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Abstract

Waste inspection for packaged waste is an important step
in the pipeline of waste disposal. Previous methods either
rely on manual visual checking or RGB image-based in-
spection algorithm, requiring costly preparation procedures
(e.g., open the bag and spread the waste items). More-
over, occluded items are very likely to be left out. Inspired
by the fact that X-ray has a strong penetrating power to
see through the bag and overlapping objects, we propose
to perform waste inspection efficiently using X-ray images
without the need to open the bag. We introduce a novel
problem of instance-level waste segmentation in X-ray im-
age for intelligent waste inspection, and contribute a real
dataset consisting of 5,038 X-ray images (totally 30,881
waste items) with high-quality annotations (i.e., waste cate-
gories, object boxes, and instance-level masks) as a bench-
mark for this problem. As existing segmentation methods
are mainly designed for natural images and cannot take ad-
vantage of the characteristics of X-ray waste images (e.g.,
heavy occlusions and penetration effect), we propose a new
instance segmentation method to explicitly take these im-
age characteristics into account. Specifically, our method
adopts an easy-to-hard disassembling strategy to use high
confidence predictions to guide the segmentation of highly
overlapped objects, and a global structure guidance module
to better capture the complex contour information caused
by the penetration effect. Extensive experiments demon-
strate the effectiveness of the proposed method. Our dataset
is released at WIXRayNet.

1. Introduction
Nowadays, people produce an increasing amount of

waste world-widely, which leads to great pressure for waste

*corresponding author, hanxiaoguang@cuhk.edu.cn

Figure 1. A closed waste bag is being scanned by an X-ray ma-
chine (left), producing the corresponding X-ray image (mid). The
contained waste items can be clearly seen from this image. The
figure at the right is the instance-level mask prediction of our
method for this X-ray image (best viewed in color)

disposal. Improper disposal could bring irreversible dis-
asters to our ecosystem, including climate warming, soil
contamination, marine pollution, and so on. To reduce the
harmful impact caused by the increasing amount of waste,
it is urgent to develop an effective solution for proper waste
disposal. In the pipeline of waste disposal, inspection for
packaged garbage is a very important step as it can iden-
tify the categories and locations of waste items in the bag,
providing useful information for the following processes. In
the past, waste inspection is usually done by human workers
manually with low efficiency. And such close contact with
unknown waste increases the health risk to human workers.
To improve the efficiency and reduce human contact with
harmful waste, some researchers propose to use computer
vision methods (e.g., object detection) to identify misplaced
waste items using RGB images [11, 28, 34, 40]. However,
both the manual method and RGB image-based methods re-
quire garbage bags to be opened and waste items to be well-
spread, bringing in costly preparation procedures. Also, it
is unlikely for these methods to identify heavily occluded
waste items.

Fortunately, we observed that X-rays have strong pene-
trating power that even completely occluded or buried ob-
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jects can be well-imaged by X-ray scanning, as shown in
Fig. 1. Compared with natural images, X-ray images have
distinct characteristics (see Tab. 1). First, as different mate-
rials absorb X-ray in different degrees, the colors in X-ray
images indicate the thickness and the material type of the
corresponding areas. Second, the edge information of all
objects are well preserved even though they are occluded.
These nice characteristics make it possible to inspect all
waste items in packaged waste from a single X-ray image
without opening the bag.

This observation motivates us to perform waste inspec-
tion efficiently using X-ray images, such that the whole
pipeline of waste disposal can be simplified. In this work,
we introduce a novel problem of instance-level waste seg-
mentation in X-ray images to facilitate intelligent waste in-
spection. Although there are some existing methods using
X-ray images for object inspection [1, 2, 27, 48, 45], they
mainly focus on security inspection, where the goal is to de-
tect prohibited items hidden in common objects. In contrast,
we target predicting waste category and pixel-level mask for
each waste item in X-ray image to allow a more fine-grained
inspection.

As no off-the-shelf dataset is available, we contribute the
first high-quality X-ray waste inspection dataset collected in
campus community, named Waste Inspection X-ray Dataset
(WIXray), for this problem. According to the current waste
disposal scenario [29], we divide the common waste items
into twelve categories, namely, PlasticBottle, Can, Car-
ton, GlassBottle, Stick, Tableware, FoodWaste, HeatingPad,
Desiccant, MealBox, Battery, and Bulb. Our dataset con-
tains 5, 038 annotated X-ray images and each image con-
tains 6.13 labeled instances on average. Sample X-ray im-
age with annotations is shown in Fig. 2.

Since the imaging mechanism of X-ray images is largely
different from natural images, directly applying existing
methods designed for natural images [19] on this problem
leads to decreased performance. Therefore, we propose an
Easy-to-Hard Instance Segmentation Network (ETHSeg)
for X-ray inspection. First, our method adopts an easy-
to-hard disassembling strategy that uses high-confidence
instance predictions to guide the segmentation of hard in-
stances in the highly overlapped regions. Second, a global
structure guidance module is introduced to better capture
the complex global contour information for mask predic-
tion. Our carefully designed ETHSeg achieves much higher
accuracy for X-ray waste instance segmentation.

The main contributions of this work are as follows:
• We introduce a new task of instance-level waste seg-

mentation in X-ray images to promote the develop-
ment of the intelligent waste inspection algorithm.

• We contribute an X-ray image dataset with high-
quality bounding boxes and instance masks annotation
as a benchmark for waste inspection. To the best of

our knowledge, this is the first labeled X-ray dataset
for this problem.

• We propose a new instance segmentation method that
explicitly considers the occlusion and penetration ef-
fect of the X-ray image for accurate mask prediction.
Extensive experiments verify the effectiveness of our
method.

2. Related Work
Waste disposal and inspection Globally, millions of tons
of municipal waste are generated every day, which poses
a great threat to public health and the environment [12].
However, waste inspection is still mostly done manually
during the last decade, which is inefficient and labor-
intensive [31]. To reduce the human contact with toxic
waste during the process of waste sorting, there has been
some research aiming to detect waste objects using RGB
cameras [11, 28, 34, 40]. However, these methods require
waste objects to be detected are visible in the sight of cam-
eras. Thus, we propose to exploit X-ray scanning to handle
this problem.

X-ray image datasets X-ray has strong penetrating
power, making occluded objects visible in the image. This
penetrating ability has been utilized by several computer
vision methods, which take X-ray images or videos as in-
puts [18, 49, 52, 13, 10, 6, 3, 39, 50, 2, 27]. For example,
Akcay et al. [2] perform image classification and detection
for X-ray baggage security images. Aurelia et al. [6] con-
tribute a large chest x-ray dataset with multi-label annotated
reports. However, most of the existing methods focus on
security inspection and medical imaging analysis, and no
research on X-ray waste inspection has yet been explored.
This motivates us to introduce the first X-ray dataset for
waste inspection.

Instance detection and segmentation Existing detection
and segmentation methods are mainly designed for natural
images. In the last decade, two-stage methods first become
popular. Mask R-CNN [19] introduces a fully convolu-
tional mask head to Faster R-CNN [38] detector, which
is classic anchor-based two-stage detection method. This
stream of detection methods have taken over the domi-
nant position in two-stage object detection for a long pe-
riod since the work of R-CNN [17, 16, 38, 7, 30, 51, 42].
QueryInst [14] proposes to do detection and segmentation
by queries in a unified manner, which extends the query
method of Sparse R-CNN [42]. For one-stage methods,
OverFeat [41] is the first deep learning method of detection,
after which many outstanding one-stage object detection
methods have been proposed (e.g., SSD [25] and YOLO
series [35, 36, 37, 4]). Many one-stage instance segmen-
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tation frameworks [5, 43, 46, 47] are built on top of these
one-stage detection frameworks, achieving comparable re-
sults with favorable inference speed. Recently, anchor-free
approaches have attracted wide attention due to its time-
efficiency and ROI-independence [21, 21, 44, 8, 43]. The
representative work of detection is FCOS [44]. Blend-
Mask [8] appends a blender module to FCOS [44] com-
bining top-down bbox attentions and bottom-up segmenta-
tion information. CondInst [43] replaces RoI-based fixed
mask branch with dynamic instance-aware networks and
improves performance as well as inference time. Despite
their success on natural images, they perform not as well as
expected when meet X-ray images.

Amodal instance segmentation Except the common
modal instance segmentation methods like [19], amodal
instance segmentation is also explored to handle occlu-
sion cases. Li and Malik [22] propose the first solution
based on Iterative Bounding Box Expansion. ORCNN [15]
proposes an ROI-based multi-task architecture to predict
amodal mask, visible mask, and occlusion mask at the same
time. Qi et al. [32] construct a new dataset called KINS
with amodal annotations and propose Amodal Segmenta-
tion Network (ASN) with Multi-Level Coding (MLC) to
improve the performance. BCNet [20] establishes a bilayer
framework, in which the top GCN layer detects the occluder
and the bottom GCN layer infers the occludee. Among
them, BCNet is the method most related to ours, but it is
designed for natural images where occluded parts of objects
are invisible. In contrast, the occluded object can still be
present in an X-ray image for our problem. By utilizing this
characteristic, we propose our amodal instance segmenta-
tion method for X-ray image.

3. The WIXray Dataset

As there is no existing X-ray image dataset for learn-
ing waste inspection, we introduce the first X-ray image
dataset with high-quality annotations to serve as a bench-
mark dataset for instance-level waste segmentation. This
dataset is collected in our campus community with around
8 thousand residents.

3.1. Packaged Waste Collection

Waste categories According to current waste disposal
scenarios, we classify the domestic wastes into four gen-
eral types and twelve categories: Recyclable (PlasticBot-
tle, Can, Carton, GlassBottle, Stick, and Tableware), Food-
waste (FoodWaste), Residual (HeatingPad, Desiccant, and
MealBox), and Hazardous (Battery and Bulb). Sample X-
ray images for each category are shown in Fig. 2.

Figure 2. Examples of waste items in the WIXray dataset. Each
waste category is provided with instance-level labelling.

Table 1. Characteristic of different waste categories under X-ray.
Color Contour Material Waste Category

Green Clear Outline
Glass (Dark Green) GlassBottle

Carboard (Light Green) Carton

Blue Clear Outline Metal
Can, Battery,

HeatingPad, Desiccant

Orange
Unifixed Shape

Opaque
Organism FoodWaste

Clear Outline
Transparence

Plastic or Wood
PlasticBottle, MealBox,

Tableware, Stick

X-ray image capturing To increase the diversity of our
dataset, we collected packaged garbage from different com-
munal waste recycling stations and used the X-ray ma-
chine to produce the X-ray images. For some imbalanced
categories in the dataset, especially the hazardous waste,
we randomly put the pre-prepared specific types of waste
into the waste bag to increase the number of corresponding
items.

3.2. X-ray Image Annotations

X-ray image characteristics In X-ray images, different
materials have different abilities to absorb X-rays, leading
to varying image characteristics, as described in Tab. 1 and
visualized in Fig. 2. For example, some categories of waste
have robust color features while others only retain a few
edge features.

Image annotation We labeled both the bounding box and
the instance segmentation mask for each instance, As X-ray
images have a strong penetrating effect, we can see through
overlapping objects from a single view, making our dataset
intrinsically different from traditional images. Instead of
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Table 2. Statistics of the proposed WIXray dataset.
Recyclable Waste Food Waste Residual Waste Hazardous Waste Total

PlasticBottle Can Carton GlassBottle Stick Tableware FoodWaste HeatingPad Desiccant MealBox Battery Bulb

Train Set 2,900 1,298 2,024 745 3,271 492 8,200 236 438 6,004 1,093 404 27,105
Test Set 405 187 265 97 510 70 1,121 30 55 826 121 53 3,740

Total 3,305 1,485 2,289 842 3,781 562 9,321 266 493 6,830 1,214 457 30,845

only labeling unoccluded regions for an instance [24], we
annotated its complete shape no matter whether they are oc-
cluded or not because each object can be completely seen in
the X-ray image.

Labeling X-ray images is a challenging task as most peo-
ple are not clear about X-ray image characteristics among
different types of domestic waste. We recruited some envi-
ronmental protection volunteers to label the collected data.
In the beginning, our researchers carefully annotated the
first 800 X-ray images using the labelme tool1, where the
waste bags were opened for visual checking. Note that these
800 images are labeled by visually compare the X-ray im-
age and waste items with the waste bag opened. These 800
X-ray images served as references to help annotators under-
stand the characteristics of different categories. To ensure
the label quality, each labeled result was carefully reviewed
by at least two inspectors.

3.3. Dataset Statistics

In total, our WIXray contains 5, 038 X-ray images and
30, 881 waste instances covering 12 common waste cate-
gories. Tab. 2 summarizes the statistics of the introduced
dataset. Unlike existing X-ray datasets for security inspec-
tion [45] which only annotate a few forbidden objects, we
densely labeled the common waste items in the picture. On
average, our dataset contains 6.13 labeled instances per im-
age, which is significantly larger than 2.27 instances of the
HiXray dataset [45]. A larger instance number per image
indicates more occlusions and contextual information, mak-
ing our dataset more valuable for training and evaluation.

Images in our dataset are stored in PNG format of reso-
lution 450 × 450, and split into 4, 433 for training and 605
for testing. We use this dataset as a benchmark for training
and evaluating X-ray waste instance segmentation. It costs
half of a year to collect and label this high-quality X-ray
waste inspection dataset, and we will release this dataset to
facilitate future research on this problem.

4. The Proposed Method
Existing instance segmentation methods [19] are often

designed for natural images and do not consider the im-
age characteristics of X-ray waste images, resulting in a de-
creased performance. In this section, we introduce a novel

1https://github.com/wkentaro/labelme

framework, named Easy-to-Hard Instance Segmentation
Network (ETHSeg), to take advantage of the penetration ef-
fect and occlusion with two effective designs for instance-
level waste segmentation (see Fig. 3). First, our method ex-
plicitly incorporates a global structure guidance module in
image feature extraction to help encode the global contour
context. Second, we propose an easy-to-hard disassembling
strategy to help segment the hard examples in the occlusion
regions.

4.1. Basic Segmentation for Each Instance

BCNet [20] is a state-of-the-art top-down instance seg-
mentation method that explicitly considers object occlusion
by a bilayer GCN structure. Although BCNet achieves
impressive results in the natural image benchmark (e.g.,
COCO [24]), applying it straightforwardly on our X-ray
dataset leads to unsatisfactory results, due to the penetra-
tion effect and severe occlusion. Our method is built on
top of BCNet, but with two substantial improvements (i.e.,
the global structure guidance module and easy-to-hard dis-
assembling strategy).

Bilayer convolution network (BCNet) BCNet consists
of three parts: (a) a backbone with FPN [23] for image
feature extraction; (b) a FCOS detector to predict object
bounding boxes as instance proposals; (c) a bilayer GCN
structure for instance segmentation. Given input feature
X ∈ R(HW )×C , the GCN in the bilayer structure can be
represented as:

Z = σ(AXW) +X, (1)
A = softmax(F (X,X)), (2)

F (X,X) = θ(X)ϕ(X)T , (3)

where Z is the updated feature, A ∈ R(HW )×(HW ) is a self-
attention map, W is a learnable output transformation ma-
trix, and σ is a normalization layer with ReLU. F measures
the dot-product similarity between two nodes Xi and Xj ,
where θ and ϕ are trainable transformations implemented
by 1× 1 convolution.

The first GCN layer in BCNet takes the ROI feature Xroi

as input to produce an updated feature Z0, and infers the
contour and mask of the occluder. The updated feature is
then added to the ROI feature Xf = Xroi + Z0 as input
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Figure 3. Overview of the proposed Easy-to-Hard Instance Segmentation Network (ETHSeg). First, we extract image features by a
backbone and predict a global contour heatmap supervised by the Global Structure Guidance. Second, we employ FCOS detect head to
obtain both the easy set and hard via the Easy and Hard Set Grouping. Last, our ETHSeg Modeling adopts an easy-to-hard disassembling
strategy for mask prediction. The diagram at the upper left illustrates the details of the mask-guided attention (MGA).

for the second GCN layer to predict the contour and mask
of the occludee (i.e., target). More details of BCNet can be
found in [20].

Global structure guidance BCNet crops the extracted
feature by ROI-Align to be the input of the segmentation
head to predict the mask and contour, and supervisions on
the mask and contour are applied on the ROI area. However,
this supervision is too local to help the network capture the
complex relationship between different instances in highly
overlapping regions. This is particularly true for X-ray im-
ages as the penetration effect brings more contours.

Therefore we design a global structure guidance mod-
ule, which can be easily plugged into any existing top-down
methods, to extract global contour context to guide the seg-
mentation of ROI areas by multi-tasks learning. As shown
in Fig. 3, we upsample the low-resolution feature map into
high-resolution ones and predict multi-scale global contour
heatmap {Ĵi|i = 1, 2, 3}. Inspired by the human pose
estimation methods [33], the ground-truth contour map Ji
is represented as the heatmap with Gaussian distributions
centered at the contour points with a variance of σ. As
the global contour map contains overlapping information
between different instances, integrating a global structure

guidance module in the network is beneficial for extracting
global semantic features to distinguish overlapping objects.

4.2. Easy-to-Hard Disassembling

In the X-ray image instance segmentation, the “hard”
instances are generally objects overlapping with multiple
other objects in the cluttered region. Inspired by the way
human perform instance segmentation where “easy” (i.e.,
easily distinguishable) instances are first identified before
segmenting the hard ones, we propose a novel easy-to-hard
disassembling strategy to simulate this process. Our method
first splits the object bounding boxes into an easy and a hard
set, and then utilizes masks extracted from easy instances to
help predict highly occluded instances.

Easy and hard set grouping Given bounding box set
B = {B0,B1, . . . ,BN} ∈ RN×5, where N is the
number of bounding boxes processed by NMS. Bi =
[cx, cy, w, h, s] is a box detected from object detector, where
(cx, cy) is the center coordinate, w and h are the width and
height, and s is the predictive confidence. Based on the pre-
dictive score of each bounding box, we first split the box
set B into two parts, namely, the high-confidence set Beasy
with Ne boxes and the low-confidence set Bhard with (Nh)
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boxes. After getting two groups of boxes, our goal is to ex-
ploit the easy set to generate useful information to guide the
segmentation of the hard one.

Note that we have tried splitting the box set into three or
four groups in the implementation, but found the improve-
ment over using two groups is marginal. So we empirically
divided the box set into two groups.

Easy-to-hard segmentation As the bounding boxes in
the high-confidence set generally produce good segmen-
tation results, we first predict the instance masks for all
the boxes in the easy set, denoted as Me = {Mi

e|i =
0, 1, . . . , Ne}, using a segmentation head Gs:

Mi
e = Gs(Z

i
e), (4)

Zi
e = σ(AXi

eW) +Xi
e, (5)

where Ze is the updated feature by the GCN layer, Xi
e is

the ROI feature of the ith box in the easy set, and A is the
self-attention map defined as in Eq. (2).

Note that the bilayer GCN structure of BCNet works on
a single ROI feature, where the feature from the occluder
branch is added back to the ROI feature to help the pre-
diction of the occludee branch. However, in our case, fea-
tures extracted from the easy and hard set belong to different
ROIs, making direct summation of features not practical.

In this work, we propose to use the estimated mask in-
formation from the easy set to enhance the self-attention
map for predicting masks of the hard set. Specifically, we
first convert these predicted masks Me back to the input
image space according to their ROI coordinates, and merge
them into a single mask P via an element-wise max opera-
tion. Mask P is a soft mask, each value indicates the prob-
ability of a pixel location contain object instances. As this
mask provide strong information for the locations of easy
instances, we propose a mask-guided attention to guide the
segmentation of hard instances.

For an ROI feature of the jth box in the hard set Xj
h,

we perform ROI-align on the mask P to get a pixel-aligned
mask Pj for Xj

h. The the mask-guided attention Ag is de-
fined as

Ag = softmax(F (Xj
h,X

j
h)⊙As)), (6)

As = 1 +Pj(Pj)T , (7)

where ⊙ denotes Hadamard product and As is a similar-
ity matrix whose elements represent the probability of two
nodes contain object.

Finally, the masks of the hard set Mh = {Mj
h|j =

0, 1, . . . , Nh} can be computed as

Mj
h = Gs(Z

j
h), (8)

Zj
h = σ(AgX

j
hW) +Xj

h. (9)

Through our mask-guided attention, the hard set can use
the similarity matrix built from the easy mask to boost their
attention graph, thus improving the predicted accuracy for
the hard set.

4.3. Loss Function

The objective function for our ETHSeg can now be for-
mulated. First, We employ FCOS [44] as the object detector
due to its anchor-free efficiency, and the loss function for
detection LDetect is defined as [44]

LDetect = LRegression + LCenter + Lclasses. (10)

Second, the loss function for the segmentation network
Lmask consists of three components:

Lmask = λ1Le + λ2Lh + λ3Lheatmap, (11)
Le = LOcculder(Me) + LOccludee(Me), (12)
Lh = LOcculder(Mh) + LOccludee(Mh), (13)

Lheatmap =

3∑
i=1

LMSE(Ĵi, Ji), (14)

where Le, and Lh denote the segmentation losses for the
easy and hard bounding box sets, and Lheatmap supervises the
prediction of the global contour heatmap. The segmentation
loss for the occluder (LOcculder) and occludee (LOccludee) in
each ROI are the same as in BCNet [20]. λ1, λ2, and λ3

are hyper-parameters to balance the loss functions, which
are empirically tuned to be {0.5, 1.0, 0.5} using the training
set.

Finally, the whole instance segmentation framework can
be trained in an end-to-end manner defined by a multi-task
loss function L:

L = λLdetect + Lmask, (15)

where λ = 1.0 is the loss weight.

5. Experiments
In this section, we compare our methods with existing in-

stance segmentation approaches on our benchmark dataset.

5.1. Implementation Details

Global Structure guidance module Given an image with
a resolution of 800, the backbone network and FPN will ex-
tract five different feature maps {P3, P4, P5, P6, P7} with
height and width of {100, 50, 25, 13, 7}. See [44] for more
details. We first step by step upsample Pi to have the dimen-
sion as Pi+1, and concatenate them as the updated P̃i+1, for
i ranged from 3 to 5. Next, we utilize the updated P̃i+1 to
obtain the corresponding global contour map Ĵi. The spa-
tial size of the global contour map is a quarter of the input
image size.
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Table 3. Detection and instance segmentation results on the proposed WIXray.

Methods Backbone
Detection AP Segmentation AP

overall AP50 AP75 overall AP50 AP75
Faster R-CNN [38] ResNet-101-FPN 43.46 62.40 48.17 - - -
Cascade R-CNN [7] ResNet-101-FPN 46.30 63.84 50.55 - - -
Sparse R-CNN [42] ResNet-101-FPN 48.85 64.88 54.42 - - -
Mask RCNN [19] ResNet-101-FPN 45.32 63.87 50.03 42.86 59.71 47.13
Cascade Mask R-CNN [7] ResNet-101-FPN 46.86 64.18 52.49 43.97 60.44 47.64
ORCNN [15] ResNet-101-FPN 42.32 57.53 47.89 37.70 52.51 42.74
QueryInst [14] ResNet-101-FPN 48.23 64.48 53.26 44.34 61.03 49.05

SSD [25] VGG-16 36.48 58.84 40.46 - - -
YOLOv3 [37] DarkNet-53 39.57 60.80 44.76 - - -
FCOS∗ [44] ResNet-101-FPN 48.39 66.80 52.20 - - -
SOLOv2 [47] ResNet-101-FPN - - - 44.39 61.32 48.83
YOLACT [5] ResNet-101-FPN 37.65 59.87 40.03 36.18 55.12 38.26
BlendMask [8] ResNet-101-FPN 47.38 63.72 51.77 43.61 59.62 46.55
CondInst [43] ResNet-101-FPN 47.72 64.42 51.93 43.77 60.10 47.68
BCNet [20] ResNet-101-FPN 48.45 65.63 52.05 45.11 61.32 49.20

ETHSeg (ours) ResNet-101-FPN 48.73 66.68 53.32 46.85 (+1.74) 63.22 (+1.90) 50.95 (+1.91)
∗ indicates that FCOS [44] was trained with the setting of BCNet (https://github.com/lkeab/BCNet).

Training In terms of the object detector, we follow the
training strategies suggested in FCOS [44]. For training our
segmentation head, we choose both the ground-truth boxes
and object proposals whose predicted scores and IOU with
ground-truth are larger than 0.05 and 0.3 as our proposals.
The threshold used for easy-to-hard grouping is set to 0.65.

Both the detector and the segmentation network could
be end-to-end trained as typical top-down methods. SGD
with momentum is employed for training 15K iterations
with 1K warm-up iterations. We set the batch size to 16
and the initial learning rate to 0.01. The learning rate is de-
cayed by a factor set of 0.1 in 7K and 12K iterations. The
variance σ used to generate the ground-truth global contour
map is set to 8.

Inference During inference, we keep at most 50 proposal
boxes generated by FCOS whose predicted scores are larger
than 0.3 with a 0.6 NMS threshold. Next, according to
our easy-to-hard disassembling strategy, we first predict the
masks for the easy set, and then use these masks to guide
the mask prediction for the hard set.

5.2. Results and Comparisons

We employed the MMDetection toolkit [9] to implement
existing instance segmentation methods for comparisons.
To ensure a fair comparison, all the compared methods used
ResNet-101-FPN as the backbone and were initialized from
the COCO pre-trained models. We trained these methods on
the training set of our dataset using SGD and AdamW [26].

We also attempted to evaluate existing amodal instance
segmentation methods (e.g. ORCNN [15]) on our dataset.
Note that our dataset is not perfectly suitable for amodal

Table 4. Instance segmentation results of different variant models
using the same detection results.

Model AP AP50 AP75

BCNet + Detection from ETHSeg 45.53 62.38 49.95
BCNet + Global Structure Guidance 45.98(+0.45) 62.65 49.96
BCNet + Easy-to-Hard Disassembling 46.12(+0.59) 62.00 51.02
ETHSeg 46.85(+1.32) 63.22 50.95

segmentation, as overlapping waste items might be pene-
trated by the X-ray and no apparent occlusion orders can be
inferred. We modified our dataset with a simple assumption
that the smaller objects occlude the larger objects.

As shown in Tab. 3, we compared our method with those
state-of-the-art object detectors on the WIXray Dataset. We
can find that Our ETHSeg performs better than both existing
one-stage and two-stage methods in all evaluation metrics.
Specifically, our method illustrated its effectiveness by out-
performing Cascaded Mask R-CNN[19] and QueryInst[14]
by 2.98 and 2.51 segmentation AP respectively. Com-
pared to the one-stage instance segmentation methods, our
method, with the same detector, exceeds BCNet by 1.74
segmentation AP.

The visualization results are shown in Fig. 4. It is obvi-
ous that our method is able to detect occlusion objects more
accurately and estimated contours are closer to the ground
truth thanks to our ingenious design.

5.3. Ablation Study

We conduct a series of ablation studies to verify the ef-
fectiveness of our global structure guidance module and
the easy-to-hard disassembling strategy in our framework.
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Figure 4. Qualitative comparison of instance segmentation on the proposed WIXray dataset. The mask color indicates the waste category
and the boundary line is merely for identifying the instance contour.

Tab. 4 tabulates the quantitative comparison of four vari-
ant models using the same detection results: 1) BCNet; 2)
with global structure guidance module; 3) using easy-to-
hard disassembling strategy; 4) our whole framework.

Compared to the original BCNet, adding the global
structure guidance module helps to improve the bounding
box detection and mask prediction. This module improves
the mask AP on the test set from 45.53 to 45.98. Further-
more, integrating our easy-to-hard disassembling strategy in
BCNet effectively improves the mask prediction of the low-
confidential proposals, increasing the mask AP to 46.12.
Last, including both the easy-to-hard disassembling strat-
egy and global structure guidance module in BCNet pro-
duces more accurate results. Compared with the baseline
(i.e., BCNet), our ETHSeg achieves a significant improve-
ment of 1.32 AP for instance segmentation.

6. Conclusions
We have introduced a novel problem of instance-level

waste segmentation in X-ray images, which enables accu-
rate waste inspection without opening the waste bags. Then
we created an X-ray image dataset with high-quality an-
notations as a benchmark for learning instance-level waste

segmentation. As existing methods for natural image in-
stance segmentation cannot well handle the penetration ef-
fect and severe occlusions existing in the X-ray image, we
proposed a new method, called ETHSeg, that explicitly
considers these image characteristics to achieve better per-
formance. Experimental results on our benchmark dataset
clearly demonstrate the effectiveness of our method.

Despite promising results have been shown for X-ray
waste inspection, our work has the following limitations.
First, we rely on the penetration effect of the X-ray for
waste inspection. However, objects with low-density ma-
terials appear to be low-contrast or transparent in the X-ray
image, making it difficult to inspect those objects. Second,
our method still has difficulty in segmenting small objects.
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