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Abstract

Transfer learning from large-scale pre-trained models has

become essential for many computer vision tasks. Recent

studies have shown that datasets like ImageNet are weakly

labeled since images with multiple object classes present

are assigned a single label. This ambiguity biases models

towards a single prediction, which could result in the sup-

pression of classes that tend to co-occur in the data. Inspired

by language emergence literature, we propose multi-label it-

erated learning (MILe) to incorporate the inductive biases of

multi-label learning from single labels using the framework

of iterated learning. MILe is a simple yet effective procedure

that builds a multi-label description of the image by prop-

agating binary predictions through successive generations

of teacher and student networks with a learning bottleneck.

Experiments show that our approach exhibits systematic ben-

efits on ImageNet accuracy as well as ReaL F1 score, which

indicates that MILe deals better with label ambiguity than

the standard training procedure, even when fine-tuning from

self-supervised weights. We also show that MILe is effective

reducing label noise, achieving state-of-the-art performance

on real-world large-scale noisy data such as WebVision. Fur-

thermore, MILe improves performance in class incremental

settings such as IIRC and it is robust to distribution shifts.

Code: https://github.com/rajeswar18/MILe

1. Introduction
Large-scale datasets with human-annotated labels have

been central to the development of modern state-of-the-art
neural network-based artificial perception systems [23, 24,
32]. Improved performance on ImageNet [17] has led to
remarkable progress in tasks and domains that leverage Im-
ageNet pretraining [11, 42, 70]. However, these weakly-
annotated datasets and models tend to project a rich, multi-
label reality into a paradigm that envisions one and only one
label per image. This form of simplification often hinders
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Figure 1. Multi-label Iterated Learning (MILe) builds a multi-
label representation of the images from singly-labeled ground-truth.
In this example, a model produces multi-label binary predictions
for the next generation, obtaining Car and House for an image
weakly labeled with House.

model performance by asking models to predict a single la-
bel, when trained on real-world images that contain multiple
objects.

Given the importance of the problem, there is growing
recognition of single-labeled datasets as a form of weak
supervision and an increasing interest in evaluating the lim-
its of these singly-labeled benchmarks. A series of recent
studies [8, 54, 56, 59, 65] highlight the problem of label
ambiguity in ImageNet. In order to obtain a better estimate
of model performance, Beyer et al. [8] and Shankar et al.
[54] introduced multi-label evaluation sets. They identified
softmax cross-entropy training as one of the main reasons
for low multi-label performance since it promotes label ex-
clusiveness. They also showed that replacing the softmax
with sigmoid activations and casting the output as a set of
binary classifiers results in better multi-label validation per-
formance. Several other studies have explored ways to over-
come the shortcomings in existing validation procedures by
improving the pipelines for gathering labels [6, 48, 58].

In order to obtain a more complete description of images
from weakly-supervised or semi-supervised data, a number
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of methods leverage a noisy signal such as pseudo-labels [65]
or textual descriptions crawled from the web [47]. In this
work, we observe that the process of building a rich repre-
sentation of data from a noisy source shares some properties
with the process of language emergence studied in the cog-
nitive science literature. In particular, Kirby [29] proposed
that structured language emerged from an inter-generational
iterated learning process [29, 30, 31]. According to the
theory, a compositional syntax emerges when agents learn
by imitation from previous generations in the presence of a
learning bottleneck. This bottleneck forces noisy fragments
of the language to be forgotten when transmitted to new
generations. Conversely, those fragments that can be reused
and composed to enrich the language tend to be passed to
subsequent generations. We show that the same procedure
can be applied to settings that leverage a weak or noisy su-
pervisory signal such as [47, 65] to build a richer description
of images while reducing the noise.

In this work, we propose multi-label iterated learning
(MILe) to learn to predict rich multi-label representations
from weakly supervised (single-labeled) training data. We
do so by introducing two different learning bottlenecks. First,
we replace the standard convolutional neural network out-
put softmax with a hard multi-label binary prediction. Sec-
ond, we transmit these binary predictions through successive
model generations, with a limited training iterations between
each generation.

In our experiments, we demonstrate that MILe allevi-
ates the label ambiguity problem by improving the F1 score
of supervised and self-supervised models on the ImageNet
ReaL [8] multi-label validation set. In addition, experiments
on WebVision [37] show that iterated learning increases ro-
bustness to label noise and spurious correlations. Finally,
we show that our approach can help in continual learning
scenarios such as IIRC [1] where newly introduced labels
co-occur with known labels. Our contributions are:

• We propose MILe, a multi-label iterated learning algo-
rithm for image classification that builds a rich multi-
label representation of data from weak single labels.

• We show that models trained with MILe are more robust
to noise and perform better on ImageNet, ImageNet-
ReaL, WebVision, and multiple setups such as super-
vised learning (Section 4.1), self-supervised fine-tuning
and semi-supervised learning (Section 4.2), continual
learning (Supplementary 2), and domain generalization
(Supplementary 5).

• We provide insights on the predictions made by models
trained with iterated learning (Section 4.3).

2. Related Work
It is known that weakly-labeled datasets such as Ima-

geNet contain label ambiguity [6, 8, 54, 56, 59, 65] and

label noise [49, 61]. Label ambiguity refers to the cases
where only one of the multiple possible labels was assigned
to the image. In order to evaluate how label ambiguity af-
fects ImageNet classifiers, Beyer et al. [8] proposed ReaL, a
curated version of the ImageNet validation set with multiple
labels per image. They found that ImageNet classifiers tend
to perform better on ReaL since it contains less label noise
but they did not address the problem of inaccurate super-
vision during training where more than one correct class
is present in the image. To deal with unfavorable training
dynamics due to the mismatch between the multiplicity of
object classes and the majority-aggregated single labels, Yun
et al. [65] proposed to relabel the ImageNet training set.
They obtained pixel-wise labels by finetuning an ensemble
of large models pretrained on a large external dataset [57].
Although useful, undertaking such relabeling procedure for
each dataset of interest is both laborious and unrealistic. In
addition, it is not clear if the same relabeling approach could
be used in larger, noisier databases such as WebVision [37],
which contains 2.4M images downloaded from the inter-
net and labels consisting of the queries used to download
those images. In this work, we investigate the use of iterated
learning on weak singly-labeled datasets as an alternative
to relabeling in order to produce a multi-label output space.
Different from existing methods, MILe uses neither external
data nor additional relabeling procedures.

Knowledge Distillation Knowledge distillation is a tech-
nique commonly used in model compression [5, 9, 27]. In
the vanilla setting, a large deep neural network is used as
a teacher to train a smaller student network from its log-
its. In addition to model compression, knowledge distil-
lation has been used to improve the generalization of stu-
dent networks reusing distilled students as teachers [18] or
distilling ensembles into a single model [2]. Gains have
been observed even when the teacher and the student model
are the same network, a regime commonly known as self-
distillation [2, 46, 67]. Mobahi et al. [46] further showed
that iterative self-distillation induces a strong regularization
effect, with effects that are different from early stopping.
Self-distillation has also been used to improve the general-
ization and robustness of semi-supervised models. Xie et al.
[63] introduced noisy student for labeling unlabeled data
during semi-supervised learning. While MILe also leverages
teacher and student networks, it is fundamentally different
from knowledge distillation approaches. The goal of knowl-
edge distillation is to transmit all the knowledge of a teacher
network to a student network. On the other hand, MILe
trains a succession of short-lived teacher and student gen-
erations, thus creating an iterated learning bottleneck [29],
to construct a new multi-label representation of the images
from single labels. This goal is also different from the goal
of noisy student, which is to label unlabeled data, and which
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is trained three times until convergence.

Iterated Learning The iterated learning hypothesis was
first proposed by Kirby [29, 30] to explain language evolu-
tion via cultural transmission in humans. Languages need
to be expressive and compressible to be effectively trans-
mitted through generations. This learning bottleneck favors
languages that are compositional as they can be easily and
quickly learned by the offsprings and support generalization.
Kirby et al. [31] conducted human experiments and mathe-
matical modeling, which showed that iterated transmission
of unstructured language results in convergence to a com-
positional language. Since then, it has seen many success-
ful applications, especially in the emergent communication
literature [15, 16, 22, 50]. In these settings, the learning
bottleneck is induced by limiting the data or learning time
of the student, which helps it to converge to a compositional
language that is easier to learn [35]. The approach starts by
training a teacher network with a small number of updates
on the training set. A student network is then trained to imi-
tate the teacher based on pseudo-multi-labels inferred from
the input samples. The student then replaces the teacher and
the cycle repeats with a frequency modulated by a learning
budget. Iterated learning has also been used in the preserva-
tion of linguistic structure in addition to its emergence by
Lu et al. [43, 44]. Furthermore, Vani et al. [62] successfully
applied it for emergent systematicity in VQA. To the best
of our knowledge, this is the first application of the iterated
learning framework in the visual domain.

3. Method
We propose MILe to counter the problem of label am-

biguity in singly-labeled datasets. We delineate the details
of our approach to perform multi-label classification from
weak singly-labeled ground truth.

Enforcing Multi-label Prediction. Singly-labeled
datasets such as ImageNet usually represent their labels
as one-hot vectors (all dimensions are zero except one).
Training on these one-hot vectors forces models to predict a
single class, even in the presence of other classes. Forcing
models to predict a single class exposes them to biases
in the image labeling process such as the preference for
centered objects. Besides, constraining the model to output
a single label per image limits the capability of perceptual
models to capture all the content of the image accurately.
In order to solve this problem, we propose to relax the
model’s output predictions from singly-labeled softmax
prediction to multi-label binary prediction with sigmoids.
Thus, we treat the singly-labeled classification problem as a
set of independent binary classification problems. Since the
ground-truth labels are still represented as one-hot vectors

and training on them would still result in singly-labeled
predictions, we propose an iterated learning procedure to
bootstrap a multi-label pseudo ground truth.

Multi-label Iterated Learning. Our learning procedure
is composed of two phases. In the first phase, a teacher

model interacts with the single-labeled data to improve its
predictions. The interaction is limited to a few iterations
to prevent the binary classification model from overfitting
to one-hot vectors. In the second phase, we leverage the
acquired knowledge to train a different model, the student,
on the multi-label predictions of the teacher. This yields a
better initialization of the model for further iterations as we
repeat this two-phased learning multiple times (see Alg. 1).

Specifically, we consider two parametric models, the
teacher f(.; ✓T⌧ ) and the student f(.; ✓S⌧ ). Parameters of the
teacher ✓T⌧ are initialized using the student parameters ✓S⌧ at
iteration ⌧ . First, we train the teacher for kt learning steps
on the labeled images from the dataset, obtaining f(.; ✓T⌧+1).
This constitutes the interaction phase of an iteration. We
then move to the imitation phase, where we train the student
to fit the teacher model for ks steps, obtaining f(.; ✓S⌧+1).
This is done by training the student on the pseudo labels
generated by the teacher on the data. Finally, we instantiate
a new teacher by duplicating the parameters of this new stu-
dent and iterate the process until convergence. In addition to
yielding a smooth transition during the imitation phase, this
procedure ensures that each iteration yields an improvement
over the previous one (unless it is already optimal). Note
that in the supervised learning regime we do not pseudo
label any unlabeled data. In Sec. 4.2 we provide additional
experiments showing that MILe can leverage unlabeled data
in the semi-supervised learning regime.

Both the teacher and the student are trained on the same
dataset D composed of input-label pairs {X ,Y} 2 D. We
train the teacher to maximize the likelihood p(ŷ = y|x, ✓) =
�(f(x, ✓)), where ŷ is the label predicted by the model,
y 2 Y is the true label, and � is a normalization function
such as the sigmoid. In order to alleviate the problem of
label ambiguity, we consider Y a multi-label binary vector
in ZC

2 where C is the number of classes and optimize the
binary cross-entropy loss:

LBCE = � 1

B

BX

i=1

1

C

CX

j=1

yi,j ·log(ŷi,j)+(1�yi,j)·log(1�ŷi,j),

(1)
where B is the number of samples in a batch when using
batched stochastic gradient descent. We show in our ex-
periments that iterated learning along with multi-label ob-
jective provides a strong inductive bias for modeling the
effects of label ambiguity. Note that optimizing the binary
cross-entropy on one-hot labels would not solve the label
ambiguity problem. Thus, during each cycle, we train the
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teacher for a few iterations in order to prevent it from over-
fitting the one-hot ground truth. During student training, we
threshold the teacher’s output sigmoid activations to obtain
multi-label pseudo ground-truth vectors ỹ = f(x, ✓T ) > ⇢.
The threshold ⇢ is 0.25 unless otherwise stated.

The MILe Learning Bottleneck. Enforcing the imitation
phase with some form of a learning budget is an essential
component of the iterated learning framework [29]. This
bottleneck regularizes the student model not to be amenable
to the specific irregularities in the data. Kirby [29] argue that
such a bottleneck enforces innate constraints on language
acquisition. We believe that incorporating such a mecha-
nism into the prediction models could prevent them from
overfitting label noise [39], improving the quality of pseudo
labels. There are two common ways to impose a learning
bottleneck. One way is to allow a newly initialized student
to only obtain the knowledge from a limited number of data
instances generated by the teacher [29, 40]. Another is by
limiting the number of student learning updates while imi-
tating the teacher [43]. In our setting, we find it helpful to
enforce the bottleneck via the number of learning updates.

As illustrated in Fig. 1 and Alg. 1, we iteratively refine a
teacher network that is trained with the original labels and
a student network that is trained with labels produced by
the teacher. In order to prevent the student from overfitting
the teacher, we restrict the amount of training updates [43]
for each of the modules. Formally, let N be the size of
the dataset, kt be the number of training iterations of the
teacher, and ks the number of student iterations. In general,
we set kt << N to prevent the teacher from overfitting
one-hot labels and ks <= kt to prevent the student from
overfitting the teacher. In other words, each of our iterations
is composed of two finite loops of (a) model improvement
(teacher learning) and (b) model imitation (student learning).

Computational Cost. We train MILe for the same total
number of epochs as standard supervised classification mod-
els. Thus, the total number of backward passes through
the model (counting both the teacher and the student) is
the same as the standard supervised training. Thus, the
only additional computational cost comes from producing
pseudo-labels with the teacher model. Moreover, the pseudo-
labeling only happens once per teacher-student cycle and the
network is in inference mode. Assuming ks + kt = 10K
(see Figure 3) and a batch size of 256, this inference pass
only happens every 2.1 epochs for the ImageNet. Thus, the
computational impact of MILe only constitutes a small frac-
tion of the overall computational cost of training a neural
network on the ImageNet. This computational cost could
be easily compensated by skipping validation on alternate
epochs or by validating in a different parallel process.

Algorithm 1 MILe

Require: Initialize Student network ✓S
⌧ , ⌧ = 0. {Prepare

Iterated Learning}
1: repeat
2: Copy ✓S

⌧ to ✓T
⌧+1 {Initialize Teacher}

3: for i = 1 to kt do
4: Sample a batch (xi,yi) 2 Dtrain

5: ŷi = f✓T (xi)
6: ✓T

⌧+1  ✓T
⌧+1 + ↵rLBCE(✓T

⌧+1;yi, ŷi) {Update ✓T

to minimize L}
7: end for {Finish Interactive Learning}
8: for i = 1 to ks do
9: Sample a batch (xi,yi) 2 Dtrain

10: ŷi = �(f✓T
⌧+1

(xi)) > ⇢ {Generate Pseudo Labels}
11: ỹi = f✓S (xi)
12: ✓S

⌧  ✓S
⌧ + ↵rLBCE(✓S

⌧ ; ỹi, ŷi) {Update ✓S
to

minimize L}
13: end for {Finish Imitation}
14: Copy ✓S

⌧ to ✓S
⌧+1

15: ⌧  ⌧ + 1
16: until Convergence or maximum ⌧ reached

4. Experiments
We provide experiments showing the effects of iterated

learning in multiple setups. In Sec. 4.1, we study the ro-
bustness to label ambiguity and noise on ImageNet Real and
WebVision. In Sec. ??, we explore the benefits of iterated
learning for domain generalization. In Sec. 4.2, we study the
effect of MILe on models pre-trained with self-supervised
objectives. Finally, in Sec. 4.3, we provide ablation exper-
iments on the different hyperparameters as well as a more
challenging synthetic setup with greater label ambiguity. Ad-
ditional experiments in the Supplementary Material include
a comparison with noisy student, multi-label learning on
CelebA, and continual learning on IIRC.

4.1. Label Ambiguity and Noise
Datasets: We train our models on the standard ImageNet im-
age classification benchmark [51], which is known to contain
ambiguous labels [8]. Therefore, in addition to the validation
set performance, we also report the performance on ReaL [8],
an additional set of multi-labels for the ImageNet validation
set gathered using a crowd-sourcing platform. ReaL con-
tains a total of 57,553 labels for 46,837 images. We report
results when using fractions of the total amount of training
examples (i.e., 1%, 5%, 10%, 100%). To test the robustness
of our method to label noise, we provide results on Web-
Vision [37], which contains more than 2.4 million images
crawled from the Flickr website and Google Images search.
The same 1,000 concepts as the ImageNet ILSVRC 2012
dataset are used for querying images. It is worth noting that
many ImageNet (ReaL) samples contain a single object and
a single label. In Sec. 4.3, we explore the limits of MILe
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ReaL: polecat, ferret 
Sigmoid: ferret
MILe: weasel, polecat, ferret

ReaL: uniform, riffle 
Sigmoid: pickelhaube, riffle
MILe: uniform, pickelhaube, riffle

ReaL: cleaver, laptop
Sigmoid: laptop
MILe: cleaver, laptop, notebook

ReaL: chihuahua, bathtub 
Sigmoid: tub
MILe: chihuahua, bathtub, tub

ReaL: schooner, yawl, sandbar, shore 
Sigmoid: sandbar
MILe: yawl, sandbar

ReaL: plate, meatloaf
Sigmoid: plate, mashed potato, meat
MILe: plate, mashed potato, meat

ReaL: laptop, notebook 
Sigmoid: laptop, desktop computer
MILe: laptop, notebook

ReaL: tabby, keyboard, desk, laptop, monitor, 
notebook
Sigmoid: keyboard, laptop, notebook
MILe: keyboard, desk, laptop, tabby, notebook 

Figure 2. Qualitative results. ReaL: original labels. Sigmoid: ResNet-50 with sigmoid output activations. MILe: multi-label iterated
learning (ours).

on a synthetic dataset. In addition, we provide results on
CelebA [41] in the supplementary material.
Baselines: We train a ResNet-18 and a ResNet-50 [23]
model. Note that we favored vanilla ResNets over more
advanced architectures and training procedures in order to
focus on the advantages of MILe, rather than showing state-
of-the-art results. We compare three different methods.
(i) Softmax: standard softmax cross-entropy loss used to
train the original ResNet backbone [23]. (ii) Sigmoid: we
substitute the cross-entropy loss for a binary cross-entropy
(BCE) loss. (iii) MILe: the proposed method as described
in Sec. 3. For WebVision experiments, we also train an ad-
ditional ResNet-50-D [26] backbone following more recent
methodologies [64].
Metrics: We report accuracy on the original [51] and the
ReaL [8] ImageNet validation set. ReaL is a multi-label
dataset, so we calculate the accuracy as described by Beyer
et al. [8]. Namely, we consider a top-1 prediction correct if
it coincides with any of the ground-truth labels, i.e. ReaL-
Acc = 1

N

PN
i=1 |ŷi \ Yi| > 0, where ŷi is the predicted

label for the ith sample, Yi is the set of ReaL labels, and
|.| counts the the number of elements in a set. Additionally,
we report the F1-score, which represents the proportion of
correct predicted labels to the total number of actual and
predicted labels, averaged across all examples: ReaL-F1
= 1

N

PN
i=1

2·TPi
2·TPi+FPi+FNi

, where TP is the number of
true positives, FP is the number of false positives, and FN
is the number of false negatives. Finally, we report the label
coverage, which indicates the total fraction of labels per
sample predicted by the multi-label classifier. A number
1.15 indicates an additional 15% of labels was predicted.
ImageNet results. We report the results in Table 1. MILe
surpasses baseline methods on all metrics and all fractions

of training data. With Sigmoid, we observe a substantial im-
provement on ReaL-Acc of ⇠ 2% and ⇠ 4% for ResNet-18
and ResNet-50 respectively. This is in agreement with the
results reported by Beyer et al. [8]. Incorporating iterative
learning results in an extra ⇠ 1% performance improvement
when using all the training data and up to 5% of ReaL-F1
when using a smaller fraction of the data. Interestingly, we
find that using smaller fractions of data reduces the label
coverage. We hypothesize that using a smaller fraction of the
data leads to memorization and overfitting for the Softmax
method and Sigmoid, which results in more confident predic-
tions on a single class. Additional results focused on ReaL
label recovery can be found in the supplementary material.

We report qualitative results in Fig. 2. As it can be seen,
MILe produces more complete descriptions of the image,
sometimes capturing labels that were not included in the
ReaL ground truth. For instance, our method was able to
detect a pickelhaube (pointy hat) that was not labeled in the
ground truth.

WebVision results. We report results in Table 2 and put
them in context with other state of the art. We adopt the same
class rebalancing strategy as [36]. For all setups, we observe
that MILe attains the best performance, up to 2 points better
than methods using better architectures such as Inception-
V3 [53]. We also validate the WebVision-trained model on
the ImageNet validation set, outperforming the previous state
of the art and keeping results consistent with the WebVision
validation set. These results suggest that the iterated learning
bottleneck acts as a regularizer that prevents the model from
learning noisy labels which are more difficult to fit. This
hypothesis is in agreement with Arpit et al. [4], Liu et al.
[39], Zhang et al. [66], who showed that noise memorization
happens later in the training procedure.
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ImageNet fraction: 1% 5% 10% 100% 1% 5% 10% 100%

Metric Method ResNet-50 ResNet-18

Accuracy

Softmax 6.32 36.71 53.50 76.33 6.61 31.5 48.82 70.41
ELR [39] 7.91 38.88 56.15 76.75 6.93 32.95 49.95 70.83
Sigmoid 6.70 36.9 55.01 76.35 6.88 31.10 49.14 70.46

MILe (ours) 9.10 42.52 57.29 77.12 8.20 36.20 51.31 71.12

ReaL-Acc

Softmax 7.19 42.55 60.21 82.76 8.80 35.88 55.11 77.77
ELR [39] 8.78 44.24 63.13 83.07 8.92 38.08 56.13 78.85
Sigmoid 8.38 46.04 62.96 83.22 9.04 37.66 57.52 81.01

MILe (ours) 11.50 48.36 65.42 83.75 9.18 41.65 58.57 81.52

ReaL-F1

Softmax 6.77 40.51 57.33 78.5 8.28 34.20 52.51 73.83
ELR [39] 7.83 42.45 58.52 78.5 8.41 35.52 53.22 73.41
Sigmoid 7.17 41.11 58.46 78.61 8.39 33.56 52.12 73.85

MILe (ours) 10.76 45.02 62.11 79.89 8.55 38.49 53.80 74.48

Label Coverage

Softmax 1.00 1.0 1.0 1.0 1.0 1.0 1.0 1.0
ELR [39] 1.00 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Sigmoid 1.09 1.11 1.10 1.11 1.07 1.10 1.15 1.15

MILe (ours) 1.05 1.08 1.09 1.16 1.06 1.07 1.12 1.17

Table 1. ImageNet results. The first row displays the fraction of the ImageNet data used to train the models. Softmax: Vanilla ResNet with
softmax loss. Sigmoid: Vanilla ResNet trained for multi-label binary classification with single labels. ELR: early-learning regularization [39].
MILe: multi-label iterated learning. Label coverage refers to the fraction of additional labels predicted by each model. All the models are
trained for 100 epochs.

Method Architecture WebVision ImageNet
Top-1 Top-5 Top-1 Top-5

CrossEntropy [60] ResNet-50 66.4 83.4 57.7 78.4
MentorNet [28] InceptionRes-V2 70.8 88.0 62.5 83.0
CurriculumNet [21] Inception-V2 72.1 89.1 64.8 84.9
CleanNet [34] ResNet-50 70.3 87.8 63.4 84.6
CurriculumNet [21, 60] ResNet-50 70.7 88.6 62.7 83.4
SOM [60] ResNet-50 72.2 89.5 65.0 85.1
Distill [69] ResNet-50 - - 65.8 85.8
MoPro (dec.) [36] ResNet-50 72.4 89.0 65.7 85.1
Multimodal [53] Inception-V3 73.15 89.73 - -
Sigmoid ResNet-50 72.1 89.5 65.4 85.0
MILe (ours) ResNet-50 75.2 90.3 67.1 85.6

Initial Vanilla Model ResNet-50-D 75.08 89.22 67.23 84.09
SCC [64] ResNet-50-D 75.36 89.38 67.93 84.77
SCC+GBA [64] ResNet-50-D 75.69 89.42 68.35 85.24
MILe (ours) ResNet-50-D 76.5 90.9 68.7 86.4

Table 2. WebVision results. Methods are trained on Webvision-
1000 and validated both on WebVision and ImageNet. MoPro
(decoupled) is pre-trained on the same set as our method. Clean-
Net [34] and Distill [69] require data with clean annotations. dec:
refers to "decoupled".

4.2. Self-supervised Fine-tuning

ImageNet’s label ambiguity [8, 54, 56, 59, 65] might
be problematic for fully-supervised methods but it is pos-

Method ImageNet Validation ImageNet ReaL-F1
1% 10% 100% 1% 10% 100%

SimCLR [12] 48.3 65.6 76.25 51.54 69.16 76.91
BYOL [20] 53.2 68.8 77.2 54.32 70.81 78.85
SwAV [10] 53.9 70.2 77.74 55.79 71.22 79.18

MoCo-v2 [14] 51.72 66.5 77.12 53.34 70.75 79.04
MILe (Ours) + [14] 52.62 67.4 77.38 56.08 71.48 80.03

SimCLR-v2-sk0 [13] 58.18 68.9 76.3 57.25 70.11 78.83
MILe (Ours) + [13] (sk0) 61.85 70.5 77.29 60.49 72.76 79.38
SimCLR-v2-sk1 [13] 64.7 72.4 78.7 62.77 74.21 79.43
MILe (Ours) + [13] (sk1) 69.4 74.7 79.5 65.04 76.40 81.53

Table 3. Self-supervised finetuning. The second row displays the
fraction of ImageNet training data used for fine-tuning. Accuracy
of top-1 predictions are used for reporting the numbers.

Method Teacher Label fraction
1% 10%

Distilled [13] R50 (2×+SK) 69.0 75.1
Self-distilled [13] R50 (1x+SK) 70.15 74.43

MILe (ours) R50 (1x+SK) 73.08 75.3

Table 4. Self- semi-supervised learning. ImageNet top-1 accuracy
for ResNet-50 (R50) distilled from a SimCLR [12] model. 2⇥:
teacher has 2⇥ parameters than the student.
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(a) Iterations (b) Threshold

Figure 3. Ablation study. Comparison between different iteration
schedules. (a) Sweep over length of teacher training kt and length
of student training ks. We report the ReaL-F1 score. (b) ReaL F-1
and accuracy scores for a threshold value sweep (⇢).

sible that self-supervised pre-training procedures such as
MoCo [25] or SimCLR [12] are immune to it. We explore
whether iterated learning improves the performance of self-
supervised models in the fully- and semi-supervised fine-
tuning regimes. We perform experiments on the ImageNet
dataset and report validation accuracy and ReaL-F1 as de-
scribed in Sec. 4.1.
Baselines. We report results with ResNet-50 pre-trained
with SimCLR [12], SimCLR-v2 [13], BYOL [20], MoCo-
v2 [14], and SwAV [19]. Results are reported after fine-
tuning weights with 1%, 10%, and 100% of the ImageNet
training set. We use the same data subsets as Chen et al. [13].
We incorporate the proposed iterative learning procedure in
the fine-tuning process of MoCo-v2 and SimCLR-v2. For
SimCLR-v2, we also tested the "sk1" variant which was
improved with selective kernels [13, 38], while "sk0" is the
vanilla version. For the semi-supervised learning experi-
ments, we compare with SimCLR-v2’s distillation experi-
ments, where a teacher predicts pseudo-labels on unlabeled
data. We compare with ResNet-50 (2⇥+SK), where the
teacher has 2⇥ capacity than the student, and ResNet-50
(1⇥+SK) where the teacher and the student are the same
models.
Results. We report fine-tuning results in Table 3. Iterated
learning improves the performance of MoCo-v2, SimCLR,
and SimCLR-v2 for all fine-tuning data fractions. Interest-
ingly, the improvement gap grows when using better self-
supervised initializations. For example, the ReaL improve-
ment from the best performing SimCLR-v2-sk1 with 100%
of the validation data is 4.6% while it is around 3% for
MoCo-v2 and SimCLR-v2-sk0. We hypothesize that more
accurate models lead to better teachers, improving the overall
performance of the iterated learning procedure.

We report semi-supervised learning results in Table 4.
Iterated learning performs 2.9% better with 1% of the train-
ing labels and 0.9% with 10% of the training labels when
compared with the self-distillation procedure presented in
SimCLR-v2 [13]. Interestingly, we find that iterated learn-
ing attains better performance than distilling from a teacher

twice the size of the student.

4.3. Analysis
In this section we explore the behavior of MILe under dif-

ferent hyperparameter settings as well as more challenging
setups with synthetic data.

Number of Iterations. We investigate the effect of the
number of teacher iterations (kt) and student iterations (ks)
per cycle on the final performance (Fig. 3a). We report
the ReaL-F1 for different kt values (rows) and ks values
(columns). In general, we find that good performance can be
achieved with a wide range of kt and ks combinations. The
best performance is achieved with smaller values of kt and
ks. Extreme values of kt and ks lead to lower performance,
with the model being most sensitive to large values of ks
(dark regions). This is expected since a small kt would let the
imitation phase constantly disrupt supervised learning via
interaction with the data, while a large kt does not reap the
benefits of distillation. For a given kt we find that the optimal
ks lies in the mid-range and the other way around. Regarding
the influence of the dataset size, we observe that it mostly
influences the optimal number of teacher iterations (kt). We
hypothesize that it takes few iterations for the teacher to
overfit small datasets, which leads to one-hot predictions and
prevents the model from learning a multi-label hierarchy.

Pseudo-label Threshold Ablation Study In this section,
we conduct an ablation study on the threshold value (⇢) used
by MILe to produce multi-pseudo-labels from sigmoid out-
put activations (see Section 3 and Algorithm 1). Fig. 3b
shows the validation accuracies and ReaL-F1 scores for
different threshold values. Lower thresholds bias the stu-
dent towards producing multi-label outputs, even for low-
confidence classes. Larger threshold values make the student
tend towards singly-labeled prediction, only predicting la-
bels for which the confidence is high. In the extreme, a high
threshold constrains the teacher to predict empty label vec-
tors. Interestingly, we find that lower threshold values result
in higher ReaL-F1 score and better accuracy. In fact, the
Real-F1 score benefits from lower ⇢ than the accuracy. This
is due to the fact that lower thresholds increase the number
of predicted labels per image, which improves the recall in
multi-label evaluations.

Multi-label MNIST Many images in the real world
datasets like WebVision or ImageNet contain a single object,
which biases MILe towards predicting a small number of
objects per image. In order to explore the limits of MILe, we
begin by designing a controlled experiment on a synthetic
dataset where most samples contain multiple classes. Each
sample consists of a 3⇥3 grid of randomly sampled MNIST
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F1@0.25 F1@0.5
Softmax 28.69 28.69
Sigmoid 29.10 28.67
MILe (ours) 41.35 34.32

Table 5. Results on multi-label MNIST. The first column displays
the F1 score when the threshold for positive labels is set to 0.25
and the second column shows the F1 score for a threshold of 0.5.

Figure 4. Multi-MNIST. The center digit has a probability of 0.6
to be chosen as the label for the whole grid.

Figure 5. Comparison between different distillation schedules and
MILe. We report the Accuracy and ReaL-F1 score.

digits [33]. For each grid, its single label corresponds to the
center digit with probability 0.6 while the 8 remaining digits
are sampled with probability 0.05 each (see Fig. 4). Note
that, similar to the ImageNet, digits of the same class can
repeat in the grid. However, the probability of having a 3⇥3
grid with the same digit repeated in each position is 10�9.

Results are shown in Table 5. We observe that MILe
attains up to 12% better F1 score than the Softmax and
Sigmoid baselines. It is worth noting that the improvement
is most significant when thresholding the sigmoid output
predictions to 0.25. Interestingly, for this experiment, we
found the best threshold to produce multi-pseudo-labels from
the teacher output to be (⇢ = 0.1). Having a low threshold
biases the student towards producing multi-label outputs.
We find these results encouraging and we believe that better
performance could be attained by improving the pseudo-
multi-label generation strategy. We plan to explore these
new strategies in future work.

Contribution of Self-Distillation and Iterated Learning
Here, we study of the effect of the multi-label distillation
algorithm on the iterative procedure. We compare soft dis-
tillation (softmax + KL loss) with hard distillation (argmax
+ CE), and MILe (sigmoid + threshold + BCE) with and
without iterated learning in Fig. 5. We compare the effect
on two and many iterations. Hard labels outperform soft
labels when training with many iterations. We provide an ab-
lation of iterated learning with nosiy-student [63] distillation
procedure depicted in Fig. 8 of the supplementary material.

5. Discussion

We introduce multi-label iterated learning (MILe) to ad-
dress the problem of label ambiguity and label noise in
popular classification datasets such as ImageNet. MILe
leverages iterated learning to build a rich supervisory signal
from weak supervision. It relaxes the singly-labeled clas-
sification problem to multi-label binary classification and
alternates the training of a teacher and a student network to
build a multi-label description of an image from single labels.
The teacher and the student are trained for few iterations in
order to prevent them from overfitting the singly-labeled
noisy predictions. MILe improves the performance of image
classifiers for the singly-labeled and multi-label problems,
domain generalization, semi-supervised learning, and contin-
ual learning on IIRC. A possible limitation, which is inherent
to iterated learning [43], is choosing the correct length of
teacher (kt) and student iterations (ks). However, our ab-
lation experiments suggest that the proposed procedure is
beneficial for a wide range of kt and ks values (Sec. 4.3).
MILe also depends on the threshold value ⇢, which we use
to produce pseudo-labels from the teacher’s outputs. How-
ever, we found encouraging that low values of ⇢ improve
the performance of the classifiers, indicating that predicting
multiple labels is beneficial. With respect to the computa-
tional cost, we found that the impact of MILe is lower than
the validation phase of the models (see Sec. 3). Overall, we
found that iterated learning improves the performance of
models trained with weakly labeled data, helping them to
overcome problems related to label ambiguity and noise.

Broader impact and future work. Our approach is built
on the hypothesis that the world is structured along objects
and the fact that images result from the composition of those
objects. We believe that our work could be applied to other
tasks that build on the same assumptions such as object
detection, segmentation, and multiple-instance learning. In
these cases we hope approaches like MILe could open the
door to leverage large amounts of webly supervised data to
improve on these tasks.
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[4] D. Arpit, S. Jastrzębski, N. Ballas, D. Krueger, E. Bengio,
M. S. Kanwal, T. Maharaj, A. Fischer, A. Courville, Y. Ben-
gio, et al. A closer look at memorization in deep networks.
In ICML, 2017.

[5] L. J. Ba and R. Caruana. Do deep nets really need to be deep?
arXiv preprint arXiv:1312.6184, 2013.

[6] A. Barbu, D. Mayo, J. Alverio, W. Luo, C. Wang, D. Gutfre-
und, J. B. Tenenbaum, and B. Katz. Objectnet: A large-scale
bias-controlled dataset for pushing the limits of object recog-
nition models. In NeurIPS, 2019.

[7] E. Bekele and W. Lawson. The deeper, the better: Analysis
of person attributes recognition. In International Conference

on Automatic Face Gesture Recognition, 2019.

[8] L. Beyer, O. J. Hénaff, A. Kolesnikov, X. Zhai, and A. v. d.
Oord. Are we done with imagenet? arXiv preprint

arXiv:2006.07159, 2020.
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