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Abstract

The goal of this paper is to learn strong lip reading
models that can recognise speech in silent videos. Most
prior works deal with the open-set visual speech recogni-
tion problem by adapting existing automatic speech recog-
nition techniques on top of trivially pooled visual features.
Instead, in this paper, we focus on the unique challenges en-
countered in lip reading and propose tailored solutions. To
this end, we make the following contributions: (1) we pro-
pose an attention-based pooling mechanism to aggregate
visual speech representations; (2) we use sub-word units
for lip reading for the first time and show that this allows
us to better model the ambiguities of the task; (3) we pro-
pose a model for Visual Speech Detection (VSD), trained
on top of the lip reading network. Following the above,
we obtain state-of-the-art results on the challenging LRS2
and LRS3 benchmarks when training on public datasets,
and even surpass models trained on large-scale industrial
datasets by using an order of magnitude less data. Our best
model achieves 22.6% word error rate on the LRS2 dataset,
a performance unprecedented for lip reading models, sig-
nificantly reducing the performance gap between lip read-
ing and automatic speech recognition. Moreover, on the
AVA-ActiveSpeaker benchmark, our VSD model surpasses
all visual-only baselines and even outperforms several re-
cent audio-visual methods.

1. Introduction
Lip reading, or visual speech recognition, is the task of

recognising speech from silent video. It has many practical
applications which include improving speech recognition in
noisy environments, enabling silent dictation, or dubbing
and transcribing archival silent films [25]. It also has impor-
tant medical applications, such as helping speech impaired
individuals, e.g. people suffering from Lou Gehrig’s disease
speak [54], or enabling people with aphonia (loss of voice)
to communicate just by using lip movements.

Lip reading and audio-based automatic speech recog-

nition (ASR) both have the common goal of transcribing
speech, however, they differ regarding the input: while in
ASR the input signal is an audio waveform, in essence, a
one-dimensional time series, lip reading has to deal with
high-dimensional video inputs that have both temporal and
spatial complexity. This makes training large end-to-end
models harder due to GPU memory and computation con-
straints. Furthermore, understanding speech from visual in-
formation alone is challenging due to the inherent ambigu-
ities present in the visual stream, i.e. the existence of ho-
mophemes where different characters that are visually in-
distinguishable (e.g. ‘pa’, ‘ba’, and ‘ma’). That lip reading
is a much harder task is also supported by the fact that al-
though humans can understand speech reasonably well even
in the presence of noise and across a variety of accents, they
perform relatively poorly on lip reading [7, 16].

Designing a lip reading model requires both a visual
component – mouth movements need to be identified – as
well as a temporal sequence modelling component, which
typically involves learning a language model that can re-
solve ambiguities in individual lip shapes. Recent develop-
ments in deep learning models and the availability of large-
scale annotated datasets has led to breakthroughs surpassing
human performance [16]. However, most of these works
have taken the approach of adapting techniques used for
ASR and machine translation, without catering to the par-
ticularities of the vision problem.

The conjecture in this paper is that the performance of
lip reading, in terms of both accuracy and data efficiency,
can be improved if the model is designed from the start tak-
ing into account the peculiarities of the visual, rather than
the audio domain. To this end, we consider both the visual
encoding and the text tokenisation.
Visual encoding. Our first contribution is the design of a
novel visual backbone for lip reading. The spatiotemporal
complexity in lip reading requires dealing with problems
such as tracking the mouth in moving talking heads. This is
usually achieved with complicated pre-processing pipelines
based on facial landmarks. However, those are sub-optimal
in many cases. For example, landmarks don’t work well in
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profile views [26]. Moreover, it is unclear what is the opti-
mal region-of-interest for lip reading: it has been shown that
besides the lips, other parts of the face, e.g. the cheeks, may
also contain useful discriminative information [68]. Also,
this region-of-interest can vary drastically in terms of scale,
aspect ratio across identities and utterances. Thus, in this
work, we propose an end-to-end trainable attention-based
pooling mechanism that learns to track and aggregate the
lip movement representations, resulting in a significant per-
formance boost.
Text tokenisation. Lip reading methods most commonly
output character-level tokens. This output representation
however is sub-optimal as characters are sometimes more
fine-grained than the input, with multiple characters cor-
responding to a single video frame. Furthermore, char-
acters do not encode any prior knowledge about the lan-
guage, which leads to higher dependency on the decoder’s
language modeling capacity that must also ‘learn to read’.
In this work, we instead use sub-word tokens (word-pieces)
which not only match with multiple adjacent frames but are
also semantically meaningful for learning a language easily.
Word-pieces result in much shorter (than character) output
sequences which greatly reduces the run-time and memory
requirements. They also provide a language prior, reducing
the language modelling burden of the model. We experi-
mentally compare character and word-piece tokenization to
justify this choice.
Visual Speech Detection. One issue with performing lip
reading inference on real-world silent videos is that, since
there is no audio track, there is no automated procedure for
cropping out the clips where the person is speaking. ASR
models use Voice Activity Detection (VAD) as a key pre-
processing step, but this is clearly not applicable for silent
videos. Here, the parts of a video containing speech have to
be determined using the video input alone; in other words,
by performing Visual Speech Detection (VSD). This can
be very useful e.g. for running inference on silent movies.
Among other findings in this work, we show that it is pos-
sible to train a strong VSD model on top of our pre-trained
lip reading encoder.
Other downstream tasks. Besides improving performance
on the sentence-level lip reading task itself, obtaining im-
proved lip movement representations can have a broader im-
pact, as those are often used for other related downstream
tasks – e.g. sound source separation [19], visual keyword
spotting [42], and visual language identification [4].

In summary, we make the following three contribu-
tions: (i) a visual backbone architecture using attention-
based pooling on the spatial feature map; (ii) the use of sub-
word units, rather than characters for the language tokens;
and (iii) a strong Visual Speech Detection model, directly
trained on top of the lip reading encoder.

In the experiments we show the benefits of (i) and (ii)

on improving lip reading performance, and we also intro-
duce a two-stage training protocol that simplifies the cur-
riculum used in prior works. As will be seen, with these
design choices and training methodology, the performance
of our best models exceeds prior work on standard evalua-
tion benchmarks, and even outperforms proprietary models
that use an order of magnitude more data for training. Sim-
ilarly, we show the benefit of (i) and the lip reading encoder
to our visual speech detection model that is far superior to
previous methods on a standard evaluation benchmark.

We discuss potential ethical concerns and limitations of
our work in the arXiv version. Please check our project page
for video examples, code, and pre-trained models.

2. Related Work
We present an overview of prior work on lip reading, in-

cluding a discussion of how these methods select and track
the visual regions of interest, as well as the output tokeniza-
tions they use, followed by a brief overview of the use of
attention for visual feature aggregation in other domains.
Lip reading. Early works on lip reading relied on hand-
crafted pipelines and statistical models for visual feature
extraction and temporal modelling [21, 37, 43, 44, 48]; an
extensive review of those methods is presented in [70]. The
advent of deep learning and the availability of large-scale lip
reading datasets such as LRS2 [15] and LRS3 [2], rejuve-
nated this area. Progress was initially on word-level recog-
nition [16, 58], and then moved onto sentence-level recog-
nition by adapting models developed for ASR using LSTM
sequence-to-sequence [15] or CTC [7, 54] approaches. [47]
take a hybrid approach, training an LSTM-based sequence-
to-sequence model with an auxiliary CTC loss. One trend
in recent work is moving to Transformer-based architec-
tures [1], or variants using convolution blocks [67], and hy-
brid architectures like a Conformer [22]. Another trend is to
investigate the benefits of training with larger datasets, ei-
ther directly by training on proprietary data that is orders of
magnitude larger than any public dataset [40], or indirectly
by distilling ASR models into lip reading ones [3, 33, 65].
For visual feature extraction and short-term dynamic mod-
elling, most modern pipelines rely on spatiotemporal CNNs
consisting of multiple 3D convolutional layers [7, 54], or
more lightweight alternatives that comprise a single 3D con-
volutional layer followed by 2D ones [1, 16, 58] applied
frame-wise.
Mouth ROI selection, registration, and tracking. A thor-
ough investigation on facial region of interest (ROI) selec-
tion for lip reading is provided by [68]. The videos in-
cluded in datasets like LRS2 and LRS3 are commonly pre-
processed with a face detection and tracking pipeline which
outputs clips roughly centered around the speaker’s face.
Many previous works use a central crop on the provided
videos as input to the feature extractors [1, 38, 58]. More
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elaborate pipelines use facial landmarks to register the face
to a canonical view and/or only extract the crops of the
mouth area [7, 31, 40, 46, 54, 67]. [68] propose to input a
large part of the face, combined with Cutout [17] to encour-
age the model to also use the extra-oral face regions. After
selecting which input region to extract the low-level CNN
features from, all above works apply Global Average Pool-
ing (GAP) on the extracted visual features map; this obtains
a compact representation, but discards spatial information.
Recent works [67] have shown that replacing GAP with a
spatio-temporal fusion module improves performance.
Text tokenization. Most prior works on lip reading output
character-level predictions [1, 14, 15, 38, 40, 47, 67]. Those
approaches usually use an external language model dur-
ing inference to boost performance [27, 39]. Instead [54]
chose to output phoneme sequences, using phonetic dic-
tionaries. This approach has the advantage of a more ac-
curate mapping of lip-movements to sounds but requires
a complicated decoding pipeline involving a proprietary
finite-state-transducer. [20, 30] use a hard-crafted heuristic
to map words onto viseme sequences and vice versa, and
use viseme tokens for representing the output and target
text. In this work, we instead propose using sub-word level
tokenisation, which greatly reduces the output sequence
length, thus accelerating both training and inference, and
neatly encodes prior language information that improves the
overall performance.
Visual feature aggregation with attention. Our work is
also related to methods that use attention for improving
visual representations of images or videos. [24, 61] use
attention-weighted-averages of visual features as building
blocks for various classification and detection tasks, while
OCNet [66] uses self-attention to model context between
pixels for semantic segmentation. Several recent papers
have replaced convolutions with Transformer [60] blocks
in visual representation pipelines. DETR [11] and Efficient
DETR [64] learn object detectors by applying spatial trans-
formers on top of CNN feature extractors. Similarly, the
Visual Transformer [62] tokenises low-level CNN features
and then processes them using a Transformer to model re-
lationships between tokens. ViT [18] completely replaces
CNNs in the visual pipeline with Transformer layers applied
on image patch sequences, while the Timesformer [10] has
been suggested as a purely Transformer-based solution for
video representation learning.
Speech Detection. An important pre-processing stage in
ASR pipelines is Voice Activity Detection (VAD), which
involves the detection of the presence of speech in au-
dio [51]. The reliability of audio-based VAD systems de-
teriorates in the presence of noise or cocktail party scenar-
ios [35]. In audio-visual pipelines, such as ones used for
creating large-scale audio-visual speech datasets [2,16], this
step is commonly replaced by an Active Speaker Detection

(ASD) stage which determines face tracks that match the
speech. Audio-visual ASD models have been effectively
trained either using direct supervision [6, 13, 32, 52, 59]
or in a self-supervised [5, 16] fashion by employing con-
trastive objectives. The visual counterpart to VAD is Visual
Speech Detection (VAD), which operates only on the video
input. Early work on VSD (also termed Visual VAD or V-
VAD) was based on handcrafted visual features and statis-
tical modelling using methods such as HMMs, GMMs and
PCA [8,34–36,45,49,55–57]. More recent works proposed
methods based on optical flow [9] or a combination of CNN
and LSTMs [23, 53]. These methods are limited in hav-
ing been trained or evaluated on constrained or non-public
datasets. The train set of WildVVAD [23], a new annotated
VSD dataset has been made public, however, at the time of
publication of this paper, its test set was not available, we
were, therefore, unable to use this dataset for benchmark-
ing.

3. Method
In this section, we describe our proposed method. The

architecture of the model is outlined in Figure 1. Next, we
explain each stage of the pipeline and refer the reader to the
arXiv version for further details.

3.1. Visual backbone

CNN. The input to the pipeline is a silent video clip of
T frames, x ∈ RT×H×W×3. A spatio-temporal residual
CNN is applied on sub-clips of 5 frames (i.e. 0.2s) with
a unit frame stride, to extract visual spatial feature maps
f ∈ RT×h×w×c. For our best model, H = W = 96,
(h,w) = (H/4,W/4) = (24, 24), and c = 128.
Visual Transformer Pooling (VTP). The CNN feature
map ft ∈ Rhw×c corresponding to every input frame
t ∈ {1, . . . , T} is processed individually by a shared Vi-
sual Transformer Pooling (VTP) block. The feature map is
first flattened to ft ∈ Rh×w×c and projected to a desired
Transformer feature dimension d to get ft ∈ Rhw×d. Then,
spatial positional encodings (SPE) are added to it; the result
is passed through an encoder consisting of NV TP Trans-
former layers, to get an enhanced self-attended feature map

zt = encoderv(ft + SPE1:hw) ∈ Rhw×d.

A learnable query vector Qatt ∈ Rd×1 is then used to ex-
tract a visual attention mask

at = softmax(Q>att zt) ∈ Rhw×1.

The attention mask is used to compute a weighted aver-
age over the self-attended feature map

gt =
1

hw

hw∑
u=1

aut z
u
t ∈ Rd
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Figure 1. Proposed lip reading architecture. Left: The input video frames are passed through a spatio-temporal CNN to extract low-level
visual features f . The feature map corresponding to every input frame is then separately processed by a Visual Transformer Pooling module
(VTP). The VTP block adds spatial positional encodings (SPE) to the input features and passes the result through a Transformer encoder
to produce a self-attended feature map zt. A query vector Qatt is used to compute an attention mask which is in turn used to obtain a
spatially weighted average of zt. This produces a compact visual representation of the lip appearance and movement around each input
video frame. Concatenating the frame-wise features forms a temporal feature sequence g. This is passed as input to an encoder-decoder
Transformer (right) that auto-regressively predicts sub-word probabilities for one token at a time. An output sentence is eventually inferred
from these distributions using a beam search.

where aut and zut denote the feature and attention weight
respectively, associated with frame t and location u ∈
{1, . . . , hw}. By stacking the resulting vectors gt in time,
we obtain an embedding sequence g = (g1, g2 · · · , gT ) ∈
RT×d which contains a compact spatio-temporal represen-
tation for every input frame.
Transformer encoder-decoder. An encoder-decoder
Transformer model is used to predict a text token sequence
s = (s1, s2 · · · , sTdec

) from the source video embedding
sequence g, one token at a time: temporal positional encod-
ings (PE) are added to g, and the result is input to an en-
coder, which consists of Nenc multi-head Transformer lay-
ers, to produce a self-attended embedding sequence

genc = ENCODER(g + PE1:T ) ∈ RT×d.

The decoder, which consists of Ndec Transformer layers,
then attends on this sequence and predicts the output text
token sequence s in an auto-regressive manner, by factoris-
ing its joint probability:

log p(s|x) =

Tdec∑
t=1

log p(st| genc(x), s1:t−1) (1)

where positional encodings have also been added to the
auto-regressive decoder inputs as in [60].

The text sentences are encoded into token sequences
(and vice versa tokens are decoded into text) using a sub-
word level tokeniser, in particular WordPiece [63]. We tried
other sub-word tokenizations such as Byte-Pair-Encoding
(BPE) that is used in GPT2 [50], but it performed worse
compared to using WordPiece.

Beam search decoding and rescoring. Decoding is per-
formed with a left-to-right beam search of width B. We
also decode a second time after flipping all the input
video frames horizontally. Additional language knowl-
edge is incorporated by using an external language model
(LM) to re-score [12] the 2 × B-best hypotheses S =
{s1 · · · sB ; sh1 · · · shB} from the beam searches, and obtain
the highest scoring one as the final sentence prediction:

sbest = arg max
s∈S

[ α log p(s|x) + (1− α) log pLM (s) ]

Here, sh1 · · · shB denotes the beam sequences after hor-
izontally flipping the input. We found that additional test-
time augmentations such as small degrees of rotation and/or
color jitters did not improve the results.

3.2. Training

Optimisation objective. Given a training dataset D con-
sisting of pairs (x, s∗) of video clips and their ground truth
transcriptions, the model is trained to maximise the log like-
lihoods of the transcriptions by optimising the following ob-
jective

L = −E(x,s∗)∈D log p(s∗|x) (2)

Teacher forcing. To accelerate training, we follow com-
mon practice for sequence-to-sequence training with Trans-
formers, and feed in the previous ground-truth token as
the decoder input at every step, instead of using auto-
regression. The tokens are fed into the decoder via a learn-
able embedding layer.
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Training protocol. Training is performed in two stages.
First, the whole network is trained end-to-end on short
phrases of 2 words. Following [1, 16], we use frame word-
boundaries to crop out training samples from all the pos-
sible combinations of 2 consecutive words in the dataset,
which provides natural augmentation. Upon convergence,
we freeze the visual backbone, then pre-extract and dump
the visual features for all the samples. In the second train-
ing stage that follows, we train the encoder-decoder sub-
network on all possible sub-sequences (n-grams) of length
2 or larger that can be generated by combining consecutive
word utterances in the dataset.
Discussion. We note that our training protocol is much sim-
pler than the ones commonly used in prior works [1,16,47].
By using the same network and loss during the backbone
pre-training stage, we obtain a good initialization of the en-
tire network and enable a smooth transfer. This is in con-
trast to other works that pre-train with a different proxy
loss and require a separate word classification head that is
subsequently discarded. The second stage is significantly
simpler to implement and requires a single run, unlike cur-
riculums that gradually increase the length of the training
sentences and usually require a complicated tuning pro-
cess with multiple manual restarts to achieve the best re-
sults. We observed that our proposed second stage training
setup matches the performance of the complicated curricu-
lum strategy used in previous works, while being more effi-
cient in terms of training time and manual efforts.

4. Experiments

4.1. Data

LRS2 & LRS3. For training and evaluation, we use
two publicly available sentence-level lip reading datasets:
LRS2 [16] and LRS3 [2]. LRS2 contains video clips from a
variety of shows from British television, such as Countryfile
and Top Gear; the transcribed content sums up to approx-
imately 224 hours in total. LRS3 has been collected from
over 5, 000 TED and TEDx talks in English, available on
YouTube, totalling 475 hours. Both datasets have been cre-
ated using a detection and tracking pipeline that produces
face-cropped clips roughly centered around the speaker’s
talking head. All videos are available at a 224 × 224 pixel
resolution and 25 fps. The datasets contain a “pretrain”
partition that includes extensive head tracks including word
boundaries that have been produced by force-aligning sub-
titles to the audio. Those word alignments enable training
at any granularity. The test sets contain only full sentences.
Additional dataset: TEDxext. To obtain more training
data, we create a new dataset from TEDx talks down-
loaded from YouTube, by using a pipeline similar to [2].
We collect 13, 211 TEDx talks in English that are not in-
cluded in LRS3. Unlike the videos used for the creation

of LRS3 which contain manually annotated transcripts, the
new videos only have the closed captions automatically pro-
duced by the YouTube ASR system. As these captions are
only approximately aligned to the audio, we use the Mon-
treal Force Aligner [41] to obtain accurate alignments for
the word boundaries needed by our training pipeline. For
the rest of the processing (face detection, tracking, and
cropping) we used the same pipeline as in [2]. The re-
sulting training dataset contains 1, 204 hours in total over
318, 459 visual speech tracks, including text transcriptions
with word boundary alignment. We call this new training
set TEDxext. We note that since this pipeline does not re-
quire any manual transcriptions, the supervision comes for
free, therefore it is easily scalable. However, the supervi-
sion is not as strong due to the noise in the training data
introduced by the imperfect ASR transcriptions. But, as we
will see, our model achieves a huge performance boost after
training on this noisy data.

4.2. Implementation details

During the first training stage, we apply random visual
augmentations on the input frames to reduce overfitting: the
input videos are first resized to a square 160 pixels resolu-
tion, from which a central square 96-pixel crop is extracted.
Random horizontal flipping and rotation (up to 10◦) are also
applied before inputting to the lip reading pipeline. During
inference we use the central 96-pixel crop, and only apply
the horizontal flipping augmentation.

For our best model, i.e., VTP on (H/4,W/4), we set
NV TP = 6 layers with 8 heads each for the encoder of
the VTP module. For computational efficiency, VTP uses
the recently proposed Linear Transformer [28] instead of
the original Transformer [60]. We found that this change
did not lead to a drop in the recognition performance,
while being much more computationally efficient. An-
other design choice we had to make is deciding after which
CNN layer the VTP should be applied. Transformer lay-
ers are computationally expensive at higher resolution fea-
ture maps (i.e. earlier layer activations), but can capture
more detailed information. Given this trade-off, we ex-
periment with three different feature map resolutions, at
(h,w) = (H/4,W/4), (H/8,W/8), (H/16,W/16). For
the latter two variants, we set the feature dimension d =
512. When pooling on (h,w) = (H/4,W/4), we keep the
compute and memory needs in check by performing two
small changes: using d = 256 for the first 3 VTP layers,
and then setting d = 512 but down-sampling the feature
map to (H/8,W/8) for the remaining 3 layers.

The encoder-decoder Transformer contains Nenc = 6
and Ndec = 6 layers, each with 8 attention heads. We use
sinusoidal positional encodings [60] for PE and learnable
positional encodings for SPE. We use the WordPiece tok-
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Training Evaluation
Method Datasets used Total # hours LRS2 LRS3

LIBS [69] LRS2, LRS3 698 65.3 -
Hyb. CTC/Att. [47] LRS2, LRW 389 63.5 -
TDNN [65] LRS2 224 48.9 -
Conv-seq2seq [67] LRS2, LRS3 698 51.7 60.1
CTC + KD [3] LRS2, LRS3, VoxCeleb2‡ 1,032 51.3 59.8
Hyb. + Conformer [38] LRS2, LRW 389 37.9 -
Hyb. + Conformer [38] LRS3, LRW 639 - 43.3
Ours LRS2, LRS3 698 28.9 40.6

TM-seq2seq [1] LRS2, LRS3, LRW, MV-LRS† 1,637 48.3 58.9
CTC-V2P [54] LSVSR† 3,886 - 55.1
RNN-T [40] YT31k† 31,000 - 33.6
Ours LRS2, LRS3, MV-LRS†, TEDxext 2,676 22.6 30.7

Table 1. Comparison of different lip reading models on the test sets of the LRS2 and LRS3 datasets in terms of Word Error Rate % (WER,
lower is better), along with the datasets and the aggregate number of hours used for training each model. Our model achieves state-of-
the-art results, outperforming all previous baselines when trained on publicly available data (i.e. LRS2 and LRS3). If we additionally
use MV-LRS and TEDxext for training, then our best model obtains results comparable with that of [40], even though we are only using
an order of magnitude less data. This is indicative of the data efficiency of our proposed pipeline. †Large non-public labelled datasets:
MV-LRS [1] contains 730 hours, LSVSR [54] 3.9k hours, and YT31k [40] 31k hours of transcribed video. ‡unlabelled dataset. Results
shown in blue have been obtained by training (partly or entirely) on non-public data.

enizer of the BERT model in HuggingFace1, with a vocab-
ulary of 30522 tokens. We also use an off-the-shelf pre-
trained GPT2 language model for beam rescoring. For the
beam rescoring, we set hyperparameter α = 0.7 for LRS2
and α = 0.6 for LRS3 respectively. We train all models
with the Adam optimiser [29] with β1 = 0.9, β2 = 0.98
and ε = 10−9. In the first stage of the training, we follow
a Noam learning rate schedule [60] for the first 50 epochs
and then reduce the learning rate by a factor of 5 every time
the validation loss plateaus, until reaching 10−6. For the
second stage, the learning rate is initially set to 5e−5 and
reduced by a factor of 5 on plateau down to 10−6. For our
best reported models on public data, the first stage of train-
ing takes approximately 14 days on 4 Tesla v100s GPUs.
The second stage takes 1.5 days on 1 Tesla v100 GPU.

4.3. State-of-the-art lipreading

We compare the results of our method to existing works
in Table 1. It is clear that our best model outperforms all
prior work trained on public data, on both the LRS2 and
LRS3 benchmarks. In particular, compared to the strongest
baseline of [38], our best model performs 9% better on
LRS2 and 2.7% better on LRS3. When also using MV-
LRS and TEDxext for training, we obtain a significant boost,
achieving 22.6% and 30.7% WER for LRS2 and LRS3 re-
spectively. We even outperform [40] by a considerable mar-

1https://huggingface.co/transformers/pretrained models.html

gin while using 10× lesser training data. This clearly sug-
gests that our pipeline is highly data-efficient.

4.4. Ablations

We perform various ablations to better understand the
different aspects of our pipeline. For all the ablation exper-
iments the models are trained and evaluated on public data
only, i.e. the LRS2 and LRS3 datasets.
Importance of each module. We show the impact of each
proposed module in the final scores, starting from a varia-
tion of the TM-seq2seq model [1]2, and building up to our
full model. We summarize the results of this study in Ta-
ble 2. It is clear that all the proposed improvements give sig-
nificant performance boosts and are largely orthogonal. In
particular, the use of WordPiece tokens contributes a 3.8%
absolute improvement on LRS2, while introducing the VTP
module decreases the WER by 6.3%. Using LM to rescore
the beams and applying test-time horizontal flipping leads
to another 1.1% and 0.9% improvement respectively.
VTP resolution. The VTP module is capable of aggregat-
ing the spatial features at arbitrary feature map resolutions.
But, we show that it is more effective when operating on
finer high-resolution feature maps rather than coarser low-
resolution feature maps. This is evident in Table 3, where
pooling after conv2,3 at a spatial resolution of 24 × 24 is
much more effective than pooling on lower-resolution fea-
ture maps of 12× 12 or 6× 6.

2Using the same CNN extractor as our model for fair comparison
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Figure 2. Visualization of the visual attention masks a from the VTP module superimposed on the input frames that produce them. The
video clips used here are random samples from the LRS3 dataset. It is evident that the model follows the more discriminative mouth region.

Method WER ∆

TM-seq2seq† baseline 41.0 -
+ WordPiece 37.2 −3.8
+ VTP 30.9 −6.3
+ Beam LM rescoring 29.8 −1.1
+ Test-time augmentation 28.9 −0.9

Table 2. Ablation on the design improvements proposed in this
work. The results reported are for the test set of the LRS2 dataset.
It is clear that all the proposed components contribute indepen-
dently to the performance boost. †The baseline is an improved
version of TM-seq2seq [1] (details are in the arXiv version).

Method # transformer layers WER

Without VTP 0 37.2
VTP @ (H/16,W/16) 2 35.7
VTP @ (H/8,W/8) 3 33.8
VTP @ (H/4,W/4) 6 30.9

Table 3. Ablation on the input spatial resolution for the VTP mod-
ule. The number of Transformer layers for each stage is chosen
such that the total number of parameters in the visual front-end is
approximately the same. We see that pooling from higher resolu-
tion feature maps clearly leads to better results.

Training protocol. Previous works [1] follow a curriculum
strategy during training: the sequence length is gradually
increased over the course of the training. While this pro-
tocol, indeed works better, we argue that the boost in per-
formance does not come from the curriculum learning but

from something else: data augmentation. Over the course
of the training process, the model gets to train on all sub-
sequences (n-grams) of various lengths, and this is an effec-
tive data augmentation that reduces over-fitting. Indeed, we
observe that if we simply train on all n-gram sub-sequences
at once (as opposed to a slow length increase), we achieve
a WER of 30.92, which is comparable to the WER of 30.91
following a curriculum protocol. Not only does this exper-
iment shed new light on the current understanding of the
training pipeline of lip reading, it also achieves similar re-
sults while following a much simpler training process that
requires significantly less manual tuning.

4.5. Visual attention visualization

In Figure 2, we visualize the visual attention maps that
the VTP module produces. Note that the lips region is
tracked very accurately while the speakers turn their heads
around, even for extreme profile views.

5. Visual Speech Detection Application
We build a VSD model on top of our lip reading trans-

former encoder by simply adding a fully connected (FC)
layer and a sigmoid activation on top of the frame-level en-
coder outputs to classify whether the person is speaking in
that frame or not:

y = σ( FC (genc) ) ∈ RT .

The architecture is illustrated in Figure 3. We train the VSD
head on top of the pre-trained lip reading encoder using a
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Figure 3. Visual Speech Detection pipeline. To predict the pres-
ence of speech at each video frame, we add a sigmoid prediction
head on top of the lip reading model’s visual encoder.

binary cross-entropy loss between the predicted and ground
truth labels, yt and y∗t :

Lv =
1

T

T∑
t=1

y∗t log yt + (1− y∗t ) log(1− yt) (3)

Dataset and evaluation. We train our VSD model on the
train split of the popular AVA ActiveSpeaker dataset [52].
This dataset is created from movies and contains 120 videos
(2.6M frames) for training, 33 videos (768K frames) for
validation and 109 videos (2M frames) in the test set. Each
frame contains bounding box annotations for the face, along
with a label indicating if the person is (i) speaking and audi-
ble, (ii) speaking but not audible, (iii) inaudible. The second
class covers cases where the person is visually speaking in
the background, but his voice/speech is not audible. Since
we operate only on the visual frames, we combine the sam-
ples of the first two classes and train the model to perform
binary classification. We initialize the weights from our pre-
trained lip-reading models and fine-tune all the layers with
the Adam optimizer by using a small learning rate of 10−6.
To evaluate the performance of our model and baselines we
use the mean Average Precision (mAP) metric as defined
by the dataset authors [52]; we compute the metric using
the evaluation script3 that the authors supply. We also re-
port our scores on the held-out non-public test set with the
assistance of the Ava-ActiveSpeaker challenge organizers.
Results. We show quantitative results in Table 4, where we
report the VSD performance of our best VTP-based model
(corresponding to the last row of Table 1), alongside re-
sults from previous works. It is evident that our model

3https://tinyurl.com/ava-script

greatly outperforms the video-only baseline of [52], and
even outperforms several of the recently proposed audio-
visual methods ( [6, 13]). Moreover, to once again show-
case the benefits of the VTP module, we also compare with
an ablation of our model that uses Global Average Pool-
ing (GAP) on top of the CNN features instead of VTP,
with identical train-val-test settings. VTP outperforms this
model on this task as well, by 8 mAP points. We refer to
the project page for qualitative video examples and exam-
ples of inference on silent videos using the whole pipeline,
including VSD and lip reading.

Method A V mAP (val) mAP (test)

Roth et al. [52] 3 3 79.2 82.1
Alcazar et al. [6] 3 3 87.1 86.7
Chung et al. [13] 3 3 87.8 87.8
MAAS-TAN [32] 3 3 88.8 88.3
TalkNet [59] 3 3 92.3 90.8

Roth et al. [52] 7 3 73.5 71.1
Ours (CNN + GAP) 7 3 81.4 80.2
Ours (VTP) 7 3 89.2 88.2

Table 4. Visual Speech Detection performance on the validation
(val) and test sets of the AVA ActiveSpeaker benchmark dataset.
The A and V columns denote which modalities the corresponding
method uses as input. Our VTP model outperforms the baseline
video-only model of [52] by a large margin (over 17 mAP im-
provement). In fact, we even outperform several of the recently
proposed audio-visual methods ( [6, 13]), obtaining results close
to the current state-of-the-art without using any audio.

Limitations and Ethical considerations. We explore the
limitations and failure cases of the lip reading and the VSD
models in the arXiv version. We also discuss the ethical
issues and the positive real-world applications of our work.

6. Conclusion
We have presented an improved architecture for lip read-

ing based on attention-based aggregation of visual repre-
sentations as well as several enhancements to the training
protocol, including the use of sub-word tokenisation. Our
best models achieve state-of-the-art results, outperforming
prior work trained on public data by a significant margin,
and even industrial models trained on orders of magnitude
more data. We have also designed a Visual Speech Detec-
tion model on top of our lip reading system that obtains
state-of-the-art results on this task and even outperforms
several audio-visual baselines.
Acknowledgements. Funding for this research is
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