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Figure 1. Given an ordinary video, our system produces a 3D planar representation of the observed articulation. The 3D renderings
illustrate how the microwave (in Pink) can be articulated in 3D space. We also show the predicted rotation axis using a Blue arrow.

Abstract

We propose to investigate detecting and characterizing
the 3D planar articulation of objects from ordinary RGB
videos. While seemingly easy for humans, this problem
poses many challenges for computers. Our approach is
based on a top-down detection system that finds planes that
can be articulated. This approach is followed by optimizing
for a 3D plane that explains a sequence of detected articu-
lations. We show that this system can be trained on a com-
bination of videos and 3D scan datasets. When tested on
a dataset of challenging Internet videos and the Charades
dataset, our approach obtains strong performance.

1. Introduction
How would you make sense of Figure 1? Behind the set

of RGB pixels that make up the video is a real 3D trans-
formation consisting of a 3D planar door rotating about an
axis. The goal of this paper is to give the same ability to
computers. We focus on planar articulation taking the form
of a rotation or translation along an axis. This special case
of articulation is ubiquitous in human scenes and under-
standing it lets a system understand objects ranging from
refrigerators and drawers to closets and cabinets. While we
often learn about these shapes and articulations with phys-
ical embodiment [50], we have no difficulty understanding
them from video cues alone, for instance while watching a

movie or seeing another person perform an action. We for-
malize this ability for computers as recognizing and charac-
terizing a class-agnostic planar articulation via a 3D planar
segment, articulation type (rotation or translation), 3D ar-
ticulation axis, and articulation angle.

This problem is beyond the current state of the art in
scene understanding since it requires reconciling single
image 3D understanding with dynamic 3D understanding.
While there has been substantial work on 3D reconstruction
from a single image [4, 9, 12, 61], including work dedicated
to planes [33], these works focus on reconstructing static
scenes. On the other hand, while there has been work under-
standing articulation, these works often require the place-
ment of tags for tracking [36, 41], a complete 3D model or
depth sensor [20, 30, 39], or successful 3D human recon-
struction [65]. Moreover, making progress is challenging
because of data. Unsupervised approaches based on motion
analysis [42, 51] require something to track, which breaks
in realistic data since many human-made articulated ob-
jects are untextured (e.g., refrigerators) or transparent (e.g.,
ovens). While supervised approaches [30, 38, 39] can per-
haps bypass tracking features, they seemingly require ac-
cess to large amounts of RGBD data of interactions. For
now, this data does not exist, and training on synthetic data
can fall short when tested on real data (as our experiments
empirically demonstrate).

We overcome these challenges with a learning-based ap-
proach that combines both detection and 3D optimization
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and is trained with supervision from multiple sources (Sec-
tion 4). The foundation of our approach is a top-down de-
tection approach that recognizes articulation axes and types
and 3D planes; this approach’s outputs are processed with
an optimization method that seeks to explain the per-frame
results in terms of a single coherent 3D articulation.

Via this model, we show that one can build an under-
standing of 3D object dynamics via a mix of 2D supervision
on Internet videos of objects undergoing articulation as well
as 3D supervision on existing 3D datasets that do not de-
pict articulations. To provide 2D supervision, we introduce
(Section 3) a new set of 9447 Creative Commons Internet
videos. These videos depict articulation with a variety of
objects as well as negative samples and come with sparse
frame annotations of articulation boxes, axes, and surface
normals that can be used for training and evaluating planar
articulation models.

Our experiments (Section 5) evaluate how well our ap-
proach can recognize and characterize articulation. We
evaluate on our new dataset of videos as well as the Cha-
rades [48] dataset. We compare with a variety of alter-
nate approaches, including bottom-up signals like optical
flow [53] and changes in surface normals [3], training on
synthetic data [64], as well as systems that analyze human-
object interaction [65]. Our approach outperforms these
approaches on our data, often even when the baselines are
given access to ground-truth location of articulation.

Our primary contributions include: (1) The new task
of detecting 3D object articulation on unconstrained ordi-
nary RGB videos without requiring RGBD video at train-
ing time; (2) A dataset of Internet videos, with sparse frame
annotations of articulation boxes, axes, and surface normals
that can be used for training and evaluating planar articu-
lation models; (3) A top-down detection network and op-
timization to tackle this problem, which has strong perfor-
mance on the Internet video dataset and Charades.

2. Related Work
Our paper proposes to extract 3D models of articulation

from ordinary RGB videos. This problem lies at the inter-
section of 3D vision, learning from videos, and touches on
robotics applications. We note that there are specialized ap-
proaches for understanding general articulation (e.g., non-
rigid structure from motion [55]) as well as for understand-
ing specialized motion models (e.g., for a full human 3D
mesh models [69] or quadrupeds [28]) or for understanding
more general transformations [19, 59]. Our work focuses
on understanding the articulation of general objects whose
articulated pieces can be represented by a 3D plane rotating
or translating.

Due to the ubiquitous nature of articulated objects, the
task of understanding them has long been an interest across
all of artificial intelligence. In vision, the understanding of

the motion of rigid objects undergoing transformations was
one of the early successes of computer vision [24, 54, 58].
Unfortunately, these early works rely on reliable motion
tracks, which is made difficult by the textureless or re-
flective nature of many indoor planes (e.g., refrigerator
doors). Our top-down detector gives 3D planes that can
help provide correspondence between frames where corre-
spondence is challenging.

More recent work in robotics has used the value of 3D
and integrated it into their modeling approaches [5,8,37,42,
51]; however their approaches often use an RGBD sensor,
unlike our use of ordinary RGB sensors. This dependence
on RGBD has been carried forward to the most recent work
that uses deep learning frameworks [1, 20, 30, 35, 62, 64].
In fact, some methods require full 3D models [39], which
is typically unavailable in real world 3D scans. [38] by Mo
et al. can be run on 2D images as long as the point cloud
encoder is replaced with a RGB encoder, but its 2D im-
ages contain a single object without any background, in-
stead of challenging Internet videos. While there has been
increasing amounts of work aimed at virtual articulated ob-
jects [52, 64], simultaneously achieving scale and quality
is challenging. For instance ReplicaCAD [52] has only 92
objects. In contrast, our approach works at test time on stan-
dard RGB videos by bringing its own 3D via a learned de-
tector [33] trained on RGBD data [6].

While our outputs are 3D planar regions, our approach
is deeply connected to the task of understanding human-
object interactions. In these works [2, 13, 47], the goal is
to recognize the relationship between humans and the ob-
jects they interact with. The interactions that we study are
caused by these humans, and so we use an approach that can
predict human-object interactions [47] to help identify the
data we train our systems on. The most related work in this
area is [65], which aims to jointly understand dynamic 3D
human-object interactions in 3D. This work, however as-
sumes that the object CAD model is known once the articu-
lated object is detected, which we do not need. Our method
also works with articulation videos that are more varied in
viewpoint and perspective. A more thorough understand-
ing of the joint relationship between articulated objects and
human-object interaction, akin to early work [10,27], is be-
yond the scope of this work, but of future value.

We solve the problem of describing 3D articulation by
producing 3D planar models. This uses advances in 3D
from a single image. In particular, we build on PlaneR-
CNN [33], which is part of a growing body of works aimed
at extracting planes from single images [34, 66, 67]. These
planes have advantages for the articulation reasoning since
they offer a compact representation to track and describe.
While we use plane recognition, the plane is just one com-
ponent of our output (along with rotation axes) and we ana-
lyze our output in a video with temporal optimization.
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3. Dataset

One critical component of our approach is accurate 2D
annotations of articulation occurring in RGB data. We show
that these 2D annotations can be combined with existing
RGBD data and the right method to build systems that un-
derstand 3D articulation on video data. We next describe
how we collect a dataset of articulations. Our goals are to
have a large collection of annotations of object box, artic-
ulation type, and axis. Rather than directly look for exam-
ples of people articulating objects, we follow the data-first
approach of [7,11,47,68], namely to gather data containing
many related activities and then analyze and annotate it.

Data Collection. Our pipeline generates a set of candidate
clips to be annotated from a collection of candidate videos
via an automatic pipeline that aims to eliminate frames that
are easy to see as not depicting articulation. We begin with
candidate videos that are found by variants of searches for
a set of 10 objects among Creative Commons videos on
YouTube. Within these videos, we find stationary contin-
uous shots in these videos with homographies [15] fit on
ORB [46] features. Many of these clips cannot depict in-
teraction since they do not contain any people or do not
contain the objects of interest. We filter by responses by
a hand detector [47] trained on 100K+ frames of Internet
data, as well as object detectors trained on COCO [32] and
LVIS [14]. These filtering steps maximize the use of an-
notator time by eliminating clear negatives, and generate a
large number of candidate clips.

With a collection of candidate clips of interest, we then
turn to manual annotation. For a given clip, we hire an
annotation company to annotate frames sparsely (every 10
frames) within the clip. They annotate: (box) a box around
the articulated plane and its type, if it exists; and (axis) the
projection of the articulation axis, framed as a line segmen-
tation annotation problem. This results in a set of 19411
frames, containing 19411 boxes around articulating planes
with 13508 rotation axes and 2755 translation axes, as well
as 39411 negative frames. The number of articulation axes
is not equal to the number of boxes, since some articulation
axes are outside the image. We provide training, validation,
and test splits based on uploader, leading to 7845/601/1001
videos in the train/val/test split. A more complete descrip-
tion of our annotation pipeline appears in the supplement.

We collect two additional annotations. For the test set,
we also annotate the surface normal of the plane follow-
ing [3], so we can evaluate how well our model can learn 3D
properties. To show generalization, we also collect the same
annotations except surface normals on the Charades [48]
dataset.

Data Availability and Ethics. Our data consists of videos
that users uploaded publicly and chose to share as Creative
Commons data. These do not involve interaction with hu-

mans or private data. We filtered obviously offensive con-
tent, videos depicting children, and cartoons. Examples
appear throughout the paper; screenshots of annotation in-
structions and details appear in the supplement.

4. Approach

The goal of our approach is to detect and characterize
planar articulation in an unseen RGB video clip. These
articulations are an important special case that are ubiqui-
tous in human scenes. As shown in Figure 2, we propose a
3D Articulation Detection Network (3DADN) to solve the
task. As output, the 3DADN produces the type of motion
(rotation or translation), a bounding box around where the
motion is located, the 2D location of the rotation or transla-
tion axis, and the 3D location of the articulated plane. The
3DADN’s output is followed by post-processing to find a
consistent explanation over the whole video.

4.1. 3D Articulation Detection Network

The 3DADN processes each frame independently. Its
output consists of: a segment mask Mi; plane parameters
πi = [ni, oi] giving the plane equation πT

i [x, y, z,−1] = 0
(where ni is the the plane normal with ||ni||2 = 1 and oi
is the plane offset); a projected rotation or translation axis
ai = [θ, p] which is the projection of the 3D articulation
axis; and articulation type.

We use a top-down approach to detect this representa-
tion, which we train on RGB videos that depict articulation
without 3D information as well as RGBD images with 3D
information that do not depict articulation. Our backbone is
a Faster R-CNN [44] style network that first detects bound-
ing boxes for the articulating objects and classifies them into
two classes (rotation and translation). These boxes provide
ROI-pooled features that are passed into detection heads
that predict our outputs (Mi,πi,ai). Our heads and losses
for Mi follow the common practice of Mask R-CNN [16].
We describe ai and πi below.

Parameterizing Rotation and Translation Axis. We
model the projected articulation axis as a 2D line in the
image. This projected axis is the projection of the 3D ar-
ticulation axis (e.g., the hinge of a door). We describe the
projected axis with the normal form of the line, x cos(θ) +
y sin(θ) = p where p ≥ 0 is the distance from the box to
the center and θ is the inclination of the normal of the axis
in pixel coordinates. Since a translation corresponds to a di-
rection/family of lines as opposed to a line, we define p = 0
for translation arbitrarily.

The articulation head contains two independent branches
for predicting the rotation and translation axes. We handle
the circularity of the prediction of θ by lifting predictions
and ground-truth for the angle to the 2D unit circle; since
the line is 180-degree-ambiguous (i.e., θ + π is the same as
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Figure 2. Overview of our approach. (a) Given an ordinary video clip, we first apply our 3D Articulation Detection Network (3DADN) to
detect 3D planes can be articulated for each frame. (b) We then apply temporal optimization to fit the articulation model. Final results are
demonstrated in both 2D image and 3D rendering.

θ), we predict a 2D vector [sin(2θ), cos(2θ)]. The resulting
network thus predicts a 3D vector containing θ and p, which
we supervise with a L1 loss.

Parameterizing Plane Parameters. Following a line of
work on predicting planes in images, we use a 3D plane [34]
to represent the 3D locations of the articulated objects, since
many common articulated objects like doors, refrigerators,
and microwaves can be modeled as planes and because past
literature [21, 22, 33] suggests that R-CNN-style networks
are adept at predicting plane representations.

A 3D plane is represented by plane parameters πi =
[ni, oi] giving the plane equation πT

i [x, y, z,−1] = 0 With
camera intrinsics, planes can be recovered in 3D and with a
mask, this plane can be converted to a plane segment. Fol-
lowing [22, 33], we extend R-CNN by adding a plane head
which directly regresses the normal of the plane. A depth
head is used to predict depth of the image. The depth is only
used to calculate the offset value of the plane. We supervise
with L2 loss for the plane normal regression and L1 loss for
the depth regression.

Training. There is no dataset that is non-synthetic and
large enough to train a 3DADN directly: the 3DADN needs
both realistic interactions and 3D information. However,
we can train the 3DADN in parts. In the first stage, we train
the backbone, RPN, and axis heads directly on our Inter-
net video training set, which has boxes and axes. We then
freeze the backbone, RPN, and axis heads and fine-tune the
mask and plane head on a modified version of ScanNet [6].

In particular, we found that humans often occlude the
objects they articulate and models that had not seen humans
in training produced worse qualitative results. We therefore
composited humans from SURREAL [57] into the scenes.
We randomly sample 98,235 ScanNet images, select a syn-
thetic human and render it on ScanNet backgrounds. In

training, we do not change the ground truth, pretending
the ground truth plane is partially occluded by humans and
training our model to identify them.

Meanwhile, we found that the order of training the heads
was crucial. Planes in ScanNet [6] are defined geometri-
cally, and so unopened doors often merge with walls; sim-
ilarly, ScanNet [6] does not contain transitional moments
during which planes are articulating. Thus, RPNs trained
on ScanNet [6] perform poorly on articulation videos. In-
stead, it is important to train the RPN on our Internet videos,
freeze the backbone, and only rely on ScanNet to train plane
parameters and masks, which are unavailable in Internet
videos. During inference we keep the ScanNet camera since
our data does not have camera intrinsics.
Implementation Details. Full architectural details of our
approach are in the supplemental. Our model is im-
plemented using Detectron2 [63]. The backbone uses
ResNet50-FPN [31] pretrained on COCO [32].

4.2. Temporal Optimization

After the 3DADN provides per-frame estimates of artic-
ulations, we perform temporal optimization to find a sin-
gle explanation for the detections across frames. We are
given a sequence of detections indexed by a time of the form
[M(t)

i ,π
(t)
i ,a

(t)
i ]. We aim to find a single consistent expla-

nation for these detections.
Tracking. Optimizing requires a sequence of planes to op-
timize over. We match box i with the box in the next frame
according to pairwise intersection over union (IoU). Box
i at t matches box j = argmaxj′ IoU(M(t)

i ,M(t+1)
j′ ) at

time t + 1; we then track greedily to get a sequence. We
subsequently drop the subscripts for clarity.
Articulation Model Fitting. Given a sequence of detec-
tions, we find a consistent explanation via a RANSAC-like
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Figure 3. Predictions on Internet videos. For each example, we show the input (left), detected 2D planes and how they will be articulated
using the predicted articulation axes and surface normals (middle). We also show 3D renderings to illustrate how these common objects
are articulated in the 3D space (right). The predicted rotation axis is shown as the Blue arrow, and translation axis is the Pink arrow.

approach. We begin with a hypothesis of a plane segment
π and articulation axis a, which we obtain by selecting out-
put on a reference frame. Along with an assumed camera
intrinsics K, the plane parameters let us lift the plane seg-
ment and axis to 3D, producing 3D plane segment Π and
3D axis A. Then, for each frame t, we solve for an artic-
ulation degree α(t) maximizing the reprojection agreement
with the predicted mask at time t. Let us define the repro-
jection score as

r(α, t) = IoU
(
M(t),K [Rα, tα]Π

)
, (1)

where RA,α and tA,α are α steps over the rotation and
translation for axis A. We then solve for α(t) by solving
argmaxα r(α), which gives a per-frame angle using grid
search. We detect articulation by calculating how well the
rotation degree α(t) can be explained as a linear function
of t (i.e., that there is constant motion). Since many scenes
are not constant motion, we have loose thresholds: we con-
sider R2 ≥ 0.4 and slope k > 0.1 to be an articulation. We
exclude hypotheses where all r(α(t), t) < 0.5.

5. Experiments

We have introduced a method that can infer 3D articu-
lation in Section 4. In the experiments, we aim to answer
the following questions: (1) how well can one detect 3D
articulating objects from ordinary videos; (2) how well do
alternate approaches to the problem do?

5.1. Experimental Setup

We first describe the setup of our experiments. Our
method aims to look at an ordinary RGB video and infer
information about an articulated plane on a object in 3D,
including: whether the object is articulating, its extent, and
the projection of its rotation or translation axis. We there-
fore evaluate our approach on two challenging datasets, us-
ing metrics that capture various aspects of a 3D plane artic-
ulating in 3D.

Datasets: We validate our approach on both Internet videos
(described in Section 3) and the Charades dataset [49]. We
use Charades for cross-dataset evaluations. We focus on
Charades videos that are opening objects (doors, refrigera-
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Figure 4. We compare our approach with four baselines. See detailed discussions in the text. We show translation in Pink and rotation in
Blue, except D3D-HOI which uses a different detector.

tors, etc.), and annotate 2491 frames across 479 videos; we
also randomly sample 479 negative videos containing 4401
negative frames. Our Charades annotation process is simi-
lar to Internet videos, with the exceptions that: we annotate
only rotations as Charades contains few translation articu-
lations; and we do not annotate surface normals.

Evaluation Criteria: Evaluation of our approach is non-
trivial, since our assumed input (RGB videos) precludes
measuring outputs quantitatively in 3D. We therefore eval-
uate our approach on a series of subsets of the problem. We
stress from the start though that these metrics are what can
be measured (due to the use of RGB inputs), as opposed to
the full rich output.
Articulation Recognition: We first independently evaluate
the ability to detect whether someone is articulating this ob-
ject at a point in time. We frame this as a binary prediction
problem. This is surprisingly difficult in real scenes because
objects are typically partially occluded by humans when hu-
mans articulate them, and because humans often touch a ar-
ticulated objects (e.g., cleaning the surface) without open-
ing it. We use AUROC to measure the performance.
Articulation Description: We next evaluate the ability of
a system to detect the articulated object, corresponding ar-
ticulation type (rotation/translation), axes, and surface nor-
mals. We follow other approaches [22, 29, 40, 43, 56] that
reconstruct the scene factored into components and treat it
as a 3D detection problem, evaluated using average preci-
sion (AP). We define error metrics as follows: (Bounding

box) IoU, thresholded as 0.5. We find the normal COCO
AP, which measures IoU up to 0.95, to be too strict be-
cause the precise boundaries of articulating parts are often
occluded by people and hard to annotate. (Axes) EA-score
from the semantic line detection literature [70]. This metric
handles a number of edge cases; we use 0.5 as the thresh-
old as recommended by [70]. (Surface normal) mean angle
error, thresholded at 30◦, following [9, 60]. A prediction is
a true positive only if all errors are lower than our thresh-
olds. We calculate the precision-recall curve based on that
and report AP for varying combinations of metrics.

Baselines: Prior approaches for articulation detection have
focused on robots, synthetic datasets, and real-world RGBD
scans. These are different from our setting for two reasons.
First, videos of people articulating objects show a noisy
background with a person interacting with and occluding
the object, as opposed to an isolated articulated object in a
simulator. Second, RGB videos do not have depth, which is
often a requirement of existing articulation models. For ex-
ample [30] requires depth, and while they show results on
real-world depth scans, their RGBD scans only contain a
static object without humans. We propose to compare with
the following methods.

3DADN + SAPIEN [64] Data: To test whether we can solve
the problem just by training on synthetic data, we create a
synthetic data-based method where we train our 3DADN
system on synthetic data. We render a synthetic dataset us-
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Table 1. We report AUROC for Articulation Recognition, as well as AP for Articulation Description. To separate out difficulties in
detecting articulation and characterizing its parameters, we assist Flow+Normal and 3DADN+SAPIEN with ground truth bounding box
and denote it as gtbox. 3DADN+SAPIEN cannot detect most objects without the help of gtbox.

Recog. Rotation Translation
Methods gtbox AUROC bbox bbox+axis bbox+axis+normal bbox bbox+axis bbox+axis+normal

Flow [53] + Normal [3] ✗ 68.5 7.7 0.3 0.0 0.3 0.0 0.0
Flow [53] + Normal [3] ✔ - - 3.0 0.3 - 1.4 0.7
D3D-HOI [65] Upper Bound ✗ 62.7 28.8 19.7 n/a 4.70 4.7 n/a
3DADN + SAPIEN [64] ✔ - - 16.8 1.40 - 15.1 0.40
Ours ✗ 76.6 61.3 30.4 17.2 34.0 27.1 17.9

ing SAPIEN [64] by randomly sampling and driving 3D
objects. We filtered 1053 objects of 18 categories with
movable planes from PartNet-Mobility Dataset [64], such
as doors and laptops. We render frames with the objects
articulated, with location parameters picked to give plau-
sible scenes, and extract the information needed to train
3DADN. Without a background, the detection problem be-
comes trivial, so to mimic real 3D scenes, we blend the
renderings with random ScanNet [6] images as the back-
ground and render synthetic humans from SURREAL [57].
For fair comparison, we use the same ScanNet+SURREAL
images used to train our system’s plane parameter head.
When evaluated on SAPIEN data, this approach performs
well and obtains an AP of (bbox) 60.3, (bbox+rot) 64.1,
(bbox+rot+normal) 41.0.

Bottom-up Optical Flow [53] and Surface Normal
Change [3] (Flow+Normal): To test whether the data can
be solved by the use of fairly simple cues, we construct
a baseline that uses Optical Flow [53] (since articulating
objects tend to cause movement) and Surface Normals [3]
(since rotating planes change their orientation). Both flow
and normals provide a H × W map that can be analyzed.
We also use the output of a human segmentation system [18]
that was trained on multiple datasets and mask normal and
flow magnitude maps wherever it improves performance.
Given these maps, we recognize the presence of articulation
via logistic regression on a feature vector consisting of the
fraction of pixels above multiple thresholds; we recognize
bounding boxes via thresholding and finding the tightest en-
closing box; we estimate rotation axis as perpendicular to
the mean flow change in the bounding box (flow tends to
increase away from hinges); we find translation axis using
mean flow direction in the box; we find articulation normal
using mean predicted normals in the box. Throughout, we
use the optimal option of surface normals and flow; this hy-
brid system performs substantially better than either flow or
normals alone.

Baselines with + GT Box: To separate out difficulties in
detecting articulation and characterizing its parameters, we
also experiment with giving baselines ground-truth bound-
ing box information about the articulating object. This gives

an upper-bound on performance.

D3D-HOI [65] Upper Bound: We compare with D3D-
HOI since it accepts RGB video as input and detects how
humans articulate objects. A direct comparison with D3D-
HOI is challenging since it only works when EFT [23] re-
constructs 3D human poses and Pointrend [25] detects the
objects that are assumed to articulate and correct CAD mod-
els are chosen for the object. However, EFT does not work
well on the dataset due to truncated or multiple humans on
Internet videos [26, 45]. We therefore report upper-bounds
on the performance. We assume it predicts the ground
truth bounding box, when EFT mask and pseudo ground
truth 2D human segmentation mask [17] has IoU > 0.5 and
PointRend [25] produces a mask on articulated objects with
confidence > 0.7.
Ours: This is our proposed method. It includes both the per-
frame approach described in Section 4.1 and the optimiza-
tion approach of Section 4.2. We note that this approach
also produces outputs that are not being quantitatively mea-
sured, such as a 3D plane articulating in 3D. These are qual-
itatively shown in Figures 1 and 3.

5.2. Results

We first show qualitative results in Figure 3. On chal-
lenging Internet videos, our approach usually detects and
recovers the 3D articulated plane regardless of categories.

In Figure 4, we compare our approach with four base-
lines visually. Flow can occasionally locate articulation
(third row), but in most cases, flow is not localized to only
the object articulating (e.g. camera movement, top row).
Training purely on SAPIEN [64] data has difficulty detect-
ing articulated objects in Internet videos, even if we show
all detected objects with confidence score > 0.1. It learns
some information of articulation axes when we assist it with
ground truth bounding boxes. D3D-HOI [65] relies on both
EFT [23] to detect humans and PointRend [25] to detect ob-
jects. However, EFT has diffculty predicting 3D humans on
Internet videos.

Quantitative Results. We evaluate the approach quan-
titatively on the three tasks in Table 1. Our approach
substantially outperforms the alternate methods. While
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Figure 5. Qualitative results on Charades dataset. Without fine-
tuning on Charades data, our model obtains strong performance
on detecting and characterizing 3D articulation.

Table 2. Evaluation on Charades dataset [49]. We only report rota-
tion AP since Charades does not have sufficient translation motion.

Recog. Rotation
Methods gtbox AUROC bbox bbox+axis

Flow [53] + Normal [3] ✗ 53.7 3.1 0.2
Flow [53] + Normal [3] ✔ - - 4.2
D3D-HOI Upper Bound ✗ 55.9 14.9 13.7
3DADN + SAPIEN [64] ✔ - - 1.54
Ours ✗ 58.4 12.0 12.8

statistically-combined bottom-up cues [3,53] do better than
chance at predicting the presence of an articulation, they
are substantially worse than the proposed approach and
fail to obtain sensible bounding boxes. Even when given
the ground-truth box, this method fails to obtain good
axes. Due to the frequency of truncated humans in Internet
videos [26, 45], D3D-HOI [65]’s performance upper-bound
is substantially lower than our method’s performance. The
detection system when trained on synthetic data from [64]
fails on our system; when given a good bounding box, syn-
thetic training data obtains reasonable, but inferior numbers
and poor accuracy in predicting normals.

Ablations – Optimization. Our optimization produces
modest gains in recognition accuracy and axis localization
in 2D: It improves recognition AUROC from 74.0 to 76.6,
rotation AP from 16.6 to 17.2 and translation AP from 14.3
to 17.9. This small gain is understandable because the
evaluation is per-frame and the optimization mainly seeks
to make the predictions more consistent. If we quantify
the consistency in the results before and after optimization,
we find that the EAScore [70] between tracked predicted
frames increases from 0.69 (before optimization) to 0.96
(after optimization).

5.3. Generalization Results

We next test our trained models without fine-tuning on
Charades [48]. We show results in Figure 5. Our approach
typically generates reasonable estimations. We find that the
video quality and resolution of Charades is lower relative to
our videos, with many dark or blurry videos.

We also show quantitative evaluations in Table 2. Here,
our performance is slightly diminished. However, we sub-

Pred GT Pred GT Pred GT

Figure 6. Typical failure modes. (1) Ambiguity of articulation
type; (2) Axis outside of the frame or ambiguity of articulation
axis location due to symmetry; (3) Object has complex motions (a
person moving an object while articulating it; the rotation axis is
outside of the articulating surface).

stantially outperform the baselines. We are only marginally
outperformed by D3D-HOI upper bound, which assumes
perfect performance so long as the data can be obtained.

5.4. Limitations and Failure Modes

We finally discuss our limitations and typical failure
modes in Figure 6. We find some examples are particu-
larly challenging: (1) Column 1: some images may contain
hard examples where the axis types are hard to figure out.
(2) Column 2: the axis is outside of the image frame or its
location is ambiguous due to symmetry or occlusion. (3)
Column 3: the object has complex dynamics or dual axes;
for example, a person moving a laptop while opening it or
the cabinet has multiple joints.

6. Conclusion

We have demonstrated our approach’s ability to detect
and characterize 3D planar articulation of objects from or-
dinary videos. Future work includes combining 3D shape
reconstruction with the articulation detection pipeline.

Our approach can have positive impacts by helping build
smart robots that are able to understand and manipulate ar-
ticulated objects. On the other hand, our approach may be
useful for surveillance activities. Moreover, our network is
trained on Internet videos and deep networks may amplify
biases in the data.
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