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Abstract

Federated learning is an emerging research paradigm
enabling collaborative training of machine learning models
among different organizations while keeping data private at
each institution. Despite recent progress, there remain fun-
damental challenges such as the lack of convergence and
the potential for catastrophic forgetting across real-world
heterogeneous devices. In this paper, we demonstrate that
self-attention-based architectures (e.g., Transformers) are
more robust to distribution shifts and hence improve feder-
ated learning over heterogeneous data. Concretely, we con-
duct the first rigorous empirical investigation of different
neural architectures across a range of federated algorithms,
real-world benchmarks, and heterogeneous data splits. Our
experiments show that simply replacing convolutional net-
works with Transformers can greatly reduce catastrophic
forgetting of previous devices, accelerate convergence, and
reach a better global model, especially when dealing with
heterogeneous data. We release our code and pretrained
models to encourage future exploration in robust architec-
tures as an alternative to current research efforts on the op-
timization front.

1. Introduction
Federated Learning (FL) is an emerging research

paradigm to train machine learning models on private da-
ta distributed over multiple heterogeneous devices [47]. FL
keeps data on each device private and aims to train a glob-
al model that is updated only via communicated parameters
instead of the data itself. Therefore, it provides an opportu-
nity for collaborative machine learning across multiple in-
stitutions without risking leakage of private data [25,36,54].
This has proved especially useful in domains such as health-
care [4, 7, 15, 40], learning from mobile devices [17, 38], s-
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Figure 1. Prediction test accuracy on highly heterogeneous da-
ta partitions (Split-3) of CIFAR-10 dataset versus model size1.
Vision Transformers (ViTs and Swin Transformers) significantly
outperform CNNs (ResNets and EfficientNets) on highly hetero-
geneous data partitions.

mart cities [25], and communication networks [49], where
preserving privacy is crucial. Despite the rich opportu-
nities afforded by FL, there remain fundamental research
problems to be tackled before FL can be readily applica-
ble to real-world data distributions. Most current methods
that aim to learn a single global model across non-IID de-
vices encounter challenges such as non-guaranteed conver-
gence and model weight divergence for parallel FL meth-
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ods [35,37,68], and severe catastrophic forgetting problems
for serial FL methods [7, 16, 57].

While most research efforts focus on improving the op-
timization process in FL, our paper aims to provide a new
perspective by rethinking the choice of architectures in fed-
erated models. We hypothesize that Transformer architec-
tures [12, 61] are especially suitable for heterogeneous da-
ta distributions due to their surprising robustness to distri-
bution shifts [3]. This property has led to the prevalence
of Transformers in self-supervised learning where hetero-
geneity is manifested via distribution shifts between unla-
beled pretraining data and labeled test data [11], as well as
in multimodal learning over fundamentally heterogeneous
input modalities such as image and text [24, 60]. To s-
tudy this hypothesis, we conduct the first large-scale em-
pirical benchmarking of several neural architectures across
a suite of federated algorithms, real-world benchmarks, and
heterogeneous data splits. To represent Transformer net-
works, we use a standard implementation of Vision Trans-
formers [12, 41] on image tasks spanning image classifica-
tion [31, 42] and medical image classification [27].

Our results suggest that VIT-FL (Federated Learning
with Vision Transformers) performs especially well in set-
tings with most heterogeneous device splits, with the gap
between VIT-FL and FL with ResNets [19] increasing sig-
nificantly as heterogeneity increases. To understand these
results, we find that the main source of improvement lies in
the increased robustness of Transformer models to hetero-
geneous data which reduces catastrophic forgetting of pre-
vious devices when trained on substantially different new
ones. Together, Transformers converge faster and reach
a better global model suitable for most devices. Through
comparisons to FL methods designed specifically to combat
heterogeneous data, we find that VIT-FL provides immedi-
ate improvements without using training heuristics, addi-
tional hyperparameter tuning, or additional training. More-
over, it is noteworthy that our VIT-FL is orthogonal to ex-
isting optimization based FL methods, and can be easily
applied to improve their performance. To this end, we con-
clude that Transformers should be regarded as a natural s-
tarting point for FL problems in future research.

2. Related Work
Federated Learning. Federated learning (FL) aims to train
machine learning models on private data across massive-
ly distributed devices [47]. To enable effective distribut-
ed training across heterogeneous devices, two categories of
methods have emerged: (1) parallel FL methods involve
training each local client in parallel either synchronous-
ly or asynchronously (such as the classic FedAVG [47]),
whereas (2) serial methods train each client in a serial and
cyclical way (such as Cyclic Weight Transfer (CWT) [7]

1Mean and standard deviation are calculated across three runs.

and Split learning [62]). A schematic description of Fe-
dAVG [47] and CWT [7] is illustrated in Figure 2. At its
core, FL presents a challenge of data heterogeneity in the
distributions of training data across clients, which causes
non-guaranteed convergence and model weight divergence
for parallel FL methods [21, 37, 66, 68], and severe catas-
trophic forgetting problem for serial FL methods [7,16,57].

Among recent developments to the classic FedAVG al-
gorithm [47] have included using server momentum (Fe-
dAVGM) to mitigate per-client distribution shift and imbal-
ance [22], globally sharing small subsets of data among all
users (FedAVG-Share) [68], using a proximal term to the
local objective (FedProx) to reduce potential weight diver-
gence [37], or using other optimization heuristics such as
collaborative replay [52], unsupervised contrastive learn-
ing [69], matching feature layers of user models [64, 65],
or model distillation [14] to handle heterogeneity.

Concurrently, several recent efforts aim to alleviate
catastrophic forgetting in continual and serial learning: con-
straining the updates on weights that are important to pre-
viously seen tasks or clients (elastic weight consolidation
(EWC) [30]), applying Deep Generative Replay to mimic
data from previous clients or tasks [52, 58], and applying
cyclically weighted objectives to mitigate performance loss
across label distribution skewness [2], among others. How-
ever, all of these approaches mainly focus on improving the
optimization algorithm without studying the potential in ar-
chitecture design to improve robustness to distribution shifts
in data. In our work, we show that simple choices in ar-
chitecture actually make a big difference and should be an
active area of study in parallel to the optimization methods
that have been the main focus of current work.
Transformers. The Transformer architecture was first pro-
posed for sequence-to-sequence machine translation [61]
and has subsequently established state-of-the-art perfor-
mance across many NLP tasks, especially when trained in
a self-supervised paradigm [11]. Recently, Transformers
have also been found to be broadly applicable to tasks in-
volving images and video. For instance, Parmar et al. [50]
applied self-attention to local neighborhoods of an image
while the Vision Transformer (ViT) [12] achieved state-
of-the-art on ImageNet classification by directly applying
Transformers with global self-attention to full-sized images.

Its intriguing performance boosts relative to classical ar-
chitectures for language (i.e., LSTMs [20]) and vision (i.e.,
CNNs [19, 34]) have inspired recent interest towards un-
derstanding the reasons behind their effectiveness. Among
several particularly relevant findings are that ViTs are high-
ly robust to severe occlusions, perturbations, domain shift-
s [3, 48], as well as synthetic and natural adversarial exam-
ples [44,51]. In addition, recent studies have suggested that
Transformers are also suitable for heterogeneous and mul-
timodal data [24,43,60]. Inspired by these findings, we hy-
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Figure 2. Simplified schematic for a typical serial FL method CWT [7] and a parallel FL method FedAVG [46] on non-IID data partitions
of CIFAR-10 [31] with label distribution skewness. Wt,i denotes the model weights during training at round t on client i (total K clients
are involved). On the right, we show feature embedding visualizations of ViT(S)-FedAVG and ResNet(50)-FedAVG using UMAP [45]. We
find that the features learned by ViT(S)-FedAVG are more clearly separated than those learned by ResNet(50)-FedAVG. Our experiments
(section 4.2) support the superiority of VIT-FL on heterogeneous data and we provide analysis explaining their effectiveness (section 4.3).

pothesize that ViTs will also be highly effective in adapting
to data heterogeneity in FL, and provide detailed empirical
analysis to test this hypothesis.

3. Transformers in Federated Learning
In this section, we present background on Transformer

architectures and federated learning methods.

3.1. Vision Architectures
CNN. For convolution-based architectures, we use the
ResNet [19] model family (ResNet-50, ResNet-152, and
ResNeXt-101 (32x8d)) and EfficientNet [59] model fami-
ly (EfficientNet-B1, EfficientNet-B5, and EfficientNet-B7),
which contains a sequence of convolution, ReLU, pooling,
and batch normalization layers. ResNet and EfficientNet
are among the most popular architectures for image classi-
fication and have been the standard architecture used in FL
on image data [1, 39].
Transformers. As a comparison, we employ Vision Trans-
formers (ViT(S), ViT(T), ViT(B)) [12] model family and
Swin Transformer model family (Swin(T), Swin(S), and
Swin(B)) [41], which do not use conventional convolution
layers. Instead, the image features are extracted with im-
age sequentialization and patch embedding strategies. See
Figure 1 for the number of parameters for each model.

3.2. Federated Learning Methods
We apply one of the most popular parallel methods (Fe-

dAVG [47]) and serial methods (CWT [7]) as training algo-
rithms (see schematic descriptions in Figure 2).
Federated Averaging. FedAVG combines local stochastic
gradient descent (SGD) on each client with iterative mod-
el averaging [47]. Specifically, a fraction of local clients
are randomly sampled in each communication round, and
the server sends the current global model to each of these

clients. Each selected client then performs E epochs of lo-
cal SGD on its local training data and sends the local gradi-
ents back to the central server for aggregation synchronous-
ly. The server then applies the averaged gradients to update
its global model, and the process repeats.
Cyclic Weight Transfer. In contrast to FedAVG where
each local client is trained in a synchronous and parallel
way, the local clients in CWT are trained in a serial and
cyclic manner. In each round of training, CWT trains a
global model on one local client with its local data for a
number of epochs E, and then transfers this global mod-
el to the next client for training, until all local clients have
been trained on once [7]. The training process then cycles
through the clients repeatedly until the model converges or
a predefined number of communication rounds is reached.

4. Experiments
Our experiments are designed to answer the following

research questions that are of importance to practical de-
ployment of FL methods, while also aiding our understand-
ing of (vision) Transformer architectures.

• Are Transformers able to learn a better global model in
FL settings as compared to CNNs which have been the
de-facto approach on FL tasks (section 4.2)?

• Are Transformers especially capable of handling hetero-
geneous data partitions (section 4.3.1)?

• Do Transformers reduce communication costs as com-
pared to CNNs (section 4.3.2)?

• Can Transformers be applied to further improve existing
optimization-based FL methods (section 4.4)?

• What are practical tips helpful for practitioners to deploy
Transformers in FL (section 4.5)?
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(a) CWT (b) FedAVG

Figure 3. Prediction accuracy (%) of both CWT and FedAVG with CNNs and Transformers as baseline networks on Retina dataset (first
row) and CIFAR-10 dataset (second row), respectively. Vision Transformers (both ViT and Swin) show consistently strong performance
especially in non-IID data partitions.

Experimental code is included https://github.com/
Liangqiong/ViT-FL-main .

4.1. Experimental Setup
Following [7,21], we evaluate FL on the Kaggle Diabetic

Retinopathy competition dataset (denoted as Retina) [27],
CIFAR-10 dataset [31] with simulated data partitions, and a
real-world CelebA dataset [42] in our study.

Retina and CIFAR-10: We binarize the labels in the
Retina dataset to Healthy (positive) and Diseased (nega-
tive), randomly selecting 6, 000 balanced images for train-
ing, 3, 000 images as the global validation dataset, and
3, 000 images as the global testing dataset following [7].
We use the original test set in CIFAR-10 as the global test
dataset, set aside 5, 000 images from the original training
dataset as the global validation dataset, and use the remain-
ing 45, 000 images as the training dataset. We simulate
three sets of data partitions: one IID-data partition, and two
non-IID data partitions with label distribution skew. Each
data partition in Retina and CIFAR-10 contains 4 and 5 sim-
ulated clients, respectively. We use the mean Kolmogorov-
Smirnov (KS) statistic between every two clients to measure
the degree of label distribution skewness. KS = 0 indicates
IID data partitions, while KS = 1 results in an extremely
non-IID data partition, where each client holds totally d-
ifferent label distributions (see Appendix A.1 for detailed
pre-processing and data partitions).

CelebA is a large-scale face attributes dataset with more

than 200K celebrity images. We use the federated version
of CelebA provided by the LEAF benchmark [5] which par-
titions into devices based on identity. Following [5], we
test on the binary classification task (presence of smile) and
drop clients with larger than 8 samples to increase task d-
ifficulty. This results in a total of 227 clients each with an
average of 5.34±1.11 samples and a total of 1213 samples.

We use linear learning rate warm-up and decay scheduler
for VIT-FL. The learning rate scheduler for FL with CNNs
is selected from linear warm-up and decay or step decay.
Gradient clipping (at global norm 1) is applied to stabilize
training. We set the local training epoch E in all FL meth-
ods to 1 (unless otherwise stated), and the total communi-
cation rounds to 100 for Retina and CIFAR-10, and 30 for
CelebA. For fair comparison, all models used in this paper
are pretrained on ImageNet-1K [10]. More implementation
details are in Appendix A.2.

Compute: All experiments were conducted on either a
TITAN V GPU or Tesla V100 GPU.

4.2. Results
Comparison of FL with different neural architectures

and (ideal) centralized training: Both CWT and FedAVG
achieve comparable results to a model trained on centrally
hosted data (denoted as Central) on the IID setting no matter
which architecture is applied (Figure 3). However, we ob-
serve a significant reduction in test accuracy for CNNs on
heterogeneous data partitions for both CWT and FedAVG,
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Figure 4. Test set accuracy versus communication rounds on Retina dataset (first row) and CIFAR-10 dataset (second row) with different
data partitions. The black dashed line shows the target performance (Target-ACC) used in Table 3. Vision Transformers converge faster
with fewer communication rounds, which make them especially suitable for communication-efficient FL.

especially on extremely heterogeneous data partitions (S-
plit 3, KS-1 of CIFAR-10) (Figure 3 and Figure 1). By
simply replacing CNNs with ViTs, both CWT and FedAVG
successfully retain model accuracy even in highly heteroge-
neous non-IID settings. ViT(S)-CWT and ViT(S)-FedAVG
improve the test accuracy relative to ResNet(50)-CWT and
ResNet(50)-FedAVG by 77.70% and 37.34% on the highly
heterogeneous Split-3, KS-1 of CIFAR-10 dataset. There-
fore, VIT is particularly suitable for heterogeneous data.

Comparison with existing FL methods: We also com-
pare VIT-FL to two state-of-the-art optimization based FL
methods: FedProx [37], and FedAVG-Share [68] on both
Retina and CIFAR-10. We use ResNet(50) as the backbone
network for the other compared methods, and ViT(S) for
our methods. We tune the best parameters (penalty con-
stant µ in the proximal term of FedProx) on Split-2 dataset
with grid search, and apply the same parameters to all the
remaining data partitions. We allow each client to share
5% percentage of their data among each other for FedAVG-
Share. As shown in Figure 4, VIT-FL outperforms all the
other FL methods in non-IID data partitions, especially on
the highly heterogeneous non-IID settings. FedProx [37]
suffers severe performance drops on highly heterogeneous
data partitions despite carefully tuned optimization param-
eters. Similarly, FedAVG-Share also suffers from perfor-
mance drops on highly heterogeneous data partition Split-3
even when 5% percentage of the local data is shared among
all clients (94.4% of Split-3 on CIFAR-10 dataset compared
to 97% on Split-1). We conclude that simply using Trans-
formers outperforms several recent methods designed for

FL, which often require careful tuning of optimization pa-
rameters. Please note that the usage of VITs is orthogo-
nal to the existing optimization methods, and a combina-
tion of both can yield stronger performance (see details in
Section 4.4).

4.3. Analyzing the Effectiveness of Transformers
Given these promising empirical results, we now perfor-

m a careful empirical analysis to uncover what exactly con-
tributes to Transformers’ improved performance.

4.3.1 Transformers generalize better in non-IID settings

The distributed nature of FL means that there can be sub-
stantial heterogeneity in data distributions across clients.
Prior research has shown that training FL models with Fe-
dAVG or CWT incurs issues such as weight divergence
and catastrophic forgetting respectively [30, 57]. We ar-
gue that the local convolutions used in CNNs, which have
been shown to rely more on local high-frequency pattern-
s [13, 26, 63], might be particularly sensitive to heteroge-
neous devices. This problem is particularly prevalent in FL
over healthcare data since input images captured by differ-
ent institutions may vary significantly in local patterns (in-
tensity, contrast, etc.) due to different medical imaging pro-
tocols [16,55], as well as in natural data splits due to user id-
iosyncrasies in speaking [33], typing [17], and writing [28].
On the other hand, ViTs use self-attention to learn global
interactions [53] and have been shown to be less biased to-
wards local patterns as compared to CNNs. This property
may contribute to their surprising robustness to distribution
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R50-CWT ViT(S)-CWT R50-FedAVG R50-FedProx R50-FedAVG-Share ViT(S)-FedAVG
CelebA 85.35± 8.27 88.09± 5.15 84.08± 9.65 84.27± 9.74 85.46± 3.75 86.63± 7.12

Table 1. Prediction accuracy (%) on CelebA dataset. Vision Transformers show superior performance to their ResNet(50) (R50 in Table)
counterparts, and also outperform the optimization based FL methods (FedProx and FedAVG-Share) with ResNet(50) as backbone network.

Figure 5. Left: evolution of the prediction accuracy on the validation dataset of client 3 as more clients are involved in CWT learning.
We use Split 3 of CIFAR-10 dataset (most heterogeneous data split) and compare CWT trained with the ResNet(50) (R50 in Figure),
ResNet(50)-EWC [30], and ViT(S) models. Right: zoom in on the red rectangular in the left image. The training order of different
clients is also shown. The sequential training strategy of ResNet(50)-CWT incurs catastrophic forgetting on previous clients under highly
heterogeneous data distributions. ResNet(50)-EWC-CWT [30] barely solves the catastrophic forgetting problem. ViT(S)-CWT helps
alleviate this problem due to its strong generalization ability and robustness to heterogeneous data.

RETINA (#6, 000) CIFAR-10 (#45, 000)
CWT FedAVG CWT FedAVG

ResNet(50) 51.3± 1.3 55.0± 0.3 31.2± 12.2 37.5± 1.4
ViT(S) 80.0± 0.1 81.0± 0.1 97.5± 0.02 97.4± 0.03

Table 2. Prediction accuracy (%) on a large-scale edge case setting
with thousands of clients involved in training (6, 000 and 45, 000
clients for Retina and CIFAR-10 respectively, with each clien-
t containing one data sample). Vision Transformers significantly
outperform their ResNet counterparts in this edge case setting.

shifts and adversarial perturbations [3, 48]. To further ana-
lyze the generalization capabilities of Transformers across
heterogeneous data, we design the following experiments:
1. Catastrophic forgetting across heterogeneous devices:
CNNs often work worse on out-of-distribution data. This
phenomenon is especially severe in the serial FL method
CWT. Due to its sequential and serial training strategy,
training CNNs in a CWT paradigm usually results in catas-
trophic forgetting on non-IID data partitions: the model’s
performance on previous clients abruptly degrades after a
few updates on a new client with a different data distribu-
tion [3, 48]. This results in poorer and slower convergence
which is undesirable in FL. Similar forgetting issues have
also been found in the transfer learning literature [8, 9, 56].

We evaluate CWT on Split-3 of the CIFAR-10 dataset
to illustrate this catastrophic forgetting phenomenon. In
Figure 5, we plot the evolution of the prediction accura-
cy on the validation dataset of Client-3 (which shares the

same data distribution as its training dataset) as more clients
are involved in CWT learning. When transferring a well-
trained model on Client-3 to Client-4, the prediction accu-
racy on the previous Client-3 validation dataset degrades
abruptly and dramatically (from > 98% to < 1% accu-
racy). However, the model trained with ViT as backbone
(ViT(S)-CWT) is able to transfer knowledge from Client-3
to Client-4 while losing only small amounts of information
on Client-3 (maintains accuracy at 98%). Therefore, ViTs
generalize better to new data distributions without forget-
ting old ones.

We further compare ViT(S)-CWT with an optimization
method specifically designed to alleviate catastrophic for-
getting, EWC [30] (using the implementation from [23]).
Serial training of CWT on Split-3 of CIFAR-10 can be con-
sidered as an incremental class learning task where each
client contains an exclusive subset of classes in the dataset.
Each client model shares the same classifier to a standard-
ized union label space [23]. However, from Figure 5, EWC
barely solves the catastrophic forgetting problem on highly
heterogeneous data partitions, which also matches the re-
sults reported in [23]. This experiment further demonstrates
the effectiveness of ViT beyond optimization methods de-
signed for FL.

2. Generalization of VIT-FL on real-world federated
datasets: A well-trained federated model should perfor-
m well on out-of-distribution test datasets of other unseen
clients. To test the generalizability of Transformers, we
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CWT FEDAVG
R50 ViT(S) R50 R50-FedProx R50-Share ViT(S) ViT(S)-FedProx ViT(S)-Share

RETINA
Split-1 6 × 23.5 9 × 21.7 12 × 23.5 7 × 23.5 11 × 23.5 11 × 21.4 4 × 21.4 7 × 21.4
Split-2 72 × 23.5 55 × 21.4 ∞ ∞ 85 15 × 21.4 12 × 21.4 13 × 21.4
Split-3 ∞ 58 × 21.4 ∞ ∞ ∞ 15 × 21.4 12 × 21.4 16 × 21.4

CIFAR-10
Split-1 2 × 23.5 1 × 21.4 4× 23.5 4 × 23.5 5 × 23.5 1 × 21.4 1 × 21.4 1 × 21.4
Split-2 ∞ 34 × 21.7 19 × 23.5 17 × 23.5 9 × 23.5 2 × 21.4 2 × 21.4 1 × 21.4
Split-3 ∞ 85 × 21.7 ∞ ∞ 41 × 23.5 4 × 21.4 3 × 21.4 1 × 21.4

Table 3. # transmitted message size ( # communication round × # model parameters (M) ) required to reach target performance (best and
second best). # model parameters of ViT(S) and ResNet(50) is 21.7M and 23.5M, respectively. ViTs converge faster especially on hetero-
geneous data splits, and can be combined with optimization-based methods (FedProx and FedAVG-Share) for even faster convergence.

Split 2, KS-0.49 (Retina) Split 3, KS-0.57 (Retina) Split 3, KS-0.65 (CIFAR-10) Split 3, KS-1 (CIFAR-10)

Figure 6. Test set accuracy versus communication rounds on ViT(S)-FedAVG and their combination with existing FL methods FedProx [37]
and FedAVG-Share [68]. Vision Transformers can be used in conjunction with existing optimization based FL methods to further improve
convergence speed and reach target performance with fewer communication rounds.

apply it to a real-world federated CelebA dataset [42] and
compare it to the ResNet counterparts, FedProx [37], and
FedAVG-Share [68]. We report the test accuracies of mod-
els trained using different FL methods on the union of the
test data from all local clients in Table 1. Our VIT-FL ap-
proach outperforms state-of-the-art FL methods, and also
reduces variance. This shows that Transformers learn a bet-
ter global model than their CNNs counterparts.
3. Generalization of VIT-FL on extreme large-scale set-
ting: To validate the effectiveness of VIT-FL on a more
large-scale real-world distributed learning setting where t-
housands of clients are involved, we further apply different
FL methods to an extreme edge case situation on both Reti-
na and CIFAR-10 dataset. The edge case here is defined
as one client holding only one data sample, which is quite
common in healthcare where the patient holds only one data
sample belonging to themselves. This results in an extreme-
ly large number of heterogeneous clients: 6, 000 for Retina
and 45, 000 for CIFAR-10. From Table 2, ViTs still learn
a promising global model on this extremely heterogeneous
edge case setting, significantly outperforming ResNet mod-
els (from 50% to 80% on Retina and from 30% to 90% on
CIFAR-10).

4.3.2 Transformers converge faster to better optimum
A powerful FL method should not only perform robustly on
both IID and non-IID data partitions but also have low com-
munication costs to enable deployment over communicated-
limited bandwidths. Communication cost is determined by

the number of rounds till convergence and the number of
model parameter. We calculate the number of communi-
cation rounds needed to achieve a predefined target test set
accuracy of 95% of the prediction accuracy of a centrally
trained ResNet(50). Specifically, we set the target accura-
cy of Retina and CIFAR-10 dataset to be 77.5% and 91.5%
respectively. We define one communication round on the
serial CWT method as one complete training cycle across
all federated local clients.

From Figure 4 and Table 3, all the evaluated FL methods
converge to the target test performance quickly on homoge-
neous data partitions. However, the convergence speed of
ResNet(50)-FedAVG and ResNet(50)-CWT decrease with
increasing heterogeneity and even reach a plateau on high-
ly heterogeneous data partitions (and never reach the target
accuracy). In contrast, VIT-FL still converges quickly on
heterogeneous data. For example, ResNet(50)-CWT com-
pletely diverges due to severe catastrophic forgetting on het-
erogeneous data partitions Split-2 and Split-3 on CIFAR-10,
whereas ViT(S)-CWT reaches the target performance after
34 and 85 communication rounds.

4.4. In Conjunction with Existing Methods
Since our investigation into architectural choices is

largely orthogonal to existing optimization based FL meth-
ods, our findings can be easily used in conjunction with the
latter. We combine Vision Transformers with optimization-
based methods (FedProx [37] and FedAVG-Share [68]), and
apply it to both Retina and CIFAR-10 datasets. From Ta-
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Split 1, KS-0 (Retina) Split 3, KS-0.57 (Retina) Split 3, KS-1 (CIFAR-10)

Figure 7. The effect of training over different local epochs E on each communication round for ViT(B)-CWT and ViT(B)-FedAVG models
on Retina and CIFAR-10 (the ViT(B) prefix of CWT and FedAVG in the legend labels is omitted for simplicity). Large E leads to faster
convergence in mild heterogeneous data partitions, but might lead to worse final performance in severely heterogeneous data partitions.

CENTRAL SPLIT-1 SPLIT-2 SPLIT-3
Pretrain 97.91 98.17 97.78 96.40

From scratch 94.50 86.91 79.43 64.50

Table 4. The influence of pretraining of Swin(T)-FedAVG on
CIFAR-10. Similar to the training of VIT, pretraining is impor-
tant for the training of VIT-FL.

ble 3 and Figure 6, when applying to existing FL optimiza-
tion methods, VIT further boosts the performance for het-
erogeneous data clients.

4.5. Take-aways for Practical Usage
Local training epochs: It is standard to use E to denote

the number of rounds a local model passes over its local
dataset. E is known to strongly affect the performance of
FedAVG [47] and CWT [7]. We conduct an experimen-
tal study on the impact of local training epochs E on VIT-
FL. We consider E ∈ {1, 5, 10} for ViT(B)-FedAVG, and
E ∈ {1, 5} for ViT(B)-CWT. From Figure 7, we find that
ViT shows similar phenomena to their CNN counterparts,
i.e., larger E accelerates convergence of ViT(B)-FedAVG
on homogeneous data partitions, but may lead to deteriora-
tion of final performance on heterogeneous data partition-
s. Similarly, ViT(B)-CWT also favors frequent transfer rate
between each client as ResNet(50)-CWT [7] on non-IID da-
ta partitions. Therefore, we suggest users apply large E on
homogeneous data to reduce communication, but a small E
(E ≤ 5 for VIT-FedAVG and E = 1 for VIT-CWT) for
highly heterogeneous cases.

The influence of pretraining on VIT-FL: Evidence
suggests that VIT generally require a larger amount of
training data to perform better than CNNs when trained
from scratch [12]. We conduct experiments to investi-
gate the influence of pretraining on VIT-FL. We apply
FedAVG as the training algorithm, use Swin(T) [41] as
the backbone network, and test on CIFAR-10. We ap-
ply the same augmentation and regularization strategies
as [41] during training and set the maximum communica-
tion rounds to 300. As shown in Table 4, the performance of
Swin(T) drops when trained from scratch for both the ideal

centrally-hosted and FL settings. Despite this, its perfor-
mance on highly-heterogeneous data partition Split-3 when
trained from scratch (64.50%) is surprisingly better than
ResNet(50)-FedAVG (59.68% on Figure 3) when pretrained
with orders of magnitude more data. In real applications,
users are recommended to apply VIT as their first option,
since VIT-FL consistently outperform their CNNs counter-
parts when pretrained models are applied (Figure 1 and Fig-
ure 3). If large-scale pretraining datasets are not available,
self-supervised pretraining [6, 18] could be an alternative.

Other training tips: The training strategy of VIT in FL
can be directly inherited from VIT training, such as using
linear warm-up and learning rate decay, and gradient clip-
ping. Relatively small learning rates and gradient norm clip
are necessary to stabilize the training of VIT in CWT, e-
specially in highly heterogeneous data partitions. Gradi-
ent norm clip also helps in the training of FL with CNNs
across heterogeneous data since it has been shown to re-
duce weight divergence between local updates and the cur-
rent global model [37]. Please refer to Appendix B.1 for
more general tips and experimental analysis.

5. Conclusion
Despite the recent progress in FL, there remain chal-

lenges regarding convergence and forgetting when dealing
with heterogeneous data. Unlike previous methods on im-
proving optimization, we provide a new perspective by re-
thinking architecture design in FL. Using the robustness of
Transformers to heterogeneous data and distribution shifts,
we perform extensive analysis and demonstrate the advan-
tages of Transformers in alleviating catastrophic forgetting,
accelerating convergence, and reaching a better optimum
for both parallel and serial FL methods. We release our
code and models to encourage developments in robust ar-
chitectures in parallel to efforts on the optimization front.
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