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Abstract

We present an approach for tracking people in monoc-
ular videos by predicting their future 3D representations.
To achieve this, we first lift people to 3D from a single
frame in a robust manner. This lifting includes informa-
tion about the 3D pose of the person, their location in
the 3D space, and the 3D appearance. As we track a
person, we collect 3D observations over time in a track-
let representation. Given the 3D nature of our observa-
tions, we build temporal models for each one of the previ-
ous attributes. We use these models to predict the future
state of the tracklet, including 3D appearance, 3D loca-
tion, and 3D pose. For a future frame, we compute the
similarity between the predicted state of a tracklet and the
single frame observations in a probabilistic manner. As-
sociation is solved with simple Hungarian matching, and
the matches are used to update the respective tracklets. We
evaluate our approach on various benchmarks and report
state-of-the-art results. Code and models are available at:
https://brjathu.github.io/PHALP.

1. Introduction

When we watch a video, we can segment out individ-
ual people, cars, or other objects and track them over time.
The corresponding task in computer vision has been studied
for several decades now, with a fundamental choice being
whether to do the tracking in 2D in the image plane, or of
3D objects in the world. The former seems simpler because
it obviates the need for inferring 3D, but if we do take the
step of back-projecting from the image to the world, other
aspects such as dealing with occlusion become easier. In
the 3D world the tracked object doesn’t disappear, and even
young infants are aware of its persistence behind the oc-
cluder. In our recent work [35], we presented experimental
evidence that performance is better with 3D representations.
In this paper, we will take this as granted, and proceed to
develop a system in the 3D setting of the problem. While
our approach broadly applies to any object category where
parameterized 3D models are available and can be inferred
from images, we will limit ourselves in this paper to study-

Figure 1. Tracking people by predicting and matching in 3D.
The top row shows our tracking results at three different frames.
The results are visualized by a colored head-mask for unique iden-
tities. The second and third rows show renderings of the 3D states
of the two people in their associated tracklets. The bottom row
shows the bottom-up detections in each image frame which, after
being lifted to 3D, will be matched with the 3D predictions of each
tracklet in the corresponding frame. Note how in the middle frame
of second row, the 3D representation of the person persists even
though they are occluded in the image. Readers are encouraged to
watch the videos at the project website.

ing people, the most important case in practice.
Once we have accepted the philosophy that we are track-

ing 3D objects in a 3D world, but from 2D images as raw
data, it is natural to adopt the vocabulary from control the-
ory and estimation theory going back to the 1960s. We are
interested in the “state” of objects in 3D, but all we have
access to are “observations” which are RGB pixels in 2D.
In an online setting, we observe a person across multiple
time frames, and keep recursively updating our estimate
of the person’s state — their appearance, location in the
world, and pose (configuration of joint angles). Since we
have a dynamic model (a “tracklet”), we can also predict
states at future times. When the next image frame comes in,
we detect the people in it, lift them to 3D, and in that set-
ting solve the association problem between these bottom-
up detections and the top-down predictions of the different
tracklets for this frame. Once the observations have been
associated with the tracklets, the state of each person is re-

2740



Figure 2. PHALP: Predicting Human Appearance, Location and Pose for Tracking: We perform tracking of humans in 3D from
monocular video. For every input bounding box, we estimate a 3D representation based on the 3D appearance, 3D pose and 3D location of
the person. During tracking, these are integrated to form corresponding tracklet-based representations. We perform tracking by predicting
the future representation of each person and using it to solve for association given the detected bounding boxes of a future frame.

estimated and the process continues. Fig. 1 shows this pro-
cess on a real video. Note that during a period of occlusion
of a tracklet, while no new observations are coming in, the
state of the person keeps evolving following their dynamics.
It is not the case that “Out of sight, out of mind”!

In an abstract form, the procedure sketched in the pre-
vious paragraph is basically the same as that followed in
multiple computer vision papers from the 1980s and 1990s.
The difference is that in 2022 we can actually make it work
thanks to the advances brought about by deep learning and
big data, that enable consistent and reliable lifting of peo-
ple to 3D. For this initial lifting, we rely on the HMAR
model [35]. This is applied on every detected bounding box
of the input video and provides us with their initial, single
frame, observations for 3D pose, appearance as well as lo-
cation of the person in the 3D space.

As we link individual detections into tracklets, these rep-
resentations are aggregated across each tracklet, allowing us
to form temporal models, i.e., functions for the aggregation
and prediction of each representation separately (see right
side of Fig. 2). More specifically, for appearance, we use
the canonical UV map of the SMPL model to aggregate ap-
pearance, and employ its most recent prediction as person’s
appearance. For pose, we aggregate information using a
modification of the HMMR model [17], where through its
“movie strip” representation, we can produce 3D pose pre-
dictions. Finally, for 3D location, we use linear regression
to predict the future location of the person.

This modeling enables us to develop our tracking sys-
tem, PHALP (Predicting Human Appearance, Location
and Pose for tracking), which aggregates information over

time, uses it to predict future states, and then associates the
predictions with the detections. First, we predict the 3D
location, 3D pose and 3D appearance for each tracklet for
a short period of time. For a future frame, these predic-
tions need to be associated with the detected people of the
frame. To measure similarity, we adopt a probabilistic in-
terpretation and compute the posterior probabilities of ev-
ery detection belonging to each one of the tracklets, based
on the three basic attributes. With the appropriate similarity
metric, association is then easily resolved by means of the
Hungarian algorithm. The newly linked detections can now
update the temporal model of the corresponding tracklets
for 3D appearance, 3D location and 3D pose in an online
manner and we continue the procedure by rolling-out fur-
ther prediction steps. The final output is an identity label
for each detected bounding box in the video. Notably, this
approach can also be applied on videos with shot changes,
e.g., movies [12], with minor modifications. Effectively, we
modify our similarity to include only appearance and 3D
pose information for these transitions, since they (unlike lo-
cation) are not affected by the shot boundary.

2. Related work
Tracking. Object tracking is studied in various settings
such as single object tracking, multi-object tracking for hu-
mans, and multi-object tracking for vehicles etc. The track-
ing literature is vast and we refer readers to [6, 8, 44] for
a comprehensive summary. In general, tracking can be
applied on any category, however, in this section we dis-
cuss the methods that focus on tracking people. These
approaches often work in a tracking-by-detection setting,
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where 2D location, 2D keypoint features [11, 37, 40] and
2D appearance [32, 42, 43] are used to associate detections
over time. Quality of the detection plays a key role in this
case and many works jointly learn or fine-tune their own de-
tection models [4,32]. In this work, we are interested in the
effectiveness of 3D representations for tracking and thus as-
sume that detected bounding boxes are provided, which we
associate through our representations. On the other hand,
tracking-by-regression [4, 10] predicts future locations us-
ing the knowledge of the past detections. While this allevi-
ate the requirement for good quality detections, most of the
works regress in the image plane. The projection from 3D
world to the image plane makes it hard to make this predic-
tion, therefore these methods need to learn non-linear mo-
tion models [2, 4, 47]. Compared to these methods, PHALP
predicts short-term location in 3D coordinates, by simple
linear regression. Additionally, we also predict appearance
and pose features for better association.

Finally, there are methods that incorporate 3D informa-
tion in tracking [30], however most of these approaches as-
sume multiple input cameras [27, 46] or 3D point cloud ob-
servation from LiDAR [39]. In this paper we focus on the
setting where the input is a monocular video. Recent works
track occluded people based on object permanence [19,38].
These methods rely on depth estimation network to get 3D
location [19] or need to learn permanence using sequence of
annotated data [38]. However, by placing full human mesh
in 3D space and predicting their location, pose and appear-
ance, object permanence is already built into our system.

Monocular 3D human reconstruction. Although there is
a long history of monocular 3D human reconstruction meth-
ods, e.g., [5,13], here we focus on more recent works. Many
of the relevant approaches rely on the SMPL model [28],
which offers a low-dimensional parameterization of the hu-
man body. HMR [16] has been one of the most notable
ones, using a neural network to regress the SMPL body pa-
rameters from a single image. Follow-up works have im-
proved the robustness [22, 25] and added additional fea-
tures like estimation of camera parameters [23], or proba-
bilistic estimation of pose [26]. Recently, Rajasegaran et
al. [35] introduced HMAR, by adding an appearance head
to HMR. Other works have focused on extending HMR to
the temporal dimension, e.g., HMMR [17] and VIBE [21].
In this work, we make use of a modification of HMAR [35]
as the main feature backbone, while employing a model
similar to HMMR [17] for temporal pose prediction, but
instead, using a transformer to aggregate pose informa-
tion over time [34]. Regarding human motion prediction,
Kanazawa et al. [17], regress future poses from the temporal
pose representation of HMMR, the “movie-strip”. Zhang et
al. [45] extend this to PHD, employing autoregressive pre-
diction of human motion. Aksan et al. [1] also regress future
motion in an autoregressive manner, using a transformer.

3. Method
Tracking humans using 3D representations has signif-

icant advantages, including that 3D appearance is invari-
ant to pose variations and 3D provides the ability to have
amodal completion for humans during partial occlusion.
Our tracking algorithm accumulates these 3D representa-
tions over time, to achieve better association with the de-
tections. PHALP has three main stages: 1) estimating 3D
representations for each human detection, 2) aggregating
representations over time and predicting their future state,
3) associating tracklets with detections using predicted rep-
resentations in a probabilistic framework. We explain each
stage in the next sections.

3.1. Single-frame processing

The input to our system is a set of person detections
along with their masks, estimated by conventional detection
networks, like Mask-RCNN [14]. Each detection is pro-
cessed by our backbone that computes the basic represen-
tations for pose, appearance and location on a single-frame
basis. For this feature extraction we use a modification of
the HMAR model [35]. HMAR returns a feature represen-
tation for the 3D pose p, for appearance a, while it can
recover an estimate for the 3D location l of the person.

The HMAR model takes as input the pixels in the bound-
ing box corresponding to a detected person. This means that
in a crowded, multi-person scenario, the input can contain
pixels from more than one person, potentially confusing the
network. To deal with this problem, we modify HMAR to
take as additional input, the pixel level mask of the person
of interest (obtained from Mask R-CNN [14]) and re-train
HMAR. Obviously, we cannot expect this step to be perfect,
since there can be inaccuracies in the bounding box or mask
estimates. However, we observed that the model is more ro-
bust in the case of close person-person interactions, which
are common in natural videos.

3.2. 3D tracklet prediction

The 3D estimates provide a rich and expressive repre-
sentation for each detection. However, this is the result of
single-frame processing. During tracking, as we expand
each tracklet, we have access to more information that is
representative of the state of the tracked person. To prop-
erly leverage this information, our tracking algorithm builds
a tracklet representation after each step of the online pro-
cessing, which allows us to predict the future states for each
tracklet. In this section we describe how we build this track-
let representation, and more importantly, how we use it to
predict the future state of each tracklet.

Appearance: The appearance pathway is used to inte-
grate appearance information for each person over multi-
ple frames. The single frame appearance representation
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for the person i at time step t, Ai
t, is taken from the

HMAR model by combining the UV image of that per-
son Ti

t ∈ R3×256×256 and the corresponding visibility map
Vi

t ∈ R1×256×256 at time step t:

Ai
t = [Ti

t,V
i
t] ∈ R4×256×256 (1)

Note that the visibility mask Vi
t ∈ [0, 1] indicates whether a

pixel in the UV image is visible or not, based on the Mask-
RCNN mask. Now, if we assume that we have established
the identity of this person in neighboring frames, we can
integrate the partial appearance coming from the indepen-
dent frames to an overall tracklet appearance for the person.
Using the set of single frame appearance representations
Ai = {Ai

t,A
i
t−1,A

i
t−2, ...}, after every new detection we

create a singe per-tracklet appearance representation:

Âi
t = ΦA(Â

i
t−1,A

i
t) = (1− α) ∗ Âi

t−1 + α ∗Ai
t, (2)

where α =


α0, if V̂i

t−1 = 1 and Vi
t = 1

1, if V̂i
t−1 = 0 and Vi

t = 1

0, if V̂i
t−1 = 1 and Vi

t = 0.

Here, ΦA is the appearance aggregation function, which
takes a weighted sum of the appearance representations
from the previous tracklet and the new detection. Note that,
at the start of the tracklet we simply assign the initial single-
frame appearance to the tracklet (Âi

0 = Ai
0). With this defi-

nition of ΦA, we can aggregate appearance information over
time, while allowing the representation to change slowly to
account for slight appearance changes of the person during
a video. Moreover, the UV image provides appearance of
each point on the body surface independently of body pose
and viewpoint which enables summation on the pixel space,
without any learnable components. Figure 3 shows how the
UV image of the person is aggregated over time and used
for association of new detections.

For prediction, we make the realistic assumption that hu-
man appearance will not change rapidly over time. Then,
the appearance of the tracklet Âi

t functions as a reasonable
prediction for the future appearance of the person. There-
fore, we use Âi

t as the prediction for appearance and use it
to measure similarity against detections in future frames.

Location: Lifting humans from pixels into the 3D space
allows us to place them in a 3D coordinate frame. Let
us assume that a person i at time t has an estimated 3D
location lit ∈ R3. Although, we can get an estimate for
the location of the person in the global camera frame, this
tends to be noisy, particularly along the z-axis. To avoid
any instabilities when it comes to predicting future loca-
tion, instead of performing our prediction on the Euclidean
(X,Y, Z)T space, we express our locations in an equivalent
lit = (x, y, n)T space where (x, y) is the location of the root
of the person in the pixel space and n is nearness, defined

Figure 3. Prediction of appearance: The single frame appear-
ance Ai is aggregated over time for the prediction of the tracklet
appearance Âi. At the start, only the front side of the person is vis-
ible, however as the person moves their visibility changes, making
only their back side visible. For the single frame appearance, the
visible regions change corresponding to the visibility of the person
in the frame. However, for the tracklet, the appearance is accumu-
lated over time. Even if the front side is not visible in the last
frame, the tracklet can predict these regions using its past.

as log inverse depth n = log(1/z). Nearness is a natural
parameterization of depth in vision settings, e.g., [24], be-
cause of the 1/z scaling of perspective projection. In our
case it corresponds to the scale of the human figures that we
estimate directly from images. We independently linearly
regress the location predictions for x, y and n. This is re-
lated to the Constant Velocity Assumption (CVA) used in
past tracking literature [44], but there is a subtlety here be-
cause constant velocity in 3D need not give rise to constant
velocity in 2D (a person would appear to speed up in the
image as they approaches the camera). But local lineariza-
tion is always a reasonable approximation to make, which
is what we do.

Let us assume that a tracklet has a set of past locations
Li = {lit, lit−1, l

i
t−2, ...}. Then, the prediction of the loca-

tion for time step t+ 1 is given by:

l̂it+1 = (x̂i
t+1, ŷ

i
t+1, n̂

i
t+1)

T , (3)

where x̂i
t+1 = ΦL({xi

t, x
i
t−1, x

i
t−2, ..., x

i
t−w}, t+ 1).

Here, ΦL is the location aggregation function and we use a
simple linear regression for prediction in our tracking algo-
rithm. We predict ŷit+1 and n̂i

t+1 in a similar fashion. ΦL

takes the last w observations to fit a line by least squares
and regress the future location for x, y and n independently.
From the theory of linear regression, the prediction interval
for x at a time step t′ is given by the equation below:

δx(t
′) = t(1−α/2) ×

√
MSE ×

(
1 +

1

w
+

(t′ − t̄)2∑
(t− t̄)2

)
. (4)

Here, t(1−α/2) is the Student’s t distribution with confi-
dence α and degree of freedom w − 2. MSE is the mean
squared error on the predicted locations and t̄ is the mean of
the time stamps for the previous observations. We similarly
compute prediction intervals ∆y,∆n for y, n respectively.
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Figure 4. Prediction of Pose: We use a modified version of
HMMR [17] with transformer backbone. Having transformer as
the backbone gives us the flexibility to have missing people in the
tracklet (by masking the attention [34]), while still allowing us to
predictions of future poses. Finally, the transformer gives us a
movie-strip representation and that is used to regress future poses.

Pose: For the pose pathway, we integrates pose information
across the tracklet and predicts poses for the near future.
To do this, we follow the HMMR architecture [17]. Effec-
tively, we learn a function ΦP that takes as input a series of
pose embeddings of a person Pi = {pi

t,p
i
t−1,p

i
t−2, ...}

and computes a temporal pose embedding p̂t. We train
this temporal pose aggregation function ΦP to smooth the
pose p̂i

t at frame t, and regress future pose representa-
tions {p̂i

t+1, p̂
i
t+2, ..., p̂

i
t+c} (for up to c = 12 frames in

the future). We use a transformer to compute ΦP [34].
This choice allows for additional flexibility, since there are
frames where the identity cannot be detected (e.g., due to
occlusions). Transformer can handle this scenario grace-
fully, by not attending to these frames.

3.3. Tracking with predicted 3D representations

Given the bounding boxes and their single-frame 3D
representations, our tracking algorithm associates identities
across frames in an online manner. At every frame, we
make future predictions for each tracklet and we measure
the similarity with the detected single-frame representation.
More specifically, let us assume that we have a tracklet Ti,
which has been tracked for a sequence of frames and has
information for appearance, pose and location. The track-
let predicts its appearance Â, pose p̂ and location l̂ for the
next frame, and we need to measure a similarity score be-
tween these predictions of the tracklet Ti and a detection
Dj to make an association. Our tracklet representation has
three different attributes (appearance, location and pose),
so, directly combining their similarities/distances would not
be ideal, since, each attribute has different characteristics.
Instead, we investigate the conditional distributions of in-
liers and outliers of the attributes. Figure 5 presents the
corresponding probability distributions for the PoseTrack
dataset [3]. The characteristics of these distributions mo-
tivate our design decisions for our further modeling.

Assume that tracklet Ti has an appearance representation
Âi

t. On the detection side, the detection Dj has a single-
frame appearance representation Aj

t . Both of these rep-
resentations are in the UV pixel space, therefore we first
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Figure 5. Conditional distributions of the attribute distances:
We plot the data for the distances between the tracklet prediction
and the single frame detection using annotated data from Pose-
Track [3]. The curves show the distributions of correct matches
(inliers) and incorrect matches (outliers). For 2D location and
nearness the distances are normalized by the prediction interval.

encode them into an embedding space using the HMAR
appearance-encoder network. This gives us an appearance
embedding âit and ajt for the prediction of the tracklet Ti

and detection Dj , respectively. We are interested in esti-
mating the posterior probability of the event where the de-
tection Dj belongs to the tracklet Ti, given some distance
measure of the appearance feature (∆a). Assuming that the
appearance distance is ∆a = ||âit−ajt ||22, then the posterior
probability is proportional to the conditional probability of
the appearance distances, given correct assignments based
on Bayes rule. We model this conditional probability as a
Cauchy distribution, based on the observations from the in-
lier distribution of appearance distances (see also Fig 5):

PA(Dj ∈ Ti|da = ∆a) ∝
1

1 + βa∆a
(5)

The distribution has one scaling hyper-parameter βa.
Similarly, for pose, we use Cauchy distribution to model

the conditional probability of inlier distances. We measure
pose distance ∆p = ||p̂i

t−p
j
t ||22 between the predicted pose

representation pi
t from the tracklet Ti and the pose represen-

tation pj
t of detection Dj . The posterior probability that the

detection belongs to the track, given the pose distance is:

PP (Dj ∈ Ti|dp = ∆p) ∝
1

1 + βp∆p
(6)

Here, ∆p = ||p̂i
t − pj

t ||22 and βp is the scaling factor.
For location, let us assume the tracklet Ti has predicted

a location l̂it = (x̂i
t, ŷ

i
t, n̂

i
t)

T with a set of prediction inter-
vals {δx, δy, δn}, and the detection Dj is at a 3D location
ljt = (xj

t , y
j
t , n

j
t )

T . We treat the 3D coordinates x, y and
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the nearness term n coordinates independently, and com-
pute the posterior probabilities of the detection belongs to
the tracklet given the location distance. We model the con-
ditional probability distribution as an exponential distribu-
tion, based on the findings from the empirical data. The
Fig 5 shows the distribution of 2D distance and nearness
distance, scaled by the confidence interval, of inliers ap-
proximately follow the exponential distribution:

PXY (Dj ∈ Ti|dxy = ∆xy) ∝
1

βxy
exp

(
−∆xy

βxyδxy

)
. (7)

Here, βxy is a scaling parameter for the exponential distri-
bution, ∆xy is the 2D pixel distance between the predicted

tracklet and the detection and δxy =
√
δ2x + δ2y is the pre-

diction interval for the 2D location prediction. The expres-
sion for the posterior probability for nearness PN is similar:

PN (Dj ∈ Ti|dn = ∆n) ∝
1

βn
exp

(
−∆n

βnδn

)
. (8)

Here, βn is the scaling parameter for the exponential distri-
bution, δn is the confidence interval for the nearness predic-
tion, and ∆n is the L1 distance between the nearness of the
tracklet prediction and the detection.

Given the conditional probabilities of the detection be-
longing to a tracklet conditioned on the individual cues (ap-
pearance, location, pose), we can compute the overall con-
ditional probability of the detection Dj belonging to the
tracklet Ti, given all the cues (by making the simplifying
assumption that they are independent:

P(Dj ∈ Ti|∆a,∆p,∆xy,∆n) ∝ PAPPPXY PN . (9)

This allow us to estimate how probable an association is
based on various attribute distances. Finally, we map the
similarity measures (probability values up to a scale), to
cost values, for solving association. The cost function be-
tween the detection representations and a predicted repre-
sentations of the tracklet is defined as:

ΦC(Dj ,Ti) = − log(P(Dj ∈ Ti)) (10)

= − log(PA)− log(PP )− log(PXY )− log(PN ),

where the second equality is up to an additive constant.
Once the cost between all the tracklets and the detection is
computed, the Hungarian algorithm solves the association.
Estimating the parameters of the cost function: The cost
function ΦC has 4 parameters (βa, βp, βxy and βn). Addi-
tionally, the Hungarian algorithm has one parameter βth to
decide whether the tracklet is not a match to the detection.
Therefore, overall we have five parameters for the associa-
tion part of our method. We treat this as an empirical risk
minimization problem and optimize the β values based on a
loss function. We initialize βa, βp, βxy and βn with the val-
ues from the estimated density functions and use frame level

Algorithm 1 Tracking Algorithm

1: procedure PHALP TRACKING
2: Require: All active tracklets T , all detections and

their single frame 3D representations at time t, D and
maximum age of a tracklet tmax.

3: for Tj ∈ T do
4: # Predict all attributes for the next frame.
5: Âj

t ← ΦA({Aj
t−1,A

j
t−2, ...})

6: p̂j
t ← ΦP (p

j
t−1,p

j
t−1, ...})

7: l̂jt ← ΦL({ljt−1, l
j
t−2, ...})

8: # Compute cost between tracklets and detections.
9: Ci,j ← ΦC(Di, Tj) for all Di ∈ D and Tj ∈ T

10: # Hungarian to assign detections to tracklets.
11: M, Tu,Du ← Assignment(C)
12: # Update the matched tracklets.
13: T ← {Tj(Di), ∀(i, j) ∈M}
14: # Increase the age of unmatched tracletks.
15: T ← {Tj(age)+ = 1, ∀(j) ∈ Tu}
16: # Make new tracklets with unmatched detections.
17: T ← {Tj(Di), ∀(i) ∈ Du, j = |T + 1|}
18: Kill the tracklets with age ≥ tmax.
19: return Tracklets T

association error as a loss function for the optimization. We
use the Nelder–Mead algorithm [33] for this optimization.
Finally, the optimized β values are used for the cost func-
tion across all datasets. The sketch of the tracking algorithm
is shown in Algorithm 1.

3.4. Extension to shot changes

Our framework can be easily extended to also handle
shot changes, which are common in edited media (movies,
TV shows, sports, etc). We use a shot detector [15] to re-
liably identify frames that indicate shot changes. Knowing
the shot boundary, during tracking, we update the distance
metric accordingly. More specifically, since appearance and
3D pose are invariant to the viewpoint, we keep these fac-
tors in the distance computation, while we drop the location
distance from the distance metric, because of the change
in the camera location. Then, the association is computed
based on this updated metric. We demonstrate this utility
on the AVA dataset [12] and present results in Section 4.

4. Experiments
In this section, we present the experimental evaluation

of our approach. We report results on three datasets: Pose-
Track [3], MuPoTS [31] and AVA [12], which capture a di-
verse set of sequences, including sports, casual interactions
and movies. Our method operates on detections and masks
coming from an off-the-shelf Mask-RCNN network [14],
and returns the identity label for each one of them. There-
fore, the metrics we use to report results also focus on
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Method
PoseTrack

IDs↓ MOTA↑ IDF1↑

w/o 3D appearance 632 58.4 74.9
w/o 3D pose 558 58.9 76.2
w/o location 948 57.3 71.6
w/o nearness 622 58.5 74.8
w/o pose, appearance 645 57.5 74.7
w/o mask 573 58.1 75.3

Full system 541 58.9 76.4

Table 1. Ablation of the main components of PHALP on Pose-
Track [3]. Removing each tracking cue (3D appearance, 3D pose
or 3D location) leads to degradation in the performance.

identity tracking at the level of the bounding box. More
specifically, we report results using Identity switches (IDs),
Multi-Object Tracking Accuracy (MOTA) [18], ID F1 score
(IDF1) [36] and HOTA [29]. In all cases, we adopt the pro-
tocols of Rajasegaran et al. [35] for evaluation.

First, we ablate the main components of our approach.
Specifically, we investigate the effect of each one of the
tracking cues we employ, i.e., 3D appearance, 3D loca-
tion and 3D pose, and how they affect the overall tracking
pipeline. For this comparison, we report results on the Pose-
Track dataset [3]. The full results are presented in Table 1.
As we can see, removing each one of the main cues leads to
degradation in the performance of the system, where 3D lo-
cation seems to have the largest effect on the performance,
followed by appearance and 3D pose. While the effect of
3D pose is not significant as other cues, computing the 3D
pose is essential because a) it allows us to get a good loca-
tion estimate, and b) it guides the appearance calculation.
Moreover, this ablation also highlights the importance of
having the nearness term in the cost function, a feature that
is not available to purely 2D tracking methods. Addition-
ally, we evaluate our system when only the 3D location is
included in the cost function. This has a negative effect on
the tracking performance, validating the importance of the
other cues. Finally, we evaluate our method without masks,
during the appearance aggregation and HMR stage. Our ex-
periment shows that access to masks improves performance.

Next, we evaluate our approach in comparison with the
state-of-the-art methods. The results are presented in Ta-
ble 2. We report results on PoseTrack [3], MuPoTS [31] and
AVA [12]. Our method outperforms the previous baselines,
as well as the state-of-the-art approach of Rajasegaran [35].
The gains are significant across all metrics. Our method
also outperforms the other approaches in the HOTA metric.

Finally, we provide qualitative results of our method in
Fig 6. These results indicate that our method performs re-
liably even in very hard occlusion cases, while it can re-
cover the correct identity over multiple successive occlu-
sions. Please note the robustness of our method in com-

plex motion sequences, shot changes and long trajectories.
For visualization we use a colored head-mask to represent a
unique track.

More design choices: PHALP has a modular design, where
each components can be easily replaced. We demonstrate
this by altering some of our original choices. For example,
we replace MaskRCNN [14] with PointRend [20] at the de-
tection stage. However, we did not observe any significant
improvement on tracking metrics with this change. More-
over, we replace the inferred 3D location from HMAR with
the equivalent location inferred by PARE [22]. This change
improves overall tracking performance by 5% in terms of
ID switches. Finally, we also investigate the option of post-
poning the final decision about the identity of a detection.
We refer to this as LMC (Lookback Merge Check), which
can connect tracklets that have been over-segmented. With
LMC, for every new tracklet, we regress backwards (i.e.,
past location) and check if there is any older tracklet in
that location with similar appearance to the new tracklet.
If such a tracklet exists, then we merge these two tracklets.
This lookback merge and check (LMC) can help to achieve
roughly 20 less ID switches in the PoseTrack dataset. For
more implementation details and for detailed results for all
these experiments, please see the SupMat.

5. Discussion
We presented PHALP, an approach for monocular peo-

ple tracking, by predicting appearance, location and pose in
3D. Our method relies on a powerful backbone for 3D hu-
man mesh recovery, modeling on the tracklet level for col-
lecting information across a tracklet’s trajectory, and even-
tually predicting the future states of each tracklet. One of
the main benefits of PHALP is that the association aspect re-
quires tuning of only five parameters, which makes it very
friendly for training on small-scale tracking datasets, where
annotating the identity of every person in a video can be ex-
pensive. Our approach can be naturally extended to make
use of more attributes, e.g., a face embedding, which could
be useful for cases with close-ups, like movies.

The main assumptions for PHALP are that we have
access to a good object detector for the initial bound-
ing box/mask detection, and a strong HMAR network for
single-frame lifting of people to 3D. If the performance of
these components is not satisfactory, it can also affect track-
ing quality. Regarding societal impact, tracking systems
can be used to monitor patients or help with some treat-
ments [7]. On the other hand, tracking systems have often
been used for human surveillance. We do not condone such
use. Instead, we believe that a tracking system will be valu-
able for studying social-human interactions.
Acknowledgements: This work was supported by ONR
MURI (N00014-14-1-0671), the DARPA Machine Com-
mon Sense program, as well as BAIR and BDD sponsors.
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Method Posetrack MuPoTS AVA
IDs↓ MOTA↑ IDF1↑ HOTA↑ IDs↓ MOTA↑ IDF1↑ HOTA↑ IDs↓ IDF1↑

Trackformer [32] 1263 33.7 64.0 46.7 43 24.9 62.7 53.2 716 40.9
Tracktor [4] 702 42.4 65.2 38.5 53 51.5 70.9 50.3 289 46.8
AlphaPose [9] 2220 36.9 66.9 37.6 117 37.8 67.6 41.8 939 41.9
FlowPose [41] 1047 15.4 64.2 38.0 49 21.4 67.1 43.0 452 52.9
T3DP [35] 655 55.8 73.4 50.6 38 62.1 79.1 59.2 240 61.3
PHALP 541 58.9 76.4 52.9 22 66.2 81.4 59.4 227 62.7

Table 2. Comparison with state-of-the-art tracking methods. We compare our method, PHALP, with various tracking methods in three
different datasets. Our approach outperforms the other baselines across all datasets and metrics.

Figure 6. Qualitative Results: We show the tracking performance of PHALP in various datasets (frame number is shown at the top left
corner). While all the tracks have full 3D reconstructions, we only use the head-masks to visualize the tracks since it is easier to spot errors.
The first three rows are from the PoseTrack dataset [3]. These results show that even during successive occlusions PHALP is able to track
the identity of the correct person. Note that, in the first row, although the two persons with the green head-mask and the purple head-mask
have similar appearance, our method can track each one of them successfully. In the second row, the player is going through multiple
occlusions, yet recovered correctly. The third row shows the robustness of our linearization approximation for 3D location prediction, even
when the motions of the players are very complex. In the MuPoTS dataset [31] (4th row), our method can handle very close interactions
between people. This is due to the fact that, our modification of HMAR recovers meshes conditioned on the detected mask. We also show
results (5th row) on the AVA dataset [12]. After the 3rd frame, there is a shot change in the video, and the person with the yellow head-mask
is tracked successfully across the shots. Finally, we show qualitative results on a MOT17 sequence. The person with the blue head-mask is
tracked for the whole sequence while they are going through multiple occlusions for a long time. More results at the PHALP website.
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