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Abstract

Automatic tooth instance segmentation on 3D dental
models is a fundamental task for computer-aided orthodon-
tic treatments. Existing learning-based methods rely heav-
ily on expensive point-wise annotations. To alleviate this
problem, we are the first to explore a low-cost annotation
way for 3D tooth instance segmentation, i.e., labeling all
tooth centroids and only a few teeth for each dental model.
Regarding the challenge when only weak annotation is pro-
vided, we present a dental arch prior-assisted 3D tooth seg-
mentation method, namely DArch. Our DArch consists of
two stages, including tooth centroid detection and tooth in-
stance segmentation. Accurately detecting the tooth cen-
troids can help locate the individual tooth, thus benefiting
the segmentation. Thus, our DArch proposes to leverage
the dental arch prior to assist the detection. Specifically,
we firstly propose a coarse-to-fine method to estimate the
dental arch, in which the dental arch is initially generated
by Bezier curve regression, and then a graph-based con-
volutional network (GCN) is trained to refine it. With the
estimated dental arch, we then propose a novel Arch-aware
Point Sampling (APS) method to assist the tooth centroid
proposal generation. Meantime, a segmentor is indepen-
dently trained using a patch-based training strategy, aim-
ing to segment a tooth instance from a 3D patch centered
at the tooth centroid. Experimental results on 4, 773 dental
models have shown our DArch can accurately segment each
tooth of a dental model, and its performance is superior to
the state-of-the-art methods.

1. Introduction
Dental models, obtained by direct intraoral scanning of

the dentition, are commonly used in computer-aided den-
tistry. Computer-aided dentistry requires dental models
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Figure 1. An example of our segmentation result when using train-
ing data with weak annotations for training models. Left: dental
model with weak annotations, i.e., labelling all tooth centroids and
only a few teeth. Right: our segmentation result.

as input to assist dentists to analyze and evaluate patient-
specific dental health and dental arrangement for the follow-
ing treatments. Automatic tooth instance segmentation on
dental models is an essential prerequisite step for computer-
aided orthodontic treatments.

Although recent learning-based methods have achieved
impressive performance on 3D tooth instance segmenta-
tion [28,29,39], they rely heavily on a large number of data
with dense manual annotations, such as labeling all points
of every individual tooth from a dental model. Since an-
notating such training data is particularly time-consuming,
it is hard to collect a large enough dataset to cover com-
plex dental models in real-world, thus largely limiting the
generalization of those learning-based segmentation meth-
ods [30,36,38]. One of the main challenges in automatic 3D
tooth instance segmentation is locating each tooth object on
a variety of dental models, some of which have missing,
crowding, or misaligned teeth. Cui et al. [3] found that in
the tooth detection stage, the tooth centroid is a more reli-
able signal than the bounding box that is used to crop the
detected tooth objects in the traditional approaches. Tooth
detection thus can be converted to tooth centroids detec-
tion. Motivated by their work, we propose a feasible and
low-cost annotation way as shown in the right of the Fig. 1,
that is, specifying 3D centroids for all tooth instances
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and labeling dense instance mask for only a few teeth
for each dental model, to alleviate the demand for ex-
pensive point-wise annotations. In this paper, we present
a novel detect-and-segment framework, including detect-
ing tooth centroids and segmenting every teeth instance as-
signed to the corresponding teeth centroid. We mainly focus
on the detection stage based on the intuition that the more
accurate the detection, the better the segmentation. Further-
more, we adopt a patch-based training strategy to decrease
the discriminating difficulty for our segmentor, which aims
to segment a tooth instance from a 3D patch centered at
the tooth centroid, rather than segment all tooth instances
from a whole point cloud data of a dental model. In such
a way, it makes a great demand on the tooth centroid pre-
diction in our method. Previous detection methods for 3D
point clouds [3,13,18] generally use the furthest point sam-
pling (FPS) method to uniformly select the sampling points
for generating proposals. For tooth centroid detection, the
sampled points by FPS method generally contain irrelevant
points, such as one located on the tooth crown and gingiva,
which may lead to inaccurate proposals for tooth centroids.

To accurately and completely predict each tooth centroid
of a dental model, we propose an arch-aware point sam-
pling (APS) module for tooth centroid detection by intro-
ducing dental arch prior to assist the detection procedure.
This is based on the observations that a dental arch natu-
rally depicts one’s overall dentition, and all tooth centroids
will fall on it. To estimate the dental arch of each dental
model, we first formulate the dental arch by representing it
as a curve passing through teeth centroids and then adopt
a lightweight 1-D convolutional network to refine the den-
tal arch [10, 17]. Different from FPS method that performs
uniform sampling from the whole tooth votes, we sample
points along the estimated dental arch to filter out a major-
ity of irrelevant points. Experiments have shown that our
proposed APS strategy can largely improve the detection
accuracy for tooth centroids compared to FPS and benefit
the following segmentation.

To the best of our knowledge, this is the first attempt
for 3D tooth instance segmentation on dental models with
weak annotations. The main contributions of our work can
be summarized as follows:

• We are the first to explore a low-cost annotation way
for 3D tooth instance segmentation and propose a
novel framework named DArch to handle this chal-
lenging task with weak annotations. We hope this at-
tempt will inspire more learning-based methods in the
weakly-annotated scenario.

• We propose a coarse-to-fine method to estimate the
dental arch. Specifically, the dental arch is initially
approximated by Bézier curve regression, and then a
graph-based convolutional network (GCN) is used for

further refinement.

• We introduce a dental arch-aware point sampling
(APS) module for tooth centroid detection by introduc-
ing dental arch prior to assist the proposal generation.

• Extensive experiments have shown that our proposed
DArch can vastly improve the performance of tooth
centroid detection compared to other methods using
other sampling strategies. As for the segmentation per-
formance, our DArch is superior to the state-of-the-art
methods in both weakly- and fully-annotated scenar-
ios.

2. Related Work

2.1. 3D Understanding in Natural Scene

3D understanding in natural scenes usually involves ob-
ject detection [9, 15, 27, 37], instance segmentation [4, 5],
shape understanding [31, 33], part segmentation [7, 32] and
so on, which is a fundamental problem in computer vision.
In recent years, some deep learning-based methods have
been proposed on different representations, such as volu-
metric data [12, 21, 41, 41], point cloud [25, 26, 35] and
other representations [16, 24]. A point cloud is among one
of the most popular ways to represent the 3D shape or ob-
ject. PointNet [20] is an early representative attempt to de-
sign a novel deep network suitable for unordered point sets
in 3D. PointNet++ [22] and PointCNN [8] extended Point-
Net by recursively applying it in a hierarchical fashion, so
as to learn deep point set features efficiently and robustly.
These two works inspired a lot of follow-up works. For
example, VoteNet [18] propose to detect 3D objects by en-
dowing point cloud deep networks (i.e., PointNet++) with
a voting mechanism similar to the classical Hough voting.
By voting, VoteNet essentially generates new points that lie
close to objects centers, which can be grouped and aggre-
gated to generate box proposals. Regarding the strong abil-
ity of feature representation of PointNet++ and the voting
mechanism to generate objects centers in VoteNet, we adopt
VoteNet as the basic architecture of our tooth centroid de-
tection network and PointNet++ as the backbone network
to exact the deep point features of the fine-grained tooth ob-
jects. To generate proposals from the votes in the proposal
step, VoteNet used the furthest point sampling (FPS) to uni-
formly sample K vote clusters. Such a sampling strategy
may select irrelevant vote clusters for tooth centroid detec-
tion, such as one located on the tooth crown and gingiva.
To avoid this problem, instead of using FPS, we propose an
arch-aware point sampling (APS) strategy to assist in gen-
erating proposals of tooth centroid by leveraging the dental
arch prior.
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Figure 2. Illustration of our DArch in both training and inference mode. Our DArch consists of two parts of tooth centroid detection
and tooth instance segmentation. In the inference mode, our DArch can segment all tooth instances by fusing the patch-based results. APS:
Arch-aware point sampling.

2.2. 3D Tooth Understanding

Recently, deep learning-based methods have been pop-
ularly used to handle the task of tooth instance segmenta-
tion [30, 38, 39]. For example, Mask MCNet [38] proposed
a framework that combines the Monte Carlo Convolutional
Network (MCCNet) with Mask R-CNN to simultaneously
locate each tooth object by predicting its bounding box and
segment all the tooth points inside the box. Graph convolu-
tional neural network-based frameworks (GCN) [28,29,40]
have been proposed to learn more discriminative geometric
features for 3D dental model segmentation. TSegNet [3]
found that the tooth centroid is a more reliable signal than
the bounding box in the tooth detection stage, and based on
this observation proposed a novel pipeline that formulates
the dental model segmentation as two sub-problems: robust
tooth centroids prediction and accurate individual tooth seg-
mentation on point cloud data. However, existing learning-
based methods heavily depended on expensive dense point-
wise annotations, that is, labeling all teeth of each dental
model in the training data, to supervise the training process.
Such a full annotation way brings a considerable burden for
human labeling and increases the difficulty of collecting a
large number of data, thus limiting these methods to real-
world applications. In this paper, we are the first to study
a 3D tooth instance segmentation problem with limited an-
notations. Motivated by those methods above, our proposed

DArch includes a tooth centroid detection model to identify
each tooth object and a tooth instance segmentation model
to segment every tooth instance. To accurately detect each
tooth centroid, we propose to estimate the dental arch and
leverage the estimated dental arch to assist the proposal gen-
eration of tooth centroids.

3. Method

3.1. Overview

In this work, we propose a novel detect-and-segment
framework, dubbed DArch, to tackle the challenging task
of 3D tooth instance segmentation with weak annotations.
Our DArch aims to segment all tooth instances given a point
cloud input of a single dental model. As shown in Fig. 2, our
DArch consists of two parts, including tooth centroid detec-
tion and tooth instance segmentation. In particular, to accu-
rately predict all tooth centroids, we introduce a dental arch
prediction module to estimate the dental arch and propose
an arch-aware point sampling (APS) strategy to generate
the centroid proposals. Our segmentation network adopts a
patch-based training strategy, and in the inference phase the
trained segmentor can predict all the tooth instances from
a dental model by fusing all patch-based segmentation re-
sults. We will elaborate our detection and segmentation net-
works as follows.
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Figure 3. The overview of our proposed dental arch prediction
method. Our method consists of two steps, including Bézier re-
gression and GCN refinement. An initial curve is sampled from
generated Bézier curve. Then, the points X̂ are refined by offsets
iteratively.

3.2. Tooth Centroid Detection

Our tooth centroid detection network consists of a detec-
tion backbone and a branch of arch generation. We adopt
the VoteNet [18] as our detection backbone regarding its
solid architecture and voting mechanism. As we know, pro-
posal generation is one of the most vital parts for 3D ob-
ject center detection. Considering the fine-grained struc-
tures of teeth, we propose an APS method to replace the
FPS sampling method used in VoteNet for generating tooth
centroid proposals. In the following, we first review the
work of VoteNet briefly and then propose our arch genera-
tion method. Finally, we present our APS method for pro-
posal generation.

3.2.1 Review of VoteNet

The original VoteNet is proposed by Qi et al. [18]. It
is tailored for 3D point cloud detection based on Point-
Net++ [22]. Given a set of input 3D points {pi}Ni=1, the
backbone network of PointNet++ selects seed points and
generate enriched C-dimensional feature vector. The point
coordinates are embedded into the C-dimensional feature
vector to represent the seeds {si}Mi=1, where si is a (3+C)-
dimentional feature vector. Then the seed points are fed into
a shared multi-layer perception (MLP) to compute votes
{vi}Mi=1. The generated voting vi will be aggregated around
object center.

After generating votes vi, FPS is used to sample a sub-
set of the votes to get {vi}Ki=1. Then by finding all near
votes within a certain Euclidean distance, votes are gener-
ated into K clusters, followed by a three-layer MLP to gen-
erate the proposals. Finally, NMS is applied to filter out the
overlapped proposals and generate the final prediction. The

sampling method is very significant for generating reason-
able proposals. For the specific task of tooth centroid de-
tection, FPS may sample irrelevant points from the whole
tooth votes, such as one located on the tooth crown and gin-
giva, due to its uniform and sparse sampling mechanism,
resulting in inaccurate proposals. To address this issue, we
propose to predict the dental arch that passes through all
tooth centroids and then propose an APS method based on
the predicted dental arch to replace with FPS for generating
accurate proposals.

3.2.2 Dental Arch Prediction

The dental arch can describe the teeth arrangement of a
dental model. To automatically predict the dental arch for
each dental model, we propose a coarse-to-fine dental arch
prediction method. As shown in Fig 3, our proposed den-
tal arch prediction method first roughly predicts the dental
arch by regressing a cubic Bézier curve and then adopts a
GCN-based network to refine the arch. In the following, we
present our dental arch prediction method in detail.

Bézier Curve Regression Recently, it has been shown
that the human dental arch form is accurately represented
mathematically by the beta function [14]. Motivated by
[14], we select a simple function, cubic Bézier curve, from
the beta function set to initially approximate dental arch.
The specific cubic Bézier curve can be decided by four con-
trol points. The ground truth of control points are obtained
by minimizing the distance between the synthesized Bézier
curve and the teeth centroids. As shown in the top of Fig. 3,
we use an MLP to predict 4 control points {xctr

i }4i=1. The
loss is defined as

Lctr =
1

4

4∑
i=1

ℓ1
(
x̂ctr
i − xctr

i

)
(1)

where xctr
i and x̂ctr

i are the i-th points corresponding to the
target and predicted control points, respectively. By regress-
ing the 4 control points, we can obtain the final synthesized
Bézier curve to characterize the dental arch initially.

GCN-based Arch Refinement We generate the target
dental arch by connecting all the line segments that pass
sequentially through the teeth centroids and then sampling
uniform points from the connected line segments. The tar-
get and predicted dental arch are denoted as

{
xgt
i

}N

i=1
and

{x̂i}Ni=1, respectively, where N is the number of points
comprising the dental arch curve and is set to 32. As
shown in the bottom of Fig 3, we first initialize the arch
curve with uniformly-sampled points along the synthesized
Bézier curve above. The nearest three votes corresponding
to each initial arch point are selected, and their features are
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interpolated to represent the corresponding arch point fea-
tures. The interpolated features are aggregated by MLP and
then fed into our GCN for generating the offsets. We add
the coordinates of the initial arch points and the learned off-
sets to generate new arch points. The learning process for
generating offsets is iteratively repeated 3 times to refine the
initial dental arch prediction, generating the fine prediction
of the dental arch. The loss function for arch points predic-
tion can be formulated as follows:

Larch =
1

N

N∑
i=1

ℓ1
(
x̂i − xgt

i

)
(2)

3.2.3 Arch-aware Point Sampling (APS)

With the estimated dental arch, we design an APS method to
expressly select the points around the tooth crown to tackle
the issue above. This is based on our observation that all
teeth are sequentially arranged on a dental arch, so are their
centroids. As shown in Fig. 2, the APS and grouping mod-
ule makes use of the predicted dental arch and generates fi-
nal Nk teeth proposals. Specifically, we utilize the Hungar-
ian [6] method to sample subsampled points in Nm votes.
Hungarian method considers the distances among assigned
points and samples points more uniformly, compared with
KNN-like methods that directly sample the K-nearest points
to the dental arch. The cost matrix C for Hungarian method
consists of two parts:

C = αDarch + βDvotes (3)

The first matrix Darch is the Euclidean distance between
votes and dental arch points. The second part Dvotes is the
Euclidean distance of votes displacement. α and β are used
to balance the importance of these two distance measure-
ments for sampling. We experimentally set α and β to be 1
and 5, respectively. The effect of different sampling meth-
ods on both detection and segmentation are compared, and
the results are attached in the Supplementary.

3.2.4 Loss Function

When training the networks, only annotations of teeth cen-
troids are utilized. We use the Huber ℓ1 loss [23] Loffset
to supervise the offsets prediction to obtain points F from
original subsampled points to their nearest annotated cen-
troids. Next, we use Cross-Entropy loss Lconf to supervise
the proposal confidence. We assume the ground truth con-
fidence of proposals which distances to their closest teeth
centroids less than 0.3 to be 1 and assign the corresponding
teeth centroids to the proposals such as VoteNet [18]. In the
end, base on the assigned teeth centroids, we compute the
losses Lcenters and Lboxs for learning centroids offset and re-
gressing teeth objects box regression [19]. Specifically, loss

for the teeth detection is as follows:

Ldet = Loffset + Lconf + γLcenters (4)

where we empirically set γ to be 0.1.

3.3. Tooth Instance Segmentation

Our segmentor is build upon PointNet++ [22]. We adopt
a patch-based training strategy to train the segmentor and
the common cross-entropy loss function to optimize the
training process. Given a centroid point, we crop the clos-
est M = 2048 points to the centroid point from the original
point cloud P . As shown in Fig. 2, the input of segmentor
are the backbone features and the relative coordinates to the
given centroid of the cropped 3D patch, and the output is
the probability mask indicating the possibility of the points
from the 3D patch being tooth point. The training data for
training our segmentor is all 3D patches generated by crop-
ping the closest M points to those tooth centroids of labeled
tooth instances. For example, if three tooth instances are la-
belled in a dental model, we will generate three 3D patches
by cropping the closest M points to the three tooth cen-
troids of labelled tooth instances. The patch-based training
strategy can augment the training samples and fully utilize
the annotation information. In the inference stage, the well-
trained segmentor can segment all tooth instances of the en-
tire dental model by fusing the segmentation results on all
patches that are generated based on each detected centroid.

3.4. Network Training

For training the tooth centroid detection network, we
sample N = 16, 000 points uniformly from each dental
model, using their 3D coordinates as the unique feature in-
put. We first train the detection backbone in the first 210
epochs and other network settings, such as the optimizer
and the learning rate, follows [18]. Then we train the arch
prediction branch for 100 epochs with the fixed detection
backbone. With the estimated dental arch, we perform APS
to generate accurate proposals and fine-tune the network
of proposal generation, as the yellow trapezoid denoted in
Fig. 2. Non-maximum suppression (NMS) is applied to
these proposals to generate the final centroid prediction. For
training the tooth instance segmentation network, tooth cen-
troids of those annotated teeth masks in the training dental
models are used to generate 3D patches by cropping the
closest M = 2, 048 points to them from the correspond-
ing point clouds. A patch-based training strategy is used
for our segmentor. Our segmentator is build upon Point-
Net++ [22] and follow the similar settings of [22] in the
training phase. All trainings are conducted under a single
RTX 3090 Nvidia GPU. Please refer to Supplementary for
detailed information.
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Method Tooth centroid detection Tooth instance segmentation
Acc. Recall C. Dist. Full Weak

IoU Dice IoU Dice
VoteNet [18] 88.82 85.68 0.036 - - - -
MLCVNet [34] 90.86 85.68 0.033 - - - -
Group-free 3D [11] 91.14 92.70 0.035 - - - -
TSegNet [3] 99.41 84.94 0.037 94.83 96.91 93.39 95.83
VoteNet & PointNet++ [22] 84.32 85.40 0.040 93.92 96.29 93.38 95.97
DArch (Ours) 99.68 85.39 0.037 95.93 97.70 95.42 97.38

Table 1. Tooth centroid detection and tooth instance segmentation results compared with state-of-the-art methods in weakly- and fully
annotated scenarios. ”-” denotes the unavailable segmentation scores for those detection methods.

4. Experiments

4.1. Dataset and Annotation

We collected 4, 773 3D dental models from 3, 231 pa-
tients before orthodontics. We randomly select 3, 973 mod-
els as the training models and the rest 800 models as the
test models. All training dental models contain a total of
54, 658 in teeth instances. All the dental models are fully
annotated, in which all tooth instances of each dental model
are manually labeled by professional dentists. In our work,
we propose a low-cost annotation way, that is, labeling all
tooth centroids and only a few teeth for each dental model.
To calculate the time spent for full annotation and our pro-
posed weak annotation, one of the authors manually anno-
tates 10 dental models with different annotation ways under
the guidance of professional dentists. Although teeth cen-
troids used in our experiments are calculated by the fully
annotated teeth masks, we propose a new way to annotate
teeth centroids by multi-view images, which is less time-
consuming. We first render the dental model to three im-
ages of different views. Then, performed in a strict se-
quence, we select the center point of each tooth on these
images respectively to calculate the coordinates of the to-
be-annotated tooth centroid. For annotating a tooth to gen-
erate the mask, we use the popular and programmable 3D
mesh editing software, Meshlab [2], as our annotation tool.
We use the Z-painting tool provided by Meshlab by painting
vertexes on each tooth instance. Fig 4 shows an example of
full annotation and our proposed weak annotation and in-
dicates the averaged annotation time on one dental model
for both types of annotation. As shown in Fig 4, the weak
annotation way used in our work can save time to a large ex-
tent compared to the fully annotated approach used in other
learning-based methods.

4.2. Experimental Setup

Competing methods. We compare our approach with
the state-of-the-art method on tooth centroid detection and
tooth instance segmentation. As for the detection, our

Full annotation with all 
tooth masks

Weak annotation with all tooth 
centroid points and a few tooth masks

2.21

0.07
0.0
0.5
1.0
1.5
2.0
2.5

mask centroid

t (min)

30.5 min 9.12 min

(a) (b)

Figure 4. Illustration of time consumption for different annotation
ways. (a) Comparison of time spent on labeling each tooth mask
and centroid; (b) Comparison of time spent on labeling one dental
model with full and weak annotations.

DArch is compared with the popular 3D detection meth-
ods(i.e., VoteNet [18], MLCVNet [34] and Group-free
3D [11]). VoteNet is a general 3D detection method for
point clouds. MLCVNet extends the VoteNet by leverag-
ing multi-level context modules, i.e., patch-to-patch, object-
to-object and global scene. Group-free 3D further adopts
a transformer-based proposal generation networks. As for
the segmentation, we compare our DArch with the state-
of-the-art 3D tooth instance segmentation method (i.e.,
TSegNet [3]) and the combination of popular VoteNet and
PointNet++. TSegNet is the start-of-the-art learning-based
method for 3D tooth instance segmentation.
Metrics. We use the widely-used metrics-Accuracy (ACC)
and Recall for evaluating the detection performance, as well
as IoU and Dice metrics are used to evaluate the segmen-
tation performance. Besides, we adopt an extra metric-
Chamfer Distance [1] to measure the distance between the
predicted centroids and the ground truth centroids. Given
two point clouds P1 ⊆ R3, P2 ⊆ R3, The Chamfer Dis-
tance can be defined as

dCH (P1, P2) =
∑
x∈S1

min
y∈P2

∥x− y∥22 +
∑
y∈P2

min
x∈P1

∥x− y∥22

(5)
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Ground truthOurs(weak)TSegNetVoteNet &
PointNet++ Ours(full)

Figure 5. The visual comparison of dental model segmentation results produced by different methods, as well as the corresponding ground
truth. From left to right are the results of other methods (1st-2nd columns) with full annotations, our results with weak annotations, our
results with full annotations and the ground truth.

Method Number Tooth Centroid Detection Tooth Instance Segmentation
Acc. Recall C. Dist. IoU Dice

FPS 20 84.32 85.40 0.040 93.38 95.97
30 85.4 85.66 0.038 95.57 97.49

APS (Ours) 20 99.68 85.39 0.037 95.42 97.38
30 99.74 85.37 0.037 95.67 97.53

Table 2. The detection and segmentation results when using different thresholding centroid number and sampling methods. ’Number’
means the number of the detected tooth centroids in the detection stage.

4.3. Comparison with Competing Methods

Experimental setup. In this section, we compare our
method with different competing methods. Note that all
segmentation models of our DArch and another two com-
peting methods, TSegNet and VoteNet PointNet++, adopt
patch-based training strategy and fuse all patch-based seg-
mentation results to produce the segmentation result of an
entire dental model. The 3D patches that are used as the
input of all segmentation models are generated by cropping
the closest 2, 048 points to those detected tooth centroids.
As we mentioned in Section 3.2.1, the tooth centroids de-
tected by VoteNet and our DArch are generated by NMS fil-
tering. By thresholding, VoteNet and our DArch can gener-

ate different numbers of the predicted tooth centroids. The
number of detected tooth centroids can affect the detection
and segmentation results. With a small increase in the num-
ber of the detected tooth centroids, the detection recall may
increase, and the segmentation performance also may im-
prove at the expense of decreased efficiency since the seg-
mentation results from more patches are fused. Our exper-
imental statistics yield an average number of the detected
tooth centroids for TSegNet model of about 28.6. For fair
comparison and taking into account model efficiency, we
filter the proposals of VoteNet and our DArch and generate
20 tooth centroids for both methods.
Results. The overall detection and segmentation results are
presented in Table 1, and we compared these competing
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methods in both weakly- (i.e., only labeling 20% teeth in-
stances from all tooth instances in the training dental mod-
els) and fully annotated scenarios. Since VoteNet [18], ML-
CVNet [34] and Group-free 3D [11] can only be used for
detection, their segmentation metrics are default. From the
table, we can see that our DArch achieves the best segmen-
tation performance in both weakly- and fully-annotated sce-
narios. Compared to the state-of-the-art 3D tooth instance
segmentation method, TSegNet, the proposed DArch im-
proves the segmentation performance by 1.1% and 0.79%
on the IoU and Dice, respectively, with full annotations,
and by 2.03% and 1.55% on the IoU and Dice, respectively,
with weak annotations. In the weakly-annotated scenario,
our DArch improves more. The reason may be that our
method can generate more accurate detection results. Ow-
ing to accurate detection results, our segmentation models
perform well even in the weakly-annotated scenario. This
also suggests that locating tooth objects is important for the
segmentation, and our proposed weak annotation is feasi-
ble. The visual results of our method and other methods are
shown in Fig 5. From this figure, we can find that even only
weak annotations are available for our DArch, it can also
produce visually better results than other methods with full
annotations, especially in areas of small teeth.

4.4. Ablation Studies

4.4.1 Sampling

Thresholding Centroid Number and different sampling
methods in the detection stage will affect the detection and
segmentation performance. In this section, we investigate
the effect of different thresholding centroid numbers (i.e.,
20 and 30) and sampling methods (i.e., FPS and APS) on
the tooth centroid detection and tooth instance segmenta-
tion. The results are reported in Table 2. From this ta-
ble, we can observe that our proposed APS method achieves
the best results in terms of the detection and segmentation
results, especially the ACCs are much higher than that of
other sampling methods in different centroid numbers. Be-
sides, when the thresholding centroid number is low (i.e.,
20), our APS remains reflecting a relatively consistent de-
tection and segmentation performance with the higher cen-
troid number of 30, while FPS decreases more. This also
suggests that by leveraging dental arch prior, our APS can
detect more accurate centroid points than the conventional
FPS method.

4.4.2 Dental Arch Prediction

In our work, we propose a coarse-to-fine method for pre-
dicting dental arches. We first synthesize a cubic Bézier
curve using an MLP network to initially characterize the
dental arch and then use a lightweight network to refine
the initially estimated arch. To validate the effectiveness of

Method Acc. Recall MSE. (1e-4)
Direct∗ 93.13 85.12 7.50
Coarse 93.44 85.27 6.22
Coarse + Fine 99.89 84.17 4.36

Table 3. Ablation study of Arch prediction. Direct∗ denotes di-
rectly predicting the arch points using an MLP network. Coarse
denotes predicting the arch points only by Bézier curve regres-
sion. Fine indicates further refining the coarse prediction.

the coarse-to-fine strategy, we predict the dental arch using
different methods, such as direct prediction using an MLP,
coarse Bézier curve regression and our proposed coarse-to-
fine strategy. The results are reported in the Table 3. The
results in this table indicate the effectiveness of our coarse-
to-fine strategy on arch prediction. The analysis of hyper-
parameters is attached in the Supplementary.

5. Conclusion
In this work, we propose a novel tooth instance segmen-

tation framework-DArch. Our DArch consists of two parts
of tooth centroid detection and tooth instance segmentation.
This method provides a novel dental arch estimation method
and introduces an arch-aware point sampling (APS) mod-
ule based on the estimated dental arch for tooth centroid
detection. Owing to the impressive detection performance
obtained by the detection stage, our DArch has achieved su-
perior performance to the competing segmentation methods
in both weakly- and fully-annotated scenarios. Our segmen-
tor is trained in a fully-supervised manner and does not take
full advantage of the weakly-annotated centroid informa-
tion and our proposed dental arch prior. In the future, we
will design a smarter segmentor by fully leveraging this in-
formation.

Broader Impact. The segmentor of our DArch is trained
in a fully-supervised manner. The training data is limited
when only a small amount of teeth are manually labeled,
which will limit the generalization ability of the trained seg-
mentor. The model may generate inaccurate segmentation
results on unseen dental models from the real-world, thus
adversely affecting the computer-aided orthodontic treat-
ments.
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