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Abstract

Transformer-based methods have achieved great success
in the field of human-object interaction (HOI) detection.
However, these models tend to adopt semantically ambigu-
ous queries, which lowers the transformer’s representation
learning power. Moreover, there are a very limited num-
ber of labeled human-object pairs for most images in ex-
isting datasets, which constrains the transformer’s set pre-
diction power. To handle the first problem, we propose an
efficient knowledge distillation model, named Distillation
using Oracle Queries (DOQ), which shares parameters be-
tween teacher and student networks. The teacher network
adopts oracle queries that are semantically clear and gener-
ates high-quality decoder embeddings. By mimicking both
the attention maps and decoder embeddings of the teacher
network, the representation learning power of the student
network is significantly promoted. To address the sec-
ond problem, we introduce an efficient data augmentation
method, named Context-Consistent Stitching (CCS), which
generates complicated images online. Each new image is
obtained by stitching labeled human-object pairs cropped
from multiple training images. By selecting source images
with similar context, the new synthesized image is made
visually realistic. Our methods significantly promote both
the accuracy and training efficiency of transformer-based
HOI detection models. Experimental results show that our
proposed approach consistently outperforms state-of-the-
art methods on three benchmarks: HICO-DET, HOI-A, and
V-COCO. Code is available at https://github.com/
SherlockHolmes221/DOQ.

1. Introduction
Human-Object Interaction (HOI) detection aims to iden-

tify a set of meaningful 〈human, interaction, object〉 triplets

in an image. HOI is fundamental for scene and action un-

derstanding, with applications including action prediction

[1,2], scene graph generation [3,4], and visual question an-

*Corresponding author.

Figure 1. The mAP and convergence curves for QPIC [23] and

our model on HICO-DET [48]. Our model achieves better mAP

accuracy with a considerably faster convergence rate.

swering [5, 6]. It is also a very challenging task. One rea-

son for this degree of difficulty is that the task in question

is composite: for each triplet, it is necessary to determine

the location of the human and object instances involved, the

object category, and the interactions between the human-

object pair. Another major reason lies in HOI’s reliance on

reasoning, which indicates that visual context is important

in determining the interaction categories [23].

In view of its strong ability to leverage contextual cues,

recent methods have applied transformer to HOI detection.

For example, QPIC [23] and HOI-Trans [25] defined a set

of learnable HOI queries, each of which denotes a possible

human-object pair in an image. AS-Net [24] and HOTR

[26] defined a set of learnable object and interaction queries

to infer object and interaction categories, respectively. Their

common ground lies in their utilization of a cross-attention

mechanism to mine image-wide contextual information in

order to improve HOI detection.

However, the representation learning ability and set pre-

diction power of existing transformer-based HOI detection

methods may be underexplored. The first problem lies
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in the semantic ambiguity of HOI queries. Each query

contains only the rough location of one possible human-

object pair [11,25]; thus, the cross-attention operation in the

transformer decoder cannot produce precise attention maps,

which are essential in acquiring cues from discriminative re-

gions. The representation learning ability is therefore con-

strained and the convergence rate accordingly slows. The

second problem is caused by the limited number of la-

beled human-object pairs in most training images of exist-

ing datasets. Therefore, the transformer may exhibit per-

formance degradation for complicated images with many

human-object pairs.

Herein, we propose an efficient knowledge distillation

model, named Distillation using Oracle Queries (DOQ), to

overcome the first problem. This model adopts one existing

transformer-based model, e.g., QPIC [23], as the student

network. It shares transformer parameters between teacher

and student networks. The differences between the two net-

works lie in their HOI queries and initial decoder embed-

dings. For the student network, the HOI queries and ini-

tial decoder embeddings are defined as a set of learnable

embeddings and zero vectors, respectively. For the teacher

network, we construct a set of oracle HOI queries using the

ground-truth positions of labeled human-object pairs. We

further generate the initial decoder embedding according to

the word embedding of the ground-truth object category in-

volved in each labeled human-object pair. In this way, the

teacher network acquires both precise semantic and posi-

tion information for each labeled human-object pair, which

enables it to produce high-quality representations and pre-

cise attention maps. The representation learning power of

the student network is thus significantly promoted due to its

mimicking both the attention maps and representations of

the teacher network. In terms of inference stage, moreover,

the teacher network is abandoned and therefore introduces

no additional computational cost.

To address the second problem, we introduce an effi-

cient data augmentation method, named Context-Consistent

Stitching (CCS), which creates images online that contain

more human-object pairs. In more detail, each new image

is obtained by stitching together labeled human-object pairs

that are cropped from multiple training images with similar

visual context. There are two key advantages of this strat-

egy. First, each synthesized image contains more human-

object pairs and does not require manual labeling. Second,

by cropping patches from images with similar scenes, the

newly created new image is made visually realistic, which is

proven to be essential in our experiments. Finally, through

the inclusion of the synthesized images, the set prediction

power of the transformer is sufficiently optimized.

To the best of our knowledge, our proposed method is

the first approach to explicitly handle the semantic ambigu-

ity problem of queries for transformers in HOI detection.

We creatively introduce knowledge distillation to address

this problem. We demonstrate the effectiveness of our pro-

posed approaches through comprehensive experiments on

three HOI detection benchmarks: HICO-DET [48], HOI-

A [29], and V-COCO [49], and find that our method con-

sistently achieves state-of-the-art performance. Moreover,

benefiting from the knowledge distillation based on oracle

queries, our approach achieves a significantly faster conver-

gence rate than existing methods, as illustrated in Figure 1.

2. Related Work
Human-Object Interaction Detection. Existing ap-

proaches to HOI detection can be grouped into two

paradigms, i.e., two-stage strategies and one-stage strate-

gies. Two-stage methods [21, 28, 34, 41, 43, 44, 46] perform

object detection before interaction prediction. Most two-

stage approaches adopt a generic object detector and fo-

cus on improving interaction prediction. Various types of

features can be utilized for interaction prediction, includ-

ing visual features [31, 45], spatial features [32, 33], hu-

man poses [35, 42], and language features [35, 39]. How-

ever, due to their sequential structure and redundant human-

object instance combinations, two-stage methods frequently

encounter the problem of low efficiency.

One-stage HOI detection methods usually perform ob-

ject detection and interaction prediction in parallel. In the

absence of explicit object locations, these methods rely

on predefined interaction areas for interaction prediction.

Depending on the definition of interaction area employed,

existing approaches can be classified into (i) point-based

methods, (ii) union region-based methods, and (iii) spatial

attention-based methods. Point-based methods adopt a sin-

gle interaction point [29, 30] or a point set [22] as the in-

teraction area, while union region-based methods [40] re-

gard the union box of a human-object pair as the interaction

area. Recently, some approaches have predicted a spatial

attention map for each human-object pair as the interac-

tion area, which is achieved by employing cross-attention

operations in transformer decoder layers. Spatial atten-

tion maps can more flexibly leverage image-wide contextual

cues. Transformer-based approaches can be further subdi-

vided into three categories: (i) methods that adopt a set of

learnable HOI queries, each of which represents a possible

human-object pair [23, 25]; (ii) methods that employ two

sets of learnable queries for object detection and interaction

prediction, respectively [24, 26]; (iii) methods that define

three sets of learnable queries, representing the subject, in-

teraction, and object, respectively [19].

We here address two underexplored issues in existing

transformer-based HOI detection methods, namely the con-

strained representation learning ability and constrained set

prediction power. By resolving these two problems, both

the accuracy and training efficiency of existing transformer-

based approaches are significantly promoted.
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Figure 2. Overview of the proposed approach in the training stage. QPIC [23] is adopted as the student network, which comprises of a

CNN backbone, a transformer encoder, a transformer decoder, and interaction detection heads. For the teacher network, we construct a

set of oracle HOI queries Qt according to the ground-truth position of the labeled human-object (HO) pairs. We also generate the initial

decoder embedding Dt0 according to the word embedding of the ground-truth object category involved in each labeled HO pair. These

two networks share parameters. Both the attention maps and the representations of the student network mimic those of the teacher network.

In the inference stage, the teacher is abandoned, meaning that no additional computational cost is introduced. Best viewed in color.

Transformer-based Object Detection. The Detection

Transformer (DETR) [11] successfully applied transformer

to object detection. Many methods that boost the perfor-

mance of DETR have subsequently emerged: these can be

classified into (i) approaches that accelerate training conver-

gence and (ii) approaches that reduce computational com-

plexity. Training convergence can be improved by apply-

ing spatial priors to the attention maps of each transformer

decoder layer [12, 14]. These priors are usually obtained

according to the object location estimated by the former de-

coder layer. The result can be a map of the same size as

the attention maps [12] or a Region of Interest (ROI) [14].

Moreover, Meng et al. [13] disentangled the content and

spatial information in queries to generate attention maps,

thereby reducing the training difficulty. To handle the prob-

lem of high computational complexity, Zhu et al. [10] pro-

posed the deformable attention module, which attends to a

small set of sampling locations designated as prominent key

elements rather than all pixels in the feature map. Jiang et

al. [15] obtained high-resolution attention maps by interpo-

lating available low-resolution ones, thereby considerably

reducing the amount of redundant computations required.

Rather than using estimated object locations, we here opt

to employ the spatial attention maps produced by oracle

queries as spatial priors in the training stage. Our spatial

prior is imposed on the entire attention map as supervision,

including both objects and context. In the experimentation

section, we demonstrate that our proposed approach is more

suitable for HOI detection.

3. Methods
Our methods can be applied to many existing

transformer-based HOI detection models [23–26, 37]. In

this section, we take the representative work QPIC [23] as

an example (see illustration in Figure 2). We first revisit

its architecture in Section 3.1, then introduce the proposed

knowledge distillation model in Section 3.2. Finally, the

data augmentation method is described in Section 3.3.

3.1. QPIC Revisited
QPIC builds upon DETR [11] and makes parallel predic-

tions for HOI triplets. It consists of a Convolutional Neural

Network (CNN) backbone, a transformer encoder, a trans-

former decoder, and interaction detection heads. An im-

age is first sent into a CNN backbone to yield visual fea-

ture maps F ∈ R
C×H×W ; here, C, H , and W denote

the number of channels, the height and the width of F, re-

spectively. F is then augmented with positional encodings

P ∈ R
C×H×W and fed into the transformer encoder, which

produces feature maps E ∈ R
C×H×W . The transformer

decoder performs cross-attention between a set of learnable

HOI queries Q = {qi|qi ∈ R
d}Nq

i=1 and E, where Nq is the

number of HOI queries and d denotes their dimension. We

represent the operations of the decoder as follows:

D = fdec(Q,D0,E,P), (1)
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where fdec(·, ·, ·, ) is a set of stacked transformer decoder

layers. D0 = {di0 |di0 ∈ R
d}Nq

i=1 denotes the initial de-

coder embeddings, while D = {di|di ∈ R
d}Nq

i=1 denotes

the embeddings output by the last decoder layer.

Finally, D is fed into interaction detection heads based

on feed-forward networks (FFNs). These four heads are

responsible for human bounding box localization, object

bounding box localization, object classification, and inter-

action category prediction, respectively.

3.2. Distillation Using Oracle Queries
The quality of D is vital for reliable HOI detection.

However, as revealed in Eq. (1), its discriminative power

is affected by Q and D0. Specifically, Q is the same for all

images, while D0 is a set of zero vectors, meaning that they

are both semantically ambiguous. This problem constrains

the representation power of D and slows the convergence

of DETR-based models.

To address this issue, we design an efficient knowledge

distillation model named Distillation using Oracle Queries

(DOQ), the overall structure of which is illustrated in Fig-

ure 2. There are two networks involved, namely one teacher

network and one student network. The parameters of the

CNN backbone, the transformer encoder and decoder, and

the interaction detection heads are shared between the two

networks. The main differences between them lie in their

HOI queries and the initial decoder embeddings. In more

detail, the teacher network adopts oracle queries and seman-

tically clear initial decoder embeddings, which enable it to

generate precise attention maps and thus discriminative de-

coder embeddings. We then mimic both the attention maps

and decoder embeddings of the teacher network to improve

the student’s representation learning power. Moreover, as

the teacher network only exists during training, there is no

additional computational cost in the inference stage.

Oracle HOI Queries. Recent studies [11, 13, 25, 26] show

that the HOI or object queries reflect the position informa-

tion of one possible target. We therefore construct each ora-

cle HOI query according to the ground-truth position of one

labeled human-object (HO) pair. With each oracle query,

the cross-attention operations in the teacher network accu-

rately attend to one specific HO pair. More specifically, we

obtain the set of oracle HOI queries Qt for one training im-

age as follows:

Qt = tanh(Fq(Ht)), (2)

where Ht = {hti |hti ∈ R
12}Ntq

i=1 and

hti = [xsi , ysi , wsi , hsi , xoi , yoi , woi , hoi ,

xsi− xoi , ysi− yoi , wsihsi , woihoi ]
T .

(3)

Ntq is the number of labeled HO pairs for the image and Ht

denotes a set of spatial features. The first eight elements in

hti are the center coordinates, width, and height of the hu-

man and object bounding boxes of the i-th pair, respectively.

[xsi − xoi , ysi − yoi ] represents the relative position [42]

between the two boxes, while the last two elements respec-

tively represent the areas of the two boxes. Fq is a two-layer

FFN with ReLU that projects Ht to a d-dimensional space.

We employ a tanh function for normalization, ensuring the

amplitudes of elements in Qt and P are consistent.

Initial Decoder Embeddings. The oracle HOI queries

contain only box-level position information, which is still

coarse for our purposes. In the following, we further en-

hance the power of the teacher network with improved ini-

tial decoder embeddings. More specifically, we generate

initial decoder embeddings Dt0 = {dti0
|dti0

∈ R
d}Ntq

i=1

with reference to the word embeddings of the ground-truth

object category involved in labeled HO pairs. Formally,

Dt0 = Fw(Wt), (4)

where Wt = {wti |wti ∈ R
512}Ntq

i=1 , and wti denotes the

i-th word embedding. Fw denotes another two-layer FFN

with ReLU.

Finally, the operations of the transformer decoder in the

teacher network can be summarized as follows:

Dt = fdec(Qt,Dt0 ,E,P), (5)

where Dt = {dti |dti ∈ R
d}Ntq

i=1 denotes the output de-

coder embeddings of the teacher network. With the help of

semantically clear HOI queries and initial decoder embed-

dings, the teacher network can successfully produce precise

attention maps and therefore output high quality decoder

embeddings.

Distillation Loss. We align both the output decoder em-

beddings and the attention maps between the two networks.

In more detail, we first establish correspondences between

embeddings in D and those in Dt. To achieve this goal, we

conduct bipartite matching [61] between the predictions of

the student network and the ground-truth for each training

image according to the strategy outlined in [23]. We then

re-arrange the embeddings in D according to the matched

ground-truth HO pairs, and denote the set of matched em-

beddings in D as Ds. For the teacher network, as both the

HOI queries and the initial decoder embeddings are seman-

tically clear, each embedding in Dt corresponds strictly to

a ground-truth HO pair. Finally, we impose the following

distillation loss:

Ldis = α1Lcos + α2LKL, (6)

Lcos =
1

Ntq

Ntq∑

i=1

(1− dti
T dsi

‖dti‖2 ‖dsi‖2
), (7)

LKL =
2

Ntq l

l∑

j=l/2+1

Ntq∑

i=1

(Aj
ti(ln(A

j
ti)− ln(Aj

si))), (8)

19561



（ ）（ ）

Figure 3. Statistics on the number of labeled HO pairs in existing

datasets without CCS (blue color) and with CCS (orange color).

(a) HICO-DET [48]. (b) HOI-A [29].

where α1 and α2 represent weights, while l is the number

of decoder layers, which is set as 6 following [23]. More-

over, dti and dsi are the i-th embeddings in Dt and Ds,

respectively, while Aj
ti and Aj

si denote the averaged atten-

tion maps across the multi-heads in the j-th decoder layer

for dti and dsi , respectively. We adopt the KL-divergence

loss to align Aj
ti and Aj

si , thereby encouraging the student

network to produce attention maps as precise as those of the

teacher.

Overall Loss Function. Following [23], we adopt the same

loss functions for object detection and interaction predic-

tion. The overall loss function in the training phase is rep-

resented as follows:

L = Lt + Ls + Ldis, (9)

where

Lt = λbLtb + λuLtu + λcLtc + λaLta , (10)

Ls = λbLsb + λuLsu + λcLsc + λaLsa . (11)

Lt and Ls denote the loss functions for the teacher and

student networks, respectively. Lkb
, Lku

, Lkc
, and Lka

(k ∈ {t, s}) denote the L1 loss, GIOU loss [59] for bound-

ing box regression, cross-entropy loss for object classifica-

tion, and focal loss [60] for interaction prediction, respec-

tively; these are realized in the same way as in [23]. More-

over, λb, λu, λc and λa are set as 2.5, 1, 1, 1, which are the

same values as those in [23].

Discussion. Our model adopts a markedly different ap-

proach from most existing knowledge distillation methods

[7–9] that train teacher and student models separately. In

these works, the teacher model is usually larger in size and

therefore achieves better performance, facilitating knowl-

edge distillation to the student model. In comparison, the

teacher and student networks in our approach share model

parameters; our teacher network achieves higher perfor-

mance by adopting oracle queries. Moreover, the teacher

and student networks in DOQ are trained jointly, which

simplifies the training pipeline and thereby significantly re-

duces training costs.

3.3. Context-Consistent Stitching
We observe that the average number of labeled HO pairs

in one image presents a long-tail distribution (shown in Fig-

ure 3); that is, most images contain only a small number

Figure 4. Samples of images synthesized using CCS.

of labeled HO pairs. There are two main reasons for this.

First, the number of HO pairs in most images is indeed

small. Second, some HO pairs in complex visual scenes

are ignored due to labeling-associated difficulties; this prob-

lem constrains the transformer’s set prediction power due

to insufficient training with images that include many HO

pairs. In order to address this problem, we propose an effi-

cient data augmentation method, named Context-Consistent

Stitching (CCS), which automatically generates new syn-

thesized images with more labeled HO pairs.

Specifically, in the training phase, we replace each image

I with a synthesized one with probability γ. When an image

is chosen for replacement, we first randomly sample three

images from its K nearest neighbors in the entire training

set. The K neighbors are determined offline according to

distances between scene features, which are extracted using

an off-the-shelf scene classification model released in [55].

We then crop the union region of one labeled HO pair that

is randomly selected from each of the four images, i.e., I
and its three neighbors. If one selected HO pair is found to

overlap with other pairs in the same image, we simply ex-

tend the union region to include all pairs for which overlap

exists. Finally, we stitch these four regions tightly together

and resize the stitched image to have a size similar to that of

I. We also automatically generate HOI annotations accord-

ing to the specific locations of each HO pair in new image.

The strategy described above selects images for stitching

that are consistent in terms of context, which ensures that

the synthesized images are visually realistic. In the experi-

mentation section, we demonstrate that maintaining context

consistency is vital for HOI detection. Samples of synthe-

sized images are presented in Figure 4. Moreover, statistics

on the number of labeled HO pairs with CCS for existing

databases are shown in Figure 3.

It is worth noting that CCS differs from existing copy-

and-paste techniques [56–58] used for instance segmenta-

tion or object detection, which copy all pixels belonging

to selected objects from one image and then paste them

into another image. There are two main differences. First,

these methods do not consider context consistency across

the complete image [56–58]. Second, they are not designed

for transformer and do not necessarily change the number

of objects in the training images. By contrast, the goal of
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CCS is to synthesize images with more labeled HO pairs,

by which the set prediction power of transformer-based HOI

methods can be improved.

4. Experiments
4.1. Datasets and Metrics
HICO-DET. HICO-DET [48] is a large-scale HOI dataset.

It consists of 47,776 images, 38,118 of which are used for

training while 9,658 are used for testing. The dataset con-

tains 80 object categories, 117 interaction categories, and

600 HOI categories. Among the 600 HOI categories, there

are 138 HOI categories with less than 10 training sam-

ples, which are denoted as “rare” categories. There are two

evaluation modes: the Default (DT) mode and the Known-

Object (KO) mode. HICO-DET uses mean Average Preci-

sion (mAP) as its evaluation metric.

HOI-A. The Human-Object Interaction for Application

(HOI-A) dataset [29] contains 11 object categories and 10

interaction categories. It comprises of 38,629 images, with

29,842 used for training and 8,787 for testing. The evalua-

tion metrics are the same as for HICO-DET.

V-COCO. The V-COCO dataset [49] is built upon the MS-

COCO database [50]. It consists of 10,346 images (5,400

for training and 4,946 for testing), covering 80 object cate-

gories and 26 interaction categories. We use the mean aver-

age precision of Scenario 1 (mAProle) [49] for evaluation.

4.2. Implementation Details
We adopt ResNet-50 and ResNet-101 [51] as our back-

bone model, respectively. We use the AdamW [52] opti-

mizer and conduct experiments with a batch size of 16 on 8

GPUs. The initial learning rate is set to 1e-4 and then mul-

tiplied by 0.1 after 60 epochs; the total number of epochs

is 80. Nq and d are set as 100 and 256, respectively. We

initialize the network with the parameters of DETR [11]

trained on MS-COCO database [50]. The word embeddings

are extracted by the CLIP model [54] and their dimension

is 512. As for the hyper-parameters, α1 and α2 in DOQ are

set as 1 and 10, respectively; moreover, K and γ in CCS are

empirically set as 15 and 0.25, respectively.

4.3. Ablation Study
In the following, we perform ablation studies on both the

HICO-DET and HOI-A datasets to demonstrate the effec-

tiveness of DOQ and CCS. Our baseline is QPIC [23]. All

experiments are conducted using ResNet-50 as backbone.

Effectiveness of DOQ. As illustrated in Table 1, we first in-

troduce the teacher network, simply sharing transformer pa-

rameters between the teacher and student networks without

applying the distillation loss. This strategy is referred to as

Multi-Task Learning (MTL). It is found that MTL promotes

HOI detection performance by 0.56% and 0.76% mAP on

HICO-DET and HOI-A, respectively. This is because pa-

rameter sharing implicitly aligns the feature space of the

Table 1. Ablation study on each component of our methods.

Components mAP

Methods MTL Lcos LKL CCS HICO-DET (DT) HOI-A

Baseline - - - - 29.07 74.10

Incremental

� - - - 29.63 74.86

� - � - 30.13 75.25

� � - - 30.28 75.41

� � � - 30.41 75.57

- - - � 30.76 75.45

Drop-one-out

- � � � 30.82 76.23

� - � � 31.22 76.57

� � - � 31.31 76.73

� � � - 30.41 75.57

Ours � � � � 31.55 76.87

Table 2. Effectiveness of DOQ and CCS on HOTR [26] and CDN

[37] in the DT Mode of HICO-DET.

Model DOQ CCS Full Rare Non-rare

HOTR - - 23.46 16.21 25.62

HOTR � - 25.17 24.15 25.47

HOTR � � 25.97 26.09 25.93
CDN-S - - 31.44 27.39 32.64

CDN-S � - 32.26 27.72 33.62

CDN-S � � 33.28 29.19 34.50

two networks. When Lcos is introduced, the performance

is further improved by 0.65% and 0.55% mAP on HICO-

DET and HOI-A, respectively. After LKL is adopted, the

performance is further improved by 0.13% and 0.16% mAP

on HICO-DET and HOI-A, respectively. The above experi-

ments justify the effectiveness of DOQ.

Effectiveness of CCS. To facilitate clean comparison, we

apply CCS to our baseline. We can observe that the perfor-

mance is promoted by 1.69% and 1.35% mAP on HICO-

DET and HOI-A, respectively. We then adopt CCS and

DOQ together. It is shown that the performance exceeds the

model using DOQ alone by 1.14% and 1.30% on HICO-

DET and HOI-A, respectively. We further evaluate the op-

timal value of γ in CCS; experimental results are provided

in the supplementary material.

Drop-one-out Study. We next perform a drop-one-out

study in which each proposed component is removed in-

dividually. As illustrated by experimental results in Table

1, each proposed component is helpful in promoting HOI

detection performance.

Application to Other Transformer-based Methods.
DOQ and CCS are plug-and-play and can be readily applied

to other transformer-based HOI detection methods (e.g.,

HOTR [26] and CDN [37]). In the following, we conduct

experiments on HICO-DET database to demonstrate the ef-

fectiveness of DOQ and CCS on both HOTR and CDN. The

detailed network architectures with DOQ are provided in

the supplementary material. In the training phase, all set-

tings are kept the same as in their original papers to ensure

fair comparison. Results are presented in Table 2. DOQ and

CCS are found to improve performance by 1.84% (2.51%),

1.80% (9.88%) and 1.86% (0.31%) mAP in DT mode for

the full, rare and non-rare HOI categories respectively on

CDN (HOTR). These results show that DOQ and CCS are

both portable and flexible.
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Table 3. Comparisons with variants of DOQ and CCS in DT Mode

of HICO-DET.
(a) Oracle HOI Queries

Methods Full Rare Non-Rare

absolute position 30.12 24.16 31.90

Ours 30.41 25.10 32.00

(b) Initial Decoder Embeddings
Methods Full Rare Non-Rare

zero vectors 29.70 25.05 31.08

verb-class vectors 30.10 24.23 31.85

object embeddings (Word2Vec) 30.28 23.79 32.22
object embeddings (CLIP) 30.41 25.10 32.00

(c) Context-Consistent Stitching
Methods Full Rare Non-Rare

w/o context consistency 29.93 22.66 32.10

w/o stitching diversity 29.97 22.98 32.05

w/o increased HO pairs 29.48 22.10 31.67

Ours 30.76 24.60 32.60

4.4. Comparisons with Variants of DOQ and CCS
In this subsection, we compare the performance of DOQ

and CCS with some possible variants. All experiments are

conducted in the DT mode of HICO-DET. The results are

summarized in Table 3.

Oracle HOI Queries. We generate oracle HOI queries ac-

cording to hti in Eq. (3). hti is a 12-dimensional vector

that includes both the absolute and relative position of the

two bounding boxes for a labeled HO pair. Here, we only

reserve the first eight elements in hti , which means we em-

ploy only the absolute position of the two boxes to construct

oracle queries. The results listed in Table 3a show that the

performance of AP is slightly lower, which informs us that

the relative position and the areas of the two bounding boxes

are also important for oracle query construction.

Initial Decoder Embeddings. In DOQ, we generate Dt0

according to the word embedding of the ground-truth ob-

ject category involved in each labeled HO pair utilizing

CLIP [54]. As illustrated in Table 3b, compared to the use

of zero vectors, our design of Dt0 boosts the performance

by 0.71% mAP. We also attempt to generate Dt0 accord-

ing to the label vector of the verb categories involved in

each labeled HO pair. The experimental results in Table 3b

show that the word embeddings of objects are more effec-

tive at producing Dt0 . It is further shown that word embed-

dings extracted using CLIP [54] slightly outperform those

obtained using the Word2Vec [53]; this may be because the

former was trained to be consistent with the visual features.

Context-Consistent Stitching. We here investigate the ef-

fectiveness of three elements of CCS implementation: (a)

context-consistent strategy, (b) stitching together regions

from different images, and (c) increasing the number of la-

beled HO pairs. Results are shown in Table 3c. For (a), we

randomly stitch union regions from different images with-

out considering context consistency. It is shown that the

mAP drops by 0.83%. This may be because HOI detection

depends more on visual context; therefore, the synthesized

images should be visually realistic. For (b), we simply stitch

Table 4. Performance comparisons on HICO-DET.

Default Mode

Method Detector Backbone full rare non-rare

T
w

o
-S

ta
g
e

SG2HOI [18] COCO ResNet-50 20.93 18.24 21.78

DJ-RN [33] COCO ResNet-50 21.34 18.53 22.18

SCG [20] COCO ResNet-50-FPN 21.85 18.11 22.97

ConsNet [39] COCO ResNet-50-FPN 22.15 17.12 23.65

PastaNet [35] COCO ResNet-50 22.65 21.17 23.09

IDN [36] COCO ResNet-50 23.36 22.47 23.63

DRG [47] HICO-DET ResNet-50-FPN 24.53 19.47 26.04

IDN [36] HICO-DET ResNet-50 24.58 20.33 25.86

O
n
e-

S
ta

g
e

IP-Net [30] COCO Hourglass-104 19.56 12.79 21.58

HOTR [26] COCO ResNet-50 23.46 16.21 25.62

ASNet [24] COCO ResNet-50 24.40 22.39 25.01

GGNet [22] HICO-DET Hourglass-104 23.47 16.48 25.60

PST [19] HICO-DET ResNet-50 23.93 14.98 26.60

HOI-Trans [25] HICO-DET ResNet-101 26.61 19.15 28.84

ASNet [24] HICO-DET ResNet-50 28.87 24.25 30.25

QPIC [23] HICO-DET ResNet-50 29.07 21.85 31.23

QPIC [23] HICO-DET ResNet-101 29.90 23.92 31.69

CND-S [37] HICO-DET ResNet-50 31.44 27.39 32.64

Ours (HOTR) COCO ResNet-50 25.97 26.09 25.93
Ours (QPIC) HICO-DET ResNet-50 31.55 26.75 32.99
Ours (QPIC) HICO-DET ResNet-101 31.80 25.95 33.55

Ours (CDN-S) HICO-DET ResNet-50 33.28 29.19 34.50

Table 5. Performance comparisons on HOI-A.

Method Backbone mAP
T

w
o
-S

ta
g
e iCAN [16] ResNet-50 44.23

TIN [17] ResNet-50 48.64

GMVM [62] ResNet-50 60.26

C-HOI [31] ResNet-50 66.04

O
n
e-

S
ta

g
e PPDM [29] Hourglass-104 71.23

AS-Net [24] ResNet-50 72.19

QPIC [23] ResNet-50 74.10

Ours (QPIC) ResNet-50 76.87

a selected union region from one image for four times. The

mAP subsequently drops by 0.79%, which shows that diver-

sity is also helpful in boosting performance. For (c), we try

to keep the number of labeled HO pairs in one synthesized

image equal to that of the original one. In this case, the

mAP drops by 1.28%, showing that increasing the number

of labeled HO pairs plays an important role in improving

transformer’s set prediction power.

4.5. Comparisons with State-of-the-Art Methods
Performance Comparisons. As shown in Table 4, our ap-

proach outperforms all state-of-the-art two-stage and one-

stage methods on HICO-DET. More specifically, it outper-

forms the QPIC baseline by 2.48%, 4.90% and 1.76% mAP

in DT mode for the full, rare and non-rare HOI categories

respectively with ResNet-50 as backbone. Further, we ap-

ply our approach on HOTR [26] and CDN [37]. The results

further show that our method with the ResNet-50 backbone

achieves a 1.84% (2.51%) mAP performance gain in DT

mode for the full HOI categories over the CDN (HOTR)

baseline. The complete results for both DT and KO mode

are presented in the supplementary material.

Furthermore, the results on HOI-A are presented in Table

5. Our method can be seen to outperform all state-of-the-art

methods by significant margins. In particular, our method
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Table 6. Performance comparisons on V-COCO.

Method Backbone mAProle

T
w

o
-S

ta
g

e VSGNet [32] ResNet-152 51.8

FCL [27] ResNet-50-FPN 52.3

SCG [20] ResNet-50-FPN 53.0

FCMNet [45] ResNet-50 53.1

SG2HOI [18] ResNet-50 53.3

O
n

e-
S

ta
g

e

HOI-Trans [25] ResNet-101 52.9

ASNet [24] ResNet-50 53.9

GGNet [22] Hourglass-104 54.7

HOTR [26] ResNet-50 55.2

DIRV [38] EfficientDet-d3 56.1

QPIC [23] ResNet-50 58.8

CDN-S [37] ResNet-50 61.7

Ours (QPIC) ResNet-50 63.5

outperforms QPIC by a large margin of 2.77% in terms of

mAP when the same backbone is used.

We present the comparison results on V-COCO in Table

6. It is found that our approach outperforms all other meth-

ods, achieving 63.5% in terms of mAProle on Scenario 1.

Training Efficiency. In Figure 1, it is shown that our

method significantly accelerates the training convergence

of QPIC. More specifically, our approach significantly re-

duces the number of training epochs required on the HICO-

DET dataset. For example, when the number reduces to

one third of that for QPIC, our approach still achieves bet-

ter performance. We also apply our method to HOTR [26]

and CDN [37]. Improvements in both training efficiency

and detection accuracy on both models are achieved (see

supplementary material for further details).

Table 7. Comparisons in different spatial priors on QPIC. Experi-

ments are conducted in DT mode of HICO-DET.

Spatial Priors Full Rare Non-rare Epoch

- 29.07 21.85 31.23 120

ROI 29.24 22.18 31.35 100

Gaussian map 29.58 24.11 31.21 100

Ours 30.41 25.10 32.00 80

There are several works [12, 14] that focus on accelerat-

ing the training convergence of the DETR model for object

detection. One popular strategy is to impose spatial pri-

ors regarding object locations on the attention maps of each

decoder layer; these priors can be a Gaussian-like distri-

bution map [12] or a Region of Interest (ROI) [14]. Here,

we apply both of these approaches to QPIC. Specifically, in

the first model, we generate a 2D Gaussian-like weight map

for each HOI query according to the estimated location of

the human-object union region by the former decoder layer.

The weight map is added to the attention maps in cross-

attention in an element-wise manner. In the second model,

we perform cross-attention only for pixels within the es-

timated human-object union regions for each HOI query.

As shown in Table 7, DOQ achieves the best performance,

which indicates that this method is more suitable for HOI

detection than the other two methods. This may be because

HOI detection is more strongly dependent on visual con-

text, while the other two methods may suppress visual con-

text through strong priors regarding object locations. By

wash horse pull kitefeed giraffe eat_at table

Figure 5. Visualization of HOI detection results and attention

maps in decoder layers. The two rows represent results for QPIC

and our method, respectively.

contrast, DOQ detects important visual context using ora-

cle queries. By prompting the student model to attend to

the same visual context, both training convergence and de-

tection performance are improved.

4.6. Qualitative Comparisons
We further visualize the attention maps produced by

cross-attention in the transformer decoder layers of both

QPIC [23] (the first row) and our model (the second row)

in Figure 5. Here, images are randomly selected form the

test set of HICO-DET database. We can observe that our

model produces more reasonable attention maps, which can

highlight important pixels from across the whole image for

interaction category prediction. More qualitative compar-

isons results are provided in the supplementary material.

5. Conclusion and Limitations
In this paper, we aim to address the problems of con-

strained representation learning ability and constrained

set prediction power for transformer-based HOI detection

methods. First, we propose a knowledge distillation model

that utilizes oracle HOI queries to provide additional super-

vision. Second, we introduce an efficient data augmentation

method that synthesizes new images with more labeled HO

pairs. We conduct a series of experiments on three bench-

marks to demonstrate the superiority of our methods. Our

work also has certain limitations. For example, we have

not yet addressed the problem of the large memory costs

incurred due to the self- and cross-attention operations in

transformer. In the future, we will explore ways to build a

less memory-intensive approach to transformer-based HOI

detection.

Broader Impacts. HOI detection predicts the position of

human and objects in an image and infers their interactions,

which means that it is useful in various real-world appli-

cations, e.g., health care system and autonomous driving.

Moreover, to the best of our knowledge, our work does not

have obvious negative social impacts.
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