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Time
Figure 1. In our daily lives, one switches between activities (e.g. making toast, preparing coffee, washing up) to minimize idle time.
Such behaviour results in video demonstrating multiple activities woven together. This paper introduces a model that learns to undo this,
unweaving video into threads of activity without the need for semantic labels.

Abstract

Our lives can be seen as a complex weaving of activi-
ties; we switch from one activity to another, to maximise
our achievements or in reaction to demands placed upon
us. Observing a video of unscripted daily activities, we
parse the video into its constituent activity threads through
a process we call unweaving. To accomplish this, we in-
troduce a video representation explicitly capturing activity
threads called a thread bank, along with a neural controller
capable of detecting goal changes and resuming of past activ-
ities, together forming UnweaveNet. We train and evaluate
UnweaveNet on sequences from the unscripted egocentric
dataset EPIC-KITCHENS. We propose and showcase the effi-
cacy of pretraining UnweaveNet in a self-supervised manner.

1. Introduction
“It’s the morning and you’ve just walked into the kitchen:

you’re hungry, sleepy, the kitchen is a mess, but you have
a paper to review for CVPR. You put some bread into the
toaster, turn the kettle on to make coffee, and in between
waiting for the kettle to boil and bread to toast, you clean the
dishes. The toast pops up and you put it on a plate, then the
kettle boils and you resume making your coffee, switching
back and forth as necessary until your breakfast is ready.”

As in the storyline described above and depicted in Fig. 1,
activities need not be completed over one continuous block
of time. Instead they are often paused and interleaved with
other activities. This observation gives rise to a new interpre-

tation of video as a weaving of activities. Such a perspective
supports the distinction between two instances of an activity
when the activity is paused and later resumed. This dis-
tinction can be important for downstream applications, like
assistive technologies which need to differentiate between
starting a new task vs. resuming a previously paused one.

This novel view of video leads to the task proposed and
tackled in this paper: unweaving a video into its constituent
activity threads. Like a person reading a story mentally un-
weaves the story’s narrative threads as they unfold, a model
unweaving a video does so similarly, processing video online,
detecting new threads of activity as they appear and updating
its representation of previously discovered threads as they
are resumed. Following this analogy, videos of activities as
referred to as activity stories.

This proposed task is related to two previously proposed
tasks: event boundary detection and unsupervised activity
segmentation. The relationship between unweaving and
these other related tasks is summarised in Fig. 2. Event
boundary detection [37, 1] aims to detect points in the video
where a transition between two events occurs. This task
aims to model the experimental observation that humans
can consistently detect transitions between events as they
watch video online [50, 51, 16]. Typically, these methods are
performed online [37, 1], predicting the future video repre-
sentation, comparing this against the true representation, and
measuring the prediction error in order to decide whether a
boundary can be detected. Compared to unweaving, event
boundary detection focuses on finding the transitions be-
tween activities and doesn’t support the association between
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Figure 2. Task comparison: In unweaving, the model has to de-
cide, online, whether the current part of the video is a continuation
of the last-seen activity, a resumption of previously paused activity,
or a completely new instance of an activity. The figure compares
unweaving to two previously studied tasks.

events depicting a paused-and-resumed activity. Also re-
lated, unsupervised activity segmentation [22, 36] clusters
visual features to produce a segmentation of the video. This
task doesn’t distinguish between different instances of the
same activity, e.g. the act of making two cups of tea, one
after the other, is the same as making just one. Unweaving
is significantly more challenging as it is performed online,
without specifying the number of activities, nor the duration
of the video. Unweaving thus combines the challenges of
the two aforementioned tasks.

In addition to introducing the problem of unweaving, this
paper proposes a model that learns to unweave video into
activity threads. Different threads of activity are modelled
in an explicit manner by a thread bank that is manipulated
by a neural controller as subsequent video is processed. To
train UnweaveNet, a self-supervised approach is introduced
that leverages within-thread temporal-order consistency to
construct synthetic visual stories from unlabelled videos for
pretraining. The model is then finetuned using a small set
of manually annotated stories. The efficacy of this approach
is shown experimentally using the unscripted egocentric
dataset EPIC-KITCHENS-100 [9].

Our contributions are summarised as: (i) The novel task of
unweaving video into its activity threads, online. (ii) A new
video representation explicitly modelling video as a set of ac-
tivity threads operated by a neural controller, which together
form UnweaveNet. (iii) A self-supervised pretraining ap-
proach for UnweaveNet that samples threads from different
parts of a long video and synthetically forms woven activity
stories. (iv) Labelled annotations of activity threads from
videos of the egocentric dataset: EPIC-KITCHENS1. (v) An
empirical evaluation and ablation study of UnweaveNet.

2. Related work
Event boundary detection In their seminal work, Zacks,
Tversky, and Iyer [51] define an event as “a segment of
time at a given location that is perceived by an observer
to have a beginning and an end”. Aakur and Sarkar [1]

1https://github.com/willprice/activity-stories

propose a self-supervised method for detecting event bound-
aries, by predicting upcoming features. A boundary is de-
tected when the prediction error of the future frame exceeds
a dynamically-set threshold. Shou et al. [37] introduce a
new dataset for supervised event-boundary detection. They
explore detecting event boundaries using both supervised
and unsupervised approaches. One of the unsupervised ap-
proaches, PredictAbility, measures the change in features
about a point in time to detect boundaries.

Action segmentation and detection In action segmenta-
tion [17, 25, 10, 45, 22, 36] the goal is to assign an action
label to every frame. In contrast, action detection [41, 39, 38,
31] predicts segments of video that possibly overlap. Most
efforts for these tasks are supervised.

Kukleva et al. [22] propose an unsupervised method for
segmenting video by learning a temporal embedding of
frames. First, they train an MLP to regress the position
of a frame in the video from which it originates. Interme-
diate features are extracted and act as the embedding of
the frame. The embeddings are then clustered using a con-
strained optimisation that prevents non-adjacent frames from
being assigned to the same cluster. An extension was pro-
posed in [43] that uses the embeddings from a model trained
for future feature prediction. Sarfraz et al. [36] also clusters
frames, in an unsupervised manner, to form a temporally-
weighted distance graph where nodes represent frames and
edge weights are determined by the feature dissimilarity and
temporal distance. Frames are then clustered iteratively until
the desired number of clusters is reached.

Movie scene segmentation A variety of works tackle the
problem of segmenting a movie into scenes. All existing
methods are offline and require specifying the number of
scenes into which the movie will be split. Early work by Ye-
ung et al. [48] introduced the concept of a hierarchical scene
transition graph which splits a movie into acts, scenes, and
shots. Cour et al. [7] use the screenplay and closed captions
associated with a movie and introduce the problem of shot
threading to undo the common scenario in which shots from
2 or more cameras are interleaved together. Tapaswi, Bäuml,
and Stiefelhagen [42] introduce a method for building a ‘Sto-
ryGraph’, a type of visualisation, originally proposed by the
web-comic xkcd [29], where each character in a TV episode
is represented as a line on a 2D chart.

More recently, Rao et al. [33] collect a large dataset Movie-
Scenes containing 21k scene segments from 150 movies that
are used to supervise their model. These approaches are spe-
cific to movies which are made up of scenes and shots. The
notion of characters, multiple-cameras, shots, and scenes are
not present in daily-activity videos.

Online clustering Unweaving videos can be viewed as a
type of online clustering, where the number of clusters is
not known ahead of time, nor the number of elements to be
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clustered. Kulshreshtha and Guha [23] investigate online
clustering of faces in TV episodes. Faces in the current shot
are compared against those seen previously via patch feature
similarity and are integrated into the existing closest cluster
if the similarity exceeds a threshold.

In Damen et al. [8], egocentric sequences from multiple
users are used to cluster activities in an unsupervised manner,
using 3D mapping and gaze information.

Nagarajan et al. [30] introduce a method for extracting a
topological map of a kitchen environment from a first-person
video. Part of their method clusters contiguous portions
of video into ‘activity-centric zones’. To accomplish this,
they train a Siamese network on pairs of video frames to
determine whether the frames come from the same zone. The
network training is supervised using a heuristic: two frames
are considered from the same zone if they are sufficiently
close in time or if they have a shared background. The map
is constructed by processing the video sequentially, adding
nodes and edges as new zones are discovered. This method
aims to aggregate subsequences of the video by location
rather than by activity.

We compare to both online clustering and EGO-
TOPO [30] in our results.

Neural-network controlled machines There is extensive
recent work on using neural networks to control data struc-
tures [14, 18, 13, 34, 4, 24, 52] such as neural stacks [14,
18], neuro-symbolic stack machines [4], and neural Turing
Machines [13, 53]. UnweaveNet follows in this vein by us-
ing a neural controller to operate its thread bank. Some of
these works [14, 13] use soft operations, where the model
performs all operations simultaneously at each computation
step with learnt weighting, whereas others [4] employ hard
decisions as in UnweaveNet. PtrNets [44] introduced an
approach for applying neural networks to seq2seq problems
where the output sequence corresponds to locations in the
input. Part of UnweaveNet deals with a similar problem.
UnweaveNet also shares similarities with the Memory Net-
work [46], however we use an adjustable memory size to
support varying numbers of threads.

Video summarisation Another related task is video sum-
marisation [54, 27, 35, 49, 19], which aims to extract high-
lights that give a condensed overview of the video. Instead,
in this work the full video is represented when unweaving
an activity story into its constituent activities.

3. Unweaving stories
This section formulates the problem of unweaving

(Sec. 3.1); introduces the structured video representation
(Sec. 3.2) and the neural controller operating it (Sec. 3.3), to-
gether forming UnweaveNet; and concludes with the process
used to train the model (Sec. 3.4).

3.1. Problem description
Unweaving is the problem of parsing an arbitrary-length

video online into N variable-length activity threads, where
N is unspecified and can vary across videos. Once unwoven,
all parts of the video belonging to the same thread should
correspond to one activity instance. When the video portrays
a switch to a different activity, the ongoing thread should be
paused and a different thread started or resumed. Assuming
n̂t threads have been identified up to time t, the task is to
decide whether the current video clip vt is a continuation of
an existing thread or the beginning of a new thread.2

3.2. Thread bank
Core to our proposal is a structured representation of

video, which we call a thread bank. This stores the rep-
resentations of all complete and on-going activity threads
discovered in the video as it is processed. New activity
threads can be added into the bank as they are discovered
and existing threads can be updated by incorporating new
clips into them. In its most general form, a representation zit
of thread i at time t is produced as an aggregation g of the
set of clips Vi

t currently assigned to the thread:

zit = g
�
Vi
t

�
, g : R|V

i
t |⇥C ! RD (1)

where C is the dimension of the clip feature and D the di-
mension of the thread representation. However, this doesn’t
quite capture the concept of an activity as an evolving pro-
cess. Instead, a recurrent function �update is used in place of
g, better modelling this perspective by updating the activity
representation with information from the latest clip:

zit+1 = �update(vt, z
i
t), �update : RC ⇥ RD ! RD.

(2)
When a new thread is discovered, zit is replaced with an
initial learnt empty-thread representation z⇤.

The state of the thread bank at time t and t + 1 can be
related as follows. Let ŷt be the thread to which vt will
be added; for UnweaveNet, this is decided by its neural
controller (described in Sec. 3.3). The representations within
the updated thread bank zt+1 are related to the previous
previous representations zt as follows

zit+1 =

8
><

>:

�update(vt, zit) i = ŷt  n̂t

�update(vt, z⇤) i = ŷt = n̂t + 1

zit otherwise.

(3)

When t = 1, the thread bank is empty, thus n̂1 = 0.
While the number of threads in the bank can vary, each

thread’s representation is fixed in size, thus the model’s
complexity is linear in the number of threads rather than
number of clips. Since the number of clips greatly exceeds
the number of threads, this keeps the representation compact.

2The clip is assumed short enough to belong to one thread, leaving the
exploration of clip length and multi-thread clips to future work.
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Figure 3. (a) UnweaveNet overview: at each timestep, UnweaveNet receives a clip vt and considers the current thread bank state zt; the
controller determines whether that clip is a continuation of the ongoing thread, a resumption of a past thread, or the start of a new thread and
updates the thread bank accordingly. (b) Controller architecture: vt and zt are embedded into a common space by linear layers  clip and
 thread and fed into a transformer encoder. The clip embedding is compared against the thread embeddings and the new thread token [NT]
to determine the probability of the clip joining an existing/new thread. (c) Thread bank update: Given a thread to update, determined by
ŷt = argmaxi p

i
t, �update incorporates vt into the current thread representation zit to produce the updated representation zit+1.

3.3. Neural controller
In order to construct the thread bank representation, a

neural controller manipulates the thread bank as new clips
are considered from the video (Fig. 3a). Given a new clip,
the controller determines whether the clip is the beginning of
a new thread or whether it is a continuation or a resumption
of an existing thread (Fig. 3b). Once the decision has been
made, the thread bank is updated (Fig. 3c) and the process
iterates.

UnweaveNet uses a neural network �select to implement
the controller. It is fed the new clip vt and the current thread
bank state zt and is tasked with calculating the probabilities
pt 2 [0, 1]n̂t+1 of how likely it is that vt is the continuation
of the ongoing thread, the resumption of a past thread, or
the start of a new thread. Specifically, p1:n̂t

t contains the
probabilities of vt continuing/resuming existing threads and
pn̂t+1
t is the probability of vt starting a new thread. The

controller �select computes a vector of logits

lt = �select(vt, zt), �select : RC ⇥ Rn̂t⇥D ! Rn̂t+1,
(4)

which are softmaxed (with temperature ⌧ ) to compute pt

pit = el
i
t/⌧/

Pn̂t+1
j=1 el

j
t/⌧ . (5)

The decision is then determined by ŷt = argmaxi p
i
t.

To obtain l1:n̂t
t , we learn a space in which the clip is clos-

est to the thread it belongs to. Both the clip and threads
are embedded into this space through linear projections
 clip : RC ! RE and  thread : RD ! RE . The co-
sine similarity between the clip and each thread embedding
is measured to produce the scores l1:n̂t

t for how likely it is
that the clip belongs to each thread. We also learn a latent
similarity score lNT 2 R, which acts as a threshold that a
clip-thread similarity must exceed if the clip is to be deemed
a continuation. This gives rise to the linear controller

�linearselect (vt, zt)i =

(
cos

�
 clip (vt) , thread

�
zit
��

i  n̂t

lNT otherwise.

(6)

C C C N C R C

Figure 4. Different decision scenarios during the unweaving
process: Continue thread, New thread, Resume thread. Each square
depicts a single clip which is coloured by the thread it belongs to.

We contrast this approach with a contextualised ap-
proach by feeding a transformer encoder  tran with
a sequence composed of the embedded clip and
thread representations, and a new-thread token [NT] 2
RE . The transformer  tran takes this input sequenceh
 clip (vt) , thread

�
z1t
�
, . . . , thread

⇣
zn̂t
1

⌘
, [NT]

i
and pro-

duces a corresponding output sequence
h
ṽt, z̃1t , . . . , z̃

n̂t+1
t

i
.

These contextualised vectors (denoted by tilde) form a new
embedding space in which the clip ṽt is compared against
all threads z̃1:n̂t

t and the new-thread token z̃n̂t+1
t to form the

vector of logits:

�transelect(vt, zt)i = cos(ṽt, z̃
i
t). (7)

This process using �transelect is graphically depicted in Fig. 3b.

3.4. Training
UnweaveNet is trained end-to-end, including the back-

bone used to extract clip features, thus the clip and thread
representations are optimised along with the controller pa-
rameters. The decisions made by �select are supervised using
teacher forcing [47, 12], used for training language models;
at each time step, zt is populated according to the ground-
truth clip-thread assignments y1:t�1. A loss is then imposed
on the output pt (Eq. 4) with the correct decision yt.

Due to the imbalance in the decisions, we weight three
mutually exclusive scenarios in the loss (Fig. 4): starting a
new thread (N), continuing the currently-active thread (C),
and resuming a paused thread after a gap of more than one
clip (R). Each scenario s 2 {C,N,R} is given a positive
weight ↵s, and we train with a focal loss [26] that causes hard
examples to have a larger impact on the gradient than easy
examples. Let S be a function that given y1:t determines the
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Figure 5. Synthetic story construction: 1 The number of threads is sampled, then the quantity of clips comprising each thread are
sampled. 2 The threads are randomly positioned within the video, where clips within a thread are separated by a small random gap. 3
Finally, the threads’ clips are randomly woven together into a synthetic story.

scenario s at time t. The loss (with focal hyperparameter �)
for a single story takes the form:

L = �
X

t

↵S(y1:t) (1� pyt
t )

�
log pyt

t . (8)

The loss is averaged over all stories within the batch and
back-propagated to train UnweaveNet.

This section formalised the problem of video unweaving
(Sec. 3.1) and proposed a model, UnweaveNet, for solving
it. UnweaveNet builds up a structured representation of
video, called a thread bank, as it processes a streaming video
(Sec. 3.2). A neural controller (Sec. 3.3) determines whether
a clip belongs to an existing thread, or is the beginning of a
new, and updates the thread bank accordingly. UnweaveNet
is trained through a teacher-forcing set-up (Sec. 3.4).

4. Obtaining stories
Exploring unweaving requires a dataset of untrimmed

videos with interleaved activity instances. We use the large-
scale unscripted egocentric dataset EPIC-KITCHENS [9],
where videos capture people in their own kitchens, capturing
their activities over a three day period using a head-mounted
camera. The dataset contains videos of participants switch-
ing back and forth between activities, making it a suitable
source for obtaining interesting activity stories to unweave.

First, the untrimmed nature of the dataset is leveraged in
making synthetic stories, that can be acquired without any
annotations for pretraining UnweaveNet. Second, a sample
of the dataset is annotated with activity threads providing
activity stories for finetuning and evaluation purposes.

Synthetic stories We propose a method for pretraining
UnweaveNet in a self-supervised manner by constructing
synthetic stories through a randomised sampling procedure
applied to long video. We sample threads from the same
video as threads from different videos would be trivial to
unweave. Given a number of threads N , we sample N
sequences of clips of varying lengths, each from distinct lo-
cations within the same video, to produce synthetic threads.

Similar to the assumption in instance discrimination [2, 3],
we assume these threads depict distinct activities. To further
increase the likelihood of this, we enforce a minimum sepa-
ration between threads. We then randomly interleave these
together, respecting the arrow-of-time of the clips within

each thread, to produce a synthetic story (depicted in Fig. 5).
Full details on this sampling process are given in Appx. A.

In our setup, each synthetic story is composed of 10 clips
woven from 1–4 threads. Synthetic stories are sampled ran-
domly, per batch, from the dataset’s training videos. Thus,
the model is trained on a practically infinite number of syn-
thetic stories. In all experiments, we sample 800K synthetic
stories (8M clips, 50k batches, each containing 16 stories).

Activity-story annotation Synthetic stories contain vi-
sual discontinuities and synthetic threads aren’t always com-
posed of clips from a single activity due to the random sam-
pling process. Thus, a model trained solely on synthetic
stories falls short of being able to unweave natural video into
activity threads. Consequently, a small dataset of manually
annotated activity stories was collected for finetuning and
evaluation purposes (further details are given in Appx. B).

Overall, 15k clips were annotated (4.2 hours) across
448 videos from EPIC-KITCHENS into their activity
threads. Of these clips, 9.5k are for training, 3.8k
for validation, and 1.8k for testing. The activity sto-
ries comprising the training and validation set were col-
lected by 7 volunteer annotators, all consisting of 10 clips.

# Threads

Split 1 2 3

Train 718 201 32
Val 211 94 46
Test 50 50 50
Total 979 345 128

Table 1. EPIC-
KITCHENS activity-story
dataset by # of threads.

A sample of each annota-
tor’s stories were checked
for correctness. For testing,
we manually collected
stories of varying lengths
(from 5 to 26 clips). The
training stories come from
videos in the training split
of the EPIC-KITCHENS
action-recognition chal-
lenge, and the test and
validation stories come
from videos from the combined test and validation splits.
Statistics on the number of stories by number of threads are
given in Tab. 1. Note that threads are not annotated with
any semantic labels, the only metadata annotated is which
clips belong together within a thread.

5. Experiments
This section evaluates UnweaveNet on the EPIC-

KITCHENS activity-story dataset, demonstrating the
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model’s capabilities both qualitatively and quantitatively.
Its performance is compared to a number of baselines and
design decisions are motivated through ablation studies. The
section is structured as follows: Sec. 5.1 introduces the
baselines; Sec. 5.2 explains the evaluation metrics; Sec. 5.3
presents the main results; and Sec. 5.4 ablates the compo-
nents in UnweaveNet.

5.1. Experimental setup & Baselines
This section briefly outlines the key points of the ex-

perimental setup (comprehensive details can be found in
Appx. C) and explains the different baselines. As unweaving
is a new concept, there are no existing works to directly com-
pare against. Accordingly, a variety of baselines are either
proposed or adapted from prior work. Two non-learnt naïve
baselines are provided to give a lower bound on performance.
As unweaving is an inherently online process, methods for
offline unsupervised action segmentation are excluded.

Experimental setup Videos are encoded to 16FPS, re-
sized to a height of 112px, and center-cropped. Horizontal
flipping is used during training for data augmentation. The
backbone network used to extract clip features is a top-heavy
3D ResNet-18 pretrained on Kinetics [20] using the DPC
self-supervised objective [15]. A single-layer GRU [6] is
used as �update and a single-layer transformer encoder with
4 heads is used for �transelect.

Naïve baselines The simplest baseline assigns all clips to
a single thread, and hence is referred to as the single-thread
baseline. Naturally this baseline will perform optimally
in the case of all clips belonging to the same thread. An
alternate, non-learnt baseline predicts all possible partitions
of the clips as equally likely, including new threads. This is
termed the random-chance baseline.

Online clustering This baseline clusters clips online into
threads by measuring feature similarities. The similarity sit
of clip vt to each thread Vi

t detected up to time t is

sit =
1��Vi
t

��
X

vj2Vi
t

cos (vt, vj) (9)

The clip is assigned a candidate thread argmaxi s
i
t to join

and if maxi sit is beyond a specified threshold, then the clip
continues that thread, otherwise a new thread consisting only
of the clip vt is started. The threshold is trained optimally
on the validation set.

PredictAbility [37] This is a model designed for event
segmentation adapted to perform unweaving. Recall that
event segmentation aims to find the boundaries between
events. This model detects event boundaries where there is
a large change in feature representation over time. These
boundaries are snapped to clip edges which splits the video
into threads (without any resumed threads).

EGO-TOPO [30] This is a model designed to produce a
graph structure of the egocentric video, where subsequences
captured in the same physical location comprise a node.
Edges are formed when the video depicts a transition from
one location to another. Thus EGO-TOPO models the video
by the topological locations depicted within. Nevertheless, it
can still be viewed as a form of video unweaving that creates
threads by location. As this model operates on frames rather
than clips, a majority voting strategy is used to map from the
frames assigned to nodes in the graph to the clips comprising
threads in the unweaving.

5.2. Metrics
To measure performance on the unweaving task, we report

the following metrics (further details, with metric equations,
are given in Appx. D):

• The Rand Index (RI) [32], often used in clustering prob-
lems, which compares the estimated pair-wise grouping of
clips to the ground truth.

• The Teacher-Forcing Accuracy (TFA), which reports accu-
racy of the decisions produced by �select at each timestep t
when we populate the thread bank according to the ground
truth y1:t�1. This allows us to evaluate the model’s perfor-
mance at each timestep without confounding the results
by erroneous past decisions.

• �N , the difference in the number of predicted threads
to the ground truth. This allows us to compare methods
on whether new threads are created too readily, or too
infrequently.

5.3. Results
The results for unweaving the stories from the EPIC-

KITCHENS activity-story test set are presented in Tab. 2,
comparing the non-learnt and learnt baselines to Unweav-
eNet. UnweaveNet’s performance is reported under three
different training regimes: synthetic stories only (SS), ac-
tivity stories only (AS), and pretrained on synthetic stories
then finetuned on the activity stories (SS+AS). UnweaveNet
performs well compared to the baselines. The full model that
is pretrained on synthetic stories and finetuned on activity
stories (SS+AS) outperforms the baselines on all averaged
metrics. EGO-TOPO performs best out of the baselines,
however this is primarily due to its strong performance on
the single-thread examples which demonstrate a sole activity,
typically in one location3. Compared to UnweaveNet (when
trained with activity stories), all the learnt baselines have
a tendency to create more threads than exist in the ground
truth as evidenced by the positive �N values. UnweaveNet
also suffers this issue, albeit to a lesser extent.

The benefit of synthetic story pretraining is evident com-

3It is not possible to evaluate the TFA on the EGO-TOPO model with
the provided implementation.

13775



RI (") TFA (") �N(! 0 )

Model Supervision 1 2 3 Avg 1 2 3 Avg 1 2 3 Avg

Single thread - - 52.4 35.3 62.6 - 41.9 26.5 56.2 - -1.0 -2.0 -1.0
Chance⇤ - 18.9 48.4 60.5 42.6 50.0 36.0 26.7 37.6 3.7 3.0 3.8 3.5

PredictAbility [37] Self-supervised 47.2 58.8 73.5 59.9 54.6 44.4 39.3 46.1 1.2 0.5 0.5 0.8
Online Clustering Self-supervised 66.8 60.4 64.3 64.0 92.4 60.5 47.5 63.7 1.0 0.9 0.3 0.7
EGO-TOPO [30] Action boundaries 83.9 66.2 64.9 71.7 - - - - 0.6 0.7 1.6 0.9

UnweaveNet SS 63.8 68.6 74.8 69.1 78.3 53.1 61.9 66.5 1.5 2.4 2.0 2.0
UnweaveNet AS 81.8 58.4 60.9 67.0 83.0 51.3 37.6 57.3 0.6 0.5 -0.1 0.3
UnweaveNet SS+AS 84.1 70.1 71.3 75.1 85.2 71.9 74.3 77.5 0.5 0.7 0.3 0.5

Table 2. Unweaving performance (5 run average) on the activity-story test set for naïve no-learning baselines (top section), learnt baselines
(middle section) and UnweaveNet (bottom section) with/without pretraining on synthetic stories (SS) and finetuning on activity stories (AS).
Metrics are described in Sec. 5.2. Performance is broken down by the number of threads in the test story (specified below each metric
heading). Chance⇤ refers to a random partition for RI and �N , and a random decision at each step for teacher-forcing accuracy (TFA).

GTPred

Time

Figure 6. Qualitative examples demonstrating UnweaveNet
successfully unweaving 3 activity stories. Decision probabili-
ties pt are shown below each clip as a bar chart (N denotes a new
thread). Top right corner indicates predicted thread, bottom right–
ground-truth thread, and top left–clip index. Top (1 thread story):
chopping mushrooms. Middle (2 thread story): dicing meat (clips
0–5, 10–11) and rinsing cleaver (6–9). Bottom (3 thread story):
setting up washing machine (0–5), throwing bottle into recycling
(6–7) and washing hands (8–11).

paring AS to SS+AS under both the RI and TFA metrics.
The average �N is closer to the ideal (0) for the AS model
compared to the SS+AS model. This can be attributed to
the synthetic stories having more threads than the activity
stories, thus predisposing the model to creating more threads.
Interestingly, the average RI is higher, 69.1% vs. 67.0%,
when only pretraining on synthetic stories (SS) than when
only training on activity stories (AS); though the SS model
oversegments the video into too many threads as can be
seen from the higher average �N (2.0 vs. 0.3) and higher
3-thread RI (74.8% vs. 60.9%).

Qualitative examples of the unweavings produced by
UnweaveNet are provided in Fig. 6, demonstrating the
model’s capability to unweave stories with varying num-
bers of threads. Figure 7 demonstrates how UnweaveNet is
capable of unweaving a long sequence of 40 clips, demon-
strating the ability of the model to create new threads of

Figure 7. UnweaveNet represents this 40 clip sequence as 4 threads:
juicing the oranges (0–7), washing hands (9–17), getting a glass
(19–21), and serving the orange juice (22–39).

GTPred

Time

Figure 8. UnweaveNet’s failure modes. Top (over-segmentation):
UnweaveNet separates the chopping activity (clips 0–4) from clean-
ing (putting peelings into the bin) (clips 6–7) and correctly resumes
the first thread (clip 9). However, an additional incorrect thread
is created (clips 5 and 8)c to capture the transition. Bottom (late-
starts): two threads are recognised: serving food (clips 0–4) and
washing pan (clips 5–9). However UnweaveNet leaves the serving
thread one clip later than in the ground truth (clip 4).

varying lengths. Figure 8 demonstrates two failure modes
of UnweaveNet: oversegmenting into too many threads and
transitioning between threads slightly later than in the ground
truth. Further qualitative results can be found in Appx. E.

Figure 9 shows how TFA varies during online predictions
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Figure 9. Teacher-forcing accuracy by number of clips observed

as more clips are observed. Initially, the single thread base-
line has an easy task since few stories this short have more
than a single thread, but from 4 clips onwards, Unweav-
eNet’s performance gap over this baseline steadily increases,
and the performance is robust as more clips are considered.
UnweaveNet outperforms the online clustering baseline from
observing 4 clips onwards. The teacher-forcing accuracy of
the PredictAbility model is quite high due to two facts: the
model cannot resume threads, and resuming a threads is a
rarer event than continuing or starting a thread, therefore the
model has fewer choices to take at each step and performs
well on the more frequent scenarios.

5.4. Ablation studies
Several ablation studies are conducted to determine the

impact of the components of UnweaveNet on its behaviour.
Each ablation study aims to answer a specific question.

How to best construct synthetic stories? Having estab-
lished that pretraining on synthetic stories is beneficial (as
was shown in Tab. 2), the best way of constructing them is
investigated. There are two hyperparameters to tune: the
gap between clips within a synthetic thread and the number
of synthetic threads forming the story. As the gap between
clips in a thread increases, the visual similarity between ad-
jacent clips decreases, making the task of associating the
clips together harder. Table 3a shows that increasing this gap
up to 2 seconds is beneficial, but beyond this we observe a
degradation. Using a random gap between 2–4 seconds as
an augmentation strategy was found to further boost perfor-
mance over a fixed clip gap. This is the default configuration
used throughout the remainder of the ablation studies.

When constructing synthetic stories, the number of threads
is sampled uniformly from 1 to a maximum Nmax. Table 3b
shows the RI increases as Nmax is increased up to 4 threads,
beyond which the performance decreases. This drop can
be attributed to the fact that threads are composed of fewer
clips as the number of threads is increased in addition to the
increased risk that some threads overlap in activity.

How to implement �select and �update? The two versions
of �select introduced in Sec. 3.3, �linearselect and �transelect, are com-

Clip gap (s) RI (")
0 60.6±0.6
1 73.1±0.3
2 74.6±0.7
4 73.7±0.7

2–4 75.1±0.5

(a) Clip gap within thread.

Max # threads RI (")
2 69.0±0.6
3 72.7±0.6
4 75.1±0.5
5 74.0±0.8
6 73.5±0.8

(b) Max # threads.

Table 3. Synthetic story formation ablation study.

�select �update RI (")
Linear Embedding Last clip 73.7±0.7
Linear Embedding GRU 74.3±0.3
Transformer Last clip 74.8±0.3
Transformer GRU 75.1±0.5

Table 4. UnweaveNet architectural choices.

pared in Tab. 4. The transformer based model proves superior
to the linear embedding. In a similar manner, two versions
of �update are compared using the recurrent update module
based on a GRU vs. a linear projection of the last clip of
each thread. For the latter, the new clip representation over-
writes the previous thread representation when performing
an update. The results demonstrate a small but consistent
improvement when using the GRU update module.

An additional study on the effect of the weight in the loss
function can be found in Appx. E.

6. Conclusion
This paper introduced video unweaving, the task of pars-

ing a video online into its constituent activity threads, ac-
complished by the introduction of a novel representation
that models ongoing activity, operated by a neural controller,
together called UnweaveNet. UnweaveNet can handle re-
suming a thread when the video depicts a switch from one
thread to a previously observed thread. Moreover, it can
be applied to variable-length videos, with memory require-
ments scaling linearly in the number of threads. A dataset
of activity stories was annotated and used to evaluate how
UnweaveNet can be pretrained through self-supervision by
sampling synthetic stories from untrimmed videos.

UnweaveNet has potential applications in assistive tech-
nologies as the activities are perceived online. By focus-
ing the experiments on egocentric footage, UnweaveNet is
more suitable for sousveillance [28], one’s ability to monitor
her/his activities, than surveillance, remote monitoring of
others’ activities. However, in principle, the same approach
can be adapted for monitoring other people’s activity.
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