we cal-
culate the MSE error between the first 200 eigenvectors of
the Laplacian of the original and the simplified model (LE).
In Table 1 we quantitatively compare the proposed method
with the aforementioned baselines. Although the iterative
QEM method better preserves the appearance of the simpli-
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Figure 4. Qualitative assessment of the proposed point sampling module. The proposed Point Sampler selects points that preserve both the
structure and the details of the input cloud. The proposed method better maintains the structure of the object compared to uniform and [28]
counterparts and improves the smooth point clouds produced by FPS module. The top row shows a dragon point cloud simplified to 5%
of its input size where as the bottom row shows the bunny shape simplified to 20% of its input size. Please note that both shapes are not
present in the TOSCA dataset.

Table 2. Quantitative evaluation of the point sampling module at different simplification ratios. The right part of the table includes the
simplification performance of the various methods when tested to noisy point clouds.

w/o Noise w Noise
Ns/Norg = 0.8 Ns/Norg = 0.2 Ns/Norg = 0.05 Ns/Norg = 0.8 Ns/Norg = 0.2 Ns/Norg=0.05

Method CD Curv Time CD Curv Time CD Curv Time CD Curv Time CD Curv Time CD Curv Time
FPS 0.01 2.21 21.2 0.81 2.99 7.84 4.02 3.42 3.86 2.11 4.07 21.2 3.47 4.35 7.84 7.31 4.79 3.86
Uniform 0.24 2.19 0.05 1.85 2.44 0.04 6.71 2.73 0.03 2.58 3.71 0.05 3.67 3.97 0.04 7.43 4.20 0.03
Potamias et al. [28] 0.03 2.14 120. 1.18 2.27 35.1 4.78 2.51 17.7 2.11 3.14 120. 3.38 3.65 35.1 7.61 4.12 17.7
Point Sampler 0.05 2.16 0.05 1.22 2.24 0.09 5.12 2.51 0.09 1.99 3.12 0.05 3.21 3.18 0.09 7.18 4.01 0.09

fied mesh, the proposed method achieves smaller Laplacian
error while at the same time attain competing performance
over all error metrics. On the contrary, the proposed method
outperforms all differentiable methods and overcomes the
limitations of previous triangulation approaches. In partic-
ular, as can be easily observed in Figure 3, the proposed
method has very few holes compared to PointTriNet [37]
as well as less triangles in non-existing regions, such as the
triangles occurring between the thigh and the hand (top row
Figure 3), due to the probabilistic surface distance loss that
penalizes such triangles. For further qualitative assessment
see also Figure 1.

4.2. Time Performance

One of the most prominent applications of mesh simplifi-
cation is inevitably rendering. Real-time rendering requires
lightweight model structures, therefore simplification algo-
rithms are commonly equipped in rendering pipelines. To
this end, the time performance is of crucial importance for
the simplification process. To assess time performance, we
measured the execution time for each method to simplify 20
meshes under different simplification ratios. Experimental
result presented in Table 1 showcase the efficiency of the
proposed method, outperforming its baseline counterparts

by a large margin. In particular, the proposed method runs
up to 10× faster than the optimized QEM method and at
least 100× faster than its faster differentiable counterpart.
Another important feature of the proposed method is that it
remains almost unaffected by the mesh scale, due to the effi-
cient point sampler and the lightweight structure of the face
classifier. In summary, the results highlight the fact that the
proposed method could be directly plugged into any render-
ing process without introducing any significant overhead.

4.3. Evaluation of Point Sampler

Point Sampler is responsible for the selection of the ver-
tices to be maintained in the simplified mesh. To assess
the performance of the sampling module we measure the
structural error in terms of i) the Chamfer distance (CD), ii)
the details preserved using the two-sided curvature error as
suggested in [28] and iii) the time required to simplify the
input point cloud (in seconds) under several simplification
ratios. We compare the proposed method with FPS [29],
uniform random sampling as utilized in [15], and a recently
introduced point cloud simplification module [28]. In Fig-
ure 4 we qualitative compare the simplified point clouds.
Quantitative results are presented in Table 2 showcasing
that the proposed point sampler outperforms the uniform
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random sampler as proposed in [15] and also demonstrate
a balance between the smooth and the sharp results pro-
duced by FPS and Potamias et al. [28]. Importantly, the pro-
posed method remains unaffected from the size of the input,
achieving a sampling of 420%- to 2400%- times faster than
FPS and Potamias et al. [28]. This result clearly demon-
strates that the proposed method can be directly utilized to
sample large-scale point clouds with the minimal computa-
tional overhead, greatly advancing the naive random sam-
pling approach [15]. Finally, we assess the performance of
the proposed sampling module under noisy conditions by
training on clean datasets and testing on noisy point clouds
by adding zero mean and unit std Gaussian noise to the
data. (right block of Table 2). It can be easily observed
that the proposed method is less affected by the presence
of noise compared to its counterparts by virtue of the Dev-
Conv, which encodes points based on the maximum relative
features of the neighborhood.

4.4. Curvature-based Simplification

A significant property of the proposed method is that
all of its components are fully differentiable. Thus, it can
be seamlessly integrated to an arbitrary iterative framework
which requires gradients to flow throughout the optimiza-
tion process. In this experiment, we attempt to exploit
the capability of the model to be adapted to a trainable
pipeline that generates customized simplification. In par-
ticular, we fine-tuned the proposed method to generate sim-
plified meshes that preserve the curvature of the original.
To achieve this, we utilized a loss term that measures the
curvature difference between the original and the simpli-
fied meshes as proposed in [28]. Experimental results re-
vealed that the fine-tuned method achieved an improvement
of 40% (in average) to the curvature error compared to the
original version. An example is illustrated in Figure 5 where
it can be easily observed that the fine-tuned version focuses
on preserving the rough details of the original mesh (such
as the eyes and the nose-tip) compared to the smooth mesh
produced by the untouched version of the proposed method.

4.5. Evaluation of intrinsic distances

To evaluate the distortion of intrinsic properties in the
simplified mesh we rely on geodesic and spectral distances,
measured between vertices in a spotted area of the surface.
The biharmonic spectral distance is calculated as in [21].
A qualitative color-coded comparison of the cat shape sim-
plified by 90% between QEM and the proposed method is
illustrated in Figure 6. Although, both methods manage to
satisfactorily preserve the geodesic distances, the QEM ap-
proach introduces enough distortion to the biharmonic spec-
tral distances. Comparisons with additional baselines are
provided in the supplementary material.

Figure 5. Fine-tuning the proposed method for curvature driven
simplification.

Figure 6. Geodesic and Spectral distance comparison between
QEM and the proposed method. Distances are measured from the
nose-tip of the cat.

5. Conclusion and Limitations

In this work we attempt to mark a step towards a totally
learnable mesh simplification framework. We proposed the
first differentiable mesh simplification model based on the
advances of graph neural networks. The run-time efficiency
and lightweight structure of the proposed model enables its
direct use in a wide range of differentiable applications. The
proposed method outperforms all of its differentiable coun-
terparts. A limitation of the proposed method is that, al-
though we enforce the model using tailor-made loss func-
tion to preserve the topology and the manifoldness of the
generated meshes, it can not be explicitly guaranteed. In-
evitably, QEM produces smother watertight surfaces with
finer details compared to the proposed method. However,
QEM comes with a greater computational cost, along with
a non-differentiable nature that limits its range of applica-
tions. We believe that the rationale underlying the proposed
method and the presented findings of this paper will benefit
the 3D computer vision community.
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