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Abstract

Waste inspection for packaged waste is an important step
in the pipeline of waste disposal. Previous methods either
rely on manual visual checking or RGB image-based in-
spection algorithm, requiring costly preparation procedures
(e.g., open the bag and spread the waste items). More-
over, occluded items are very likely to be left out. Inspired
by the fact that X-ray has a strong penetrating power to
see through the bag and overlapping objects, we propose
to perform waste inspection efficiently using X-ray images
without the need to open the bag. We introduce a novel
problem of instance-level waste segmentation in X-ray im-
age for intelligent waste inspection, and contribute a real
dataset consisting of 5,038 X-ray images (totally 30,881
waste items) with high-quality annotations (i.e., waste cate-
gories, object boxes, and instance-level masks) as a bench-
mark for this problem. As existing segmentation methods
are mainly designed for natural images and cannot take ad-
vantage of the characteristics of X-ray waste images (e.g.,
heavy occlusions and penetration effect), we propose a new
instance segmentation method to explicitly take these im-
age characteristics into account. Specifically, our method
adopts an easy-to-hard disassembling strategy to use high
confidence predictions to guide the segmentation of highly
overlapped objects, and a global structure guidance module
to better capture the complex contour information caused
by the penetration effect. Extensive experiments demon-
strate the effectiveness of the proposed method. Our dataset
is released at WIXRayNet.

1. Introduction
Nowadays, people produce an increasing amount of

waste world-widely, which leads to great pressure for waste
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Figure 1. A closed waste bag is being scanned by an X-ray ma-
chine (left), producing the corresponding X-ray image (mid). The
contained waste items can be clearly seen from this image. The
figure at the right is the instance-level mask prediction of our
method for this X-ray image (best viewed in color)

disposal. Improper disposal could bring irreversible dis-
asters to our ecosystem, including climate warming, soil
contamination, marine pollution, and so on. To reduce the
harmful impact caused by the increasing amount of waste,
it is urgent to develop an effective solution for proper waste
disposal. In the pipeline of waste disposal, inspection for
packaged garbage is a very important step as it can iden-
tify the categories and locations of waste items in the bag,
providing useful information for the following processes. In
the past, waste inspection is usually done by human workers
manually with low efficiency. And such close contact with
unknown waste increases the health risk to human workers.
To improve the efficiency and reduce human contact with
harmful waste, some researchers propose to use computer
vision methods (e.g., object detection) to identify misplaced
waste items using RGB images [11, 28, 34, 40]. However,
both the manual method and RGB image-based methods re-
quire garbage bags to be opened and waste items to be well-
spread, bringing in costly preparation procedures. Also, it
is unlikely for these methods to identify heavily occluded
waste items.

Fortunately, we observed that X-rays have strong pene-
trating power that even completely occluded or buried ob-
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boxes. After getting two groups of boxes, our goal is to ex-
ploit the easy set to generate useful information to guide the
segmentation of the hard one.

Note that we have tried splitting the box set into three or
four groups in the implementation, but found the improve-
ment over using two groups is marginal. So we empirically
divided the box set into two groups.

Easy-to-hard segmentation As the bounding boxes in
the high-confidence set generally produce good segmen-
tation results, we first predict the instance masks for all
the boxes in the easy set, denoted as Me = {Mi

e|i =
0, 1, . . . , Ne}, using a segmentation head Gs:

Mi
e = Gs(Zi

e), (4)

Zi
e = σ(AXi

eW) + Xi
e, (5)

where Ze is the updated feature by the GCN layer, Xi
e is

the ROI feature of the ith box in the easy set, and A is the
self-attention map defined as in Eq. (2).

Note that the bilayer GCN structure of BCNet works on
a single ROI feature, where the feature from the occluder
branch is added back to the ROI feature to help the pre-
diction of the occludee branch. However, in our case, fea-
tures extracted from the easy and hard set belong to different
ROIs, making direct summation of features not practical.

In this work, we propose to use the estimated mask in-
formation from the easy set to enhance the self-attention
map for predicting masks of the hard set. Specifically, we
first convert these predicted masks Me back to the input
image space according to their ROI coordinates, and merge
them into a single mask P via an element-wise max opera-
tion. Mask P is a soft mask, each value indicates the prob-
ability of a pixel location contain object instances. As this
mask provide strong information for the locations of easy
instances, we propose a mask-guided attention to guide the
segmentation of hard instances.

For an ROI feature of the jth box in the hard set Xj
h,

we perform ROI-align on the mask P to get a pixel-aligned
mask Pj for Xj

h. The the mask-guided attention Ag is de-
fined as

Ag = softmax(F (Xj
h, Xj

h) ⊙ As)), (6)

As = 1 + Pj(Pj)T , (7)

where ⊙ denotes Hadamard product and As is a similar-
ity matrix whose elements represent the probability of two
nodes contain object.

Finally, the masks of the hard set Mh = {Mj
h|j =

0, 1, . . . , Nh} can be computed as

Mj
h = Gs(Zj

h), (8)

Zj
h = σ(AgXj

hW) + Xj
h. (9)

Through our mask-guided attention, the hard set can use
the similarity matrix built from the easy mask to boost their
attention graph, thus improving the predicted accuracy for
the hard set.

4.3. Loss Function

The objective function for our ETHSeg can now be for-
mulated. First, We employ FCOS [44] as the object detector
due to its anchor-free efficiency, and the loss function for
detection LDetect is defined as [44]

LDetect = LRegression + LCenter + Lclasses. (10)

Second, the loss function for the segmentation network
Lmask consists of three components:

Lmask = λ1Le + λ2Lh + λ3Lheatmap, (11)
Le = LOcculder(Me) + LOccludee(Me), (12)
Lh = LOcculder(Mh) + LOccludee(Mh), (13)

Lheatmap =

3X
i=1

LMSE(Ĵi, Ji), (14)

where Le, and Lh denote the segmentation losses for the
easy and hard bounding box sets, and Lheatmap supervises the
prediction of the global contour heatmap. The segmentation
loss for the occluder (LOcculder) and occludee (LOccludee) in
each ROI are the same as in BCNet [20]. λ1, λ2, and λ3

are hyper-parameters to balance the loss functions, which
are empirically tuned to be {0.5, 1.0, 0.5} using the training
set.

Finally, the whole instance segmentation framework can
be trained in an end-to-end manner defined by a multi-task
loss function L:

L = λLdetect + Lmask, (15)

where λ = 1.0 is the loss weight.

5. Experiments
In this section, we compare our methods with existing in-

stance segmentation approaches on our benchmark dataset.

5.1. Implementation Details

Global Structure guidance module Given an image with
a resolution of 800, the backbone network and FPN will ex-
tract five different feature maps {P 3, P4, P5, P6, P7} with
height and width of {100, 50, 25, 13, 7}. See [44] for more
details. We first step by step upsample Pi to have the dimen-
sion as Pi+1, and concatenate them as the updated P̃i+1, for
i ranged from 3 to 5. Next, we utilize the updated P̃i+1 to
obtain the corresponding global contour map Ĵi. The spa-
tial size of the global contour map is a quarter of the input
image size.
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