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Fig. 1. A scene in the Booster dataset. We collect images in a variety of indoor environments featuring challenging objects such as the
mirror shown in (a). We provide dense ground-truth disparities (b) and segmentation masks that identify the most challenging materials (c).
As state-of-the-art deep stereo networks [25] struggle on these scenes (d), our benchmark highlights the open challenges in deep stereo.

Abstract

We present a novel high-resolution and challenging
stereo dataset framing indoor scenes annotated with dense
and accurate ground-truth disparities. Peculiar to our
dataset is the presence of several specular and transparent
surfaces, i.e. the main causes of failures for state-of-the-
art stereo networks. Our acquisition pipeline leverages a
novel deep space-time stereo framework which allows for
easy and accurate labeling with sub-pixel precision. We re-
lease a total of 419 samples collected in 64 different scenes
and annotated with dense ground-truth disparities. Each
sample include a high-resolution pair (12 Mpx) as well as
an unbalanced pair (Left: 12 Mpx, Right: 1.1 Mpx). Addi-
tionally, we provide manually annotated material segmenta-
tion masks and 15K unlabeled samples. We evaluate state-
of-the-art deep networks based on our dataset, highlighting
their limitations in addressing the open challenges in stereo
and drawing hints for future research.

1. Introduction
Depth estimation from images has long been deemed a

favourable alternative compared to expensive and intrusive
active sensors. Among several image-based approaches,
stereo vision [32,36] is arguably the most popular and heav-
ily researched technique. In the years, huge progresses have

∗ Joint first authorship.

been made in this field, also thanks to the availability of
challenging stereo benchmarks [15, 29, 34, 38] where the
community competes for the higher ranks. Moreover, the
abundance of stereo images paved the way for deep learning
to succeed also in this field [22,28,54]. Indeed, by browsing
the most popular benchmarks, one can notice how nowa-
days all the top-ranking proposals consist in end-to-end
deep networks that can reach sub-pixel precision in most
cases. Just to name a few, KITTI 2012 and 2015 [15, 29]
or ETH3D [38] seem solved, with top entries achieving av-
erage error rates near to 1%. Should this evidence suggest
that, thanks to deep learning, stereo vision is a solved prob-
lem? As shown in Fig. 1, we believe that this is definitely
not the case and, rather, it is time for the community to fo-
cus on the open-challenges left unsolved in the field. In
particular, we identify two of such challenges, namely i)
non-Lambertian surfaces and ii) high-resolution images.

As for non-Lambertian reflectivity, a variety of materials
and surfaces still represent a hard challenge to most com-
puter vision methodologies and to deep stereo alike. Specif-
ically, matching pixels dealing with transparent or specular
surfaces is extremely difficult and may consist in an inher-
ently ill-posed problem in many cases. Yet, we reckon that
objects with such properties are almost absent or unlabeled
in most stereo benchmarks, except for KITTI 2015, where
cars have been replaced with CAD models providing super-
vision on some specular/transparent surfaces on cars. As re-
ported in the KITTI 2015 online benchmark, deep learning
has the potential to tackle this challenge as well, if properly
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annotated samples are available.
Concerning the second challenge, when considering

higher-resolution images, for instance in the Middlebury
2014 benchmark [34], we can notice in general higher er-
rors. These are caused by the much larger image dimensions
(and thus disparity range) and, consequently, by a larger
number of occluded and untextured pixels in the images
framed in this dataset. Besides, processing images at high
resolution sets forth computational complexity issues, in
particular when deploying deep networks. Indeed, most of
the entries in the Middlebury benchmark can only process
input images downsampled to half or quarter of the orig-
inal 6 Mpx resolution. Moreover, an additional challenge
emerges due the peculiar camera setup featured by modern
smartphones, typically equipped with both a high resolution
and a much lower resolution image sensors. In such a set-
ting, one may wish to recover a high resolution depth map
despite the different resolution of the input pair, i.e., solve
an unbalanced stereo problem. However, such a research
direction has been only barely explored so far [1, 26].

To this aim, in this paper we present a novel high-
resolution challenging stereo benchmark. Each image in
our dataset, collected in indoor environments, features a set
of objects and surfaces that are either specular or transpar-
ent, as well as very large untextured regions. To accurately
annotate each collected sample, we implement a novel deep
space-time stereo pipeline [10] which combines disparity
estimates computed from multiple static images – up to 100
– acquired under a variety of texture patterns projected onto
the scene from different directions and after having care-
fully painted all non-Lambertian surfaces. Peculiar to our
pipeline is the use of a state-of-the-art, pretrained deep net-
work [25] to compute the individual disparity maps accu-
mulation through time within the space-time framework.
Furthermore, a final careful manual cleaning is carried out
to remove outliers/artefacts and ensure high-quality dispar-
ity labels. We point out that for some non-Lambertian sur-
faces it might be possible to provide multiple depth ground-
truths: for instance, for transparent surfaces we might pro-
vide both depths for the surface itself and the objects seen
through the surface. Yet, in our dataset we provide depth
labels for the closest surfaces only, thereby enabling evalua-
tion and training of stereo methods designed to return a sin-
gle depth prediction per pixel. As such, our dataset mainly
addresses scenarios dealing with autonomous driving, ob-
stacle avoidance and robotic manipulation, while being less
amenable to applications such as AR and novel view syn-
thesis. The main contributions of our paper are:

• We propose a novel dataset consisting of both high-
resolution as well as unbalanced stereo pairs featuring a
large collection of labeled non-Lambertian objects. In par-
ticular, we have acquired a total of 64 scenes under dif-
ferent illuminations, yielding 419 balanced stereo pairs at

12 Mpx and 419 unbalanced pairs, each consisting in a 12
Mpx and 1.1 Mpx image. The latter setup provides the first-
ever dataset for unbalanced stereo matching, as prior work
is limited to simulation experiments [1, 26]. In both setups,
samples are annotated with dense ground-truth disparities
and grouped into 228 training images and 191 test images –
for which ground-truth is withheld.

• Data annotation is performed in a semi-automatic
manner based on a novel deep space-time stereo frame-
work, which enables to deploy modern stereo networks [25]
within the well-known space-time stereo framework [10].

• Alongside with ground-truth disparities, we provide
manually annotated segmentation maps that identify and
rank the hard-to-match materials based on specularity and
transparency. This is conducive to focus on the open-
challenges addressed in this paper when analyzing the be-
haviour of state-of-the-art networks. Moreover, we provide
an additional set of 15K raw pairs, both in balanced and un-
balanced settings, to encourage the development of weakly-
supervised solutions to the open challenges in stereo.

• We evaluate the prominent state-of-the-art stereo net-
works [5, 9, 49, 55], as trained by their authors, on the test
split of our dataset. The experimental findings highlight the
open-challenges that need to be faced by the stereo commu-
nity and provide hints on possible future research directions.

Our Benchmark on open-challenges in stereo (Booster)
is available at https://cvlab-unibo.github.io/
booster-web/.

2. Related Work
We briefly review the literature relevant to our work.
Traditional and Deep Stereo. For years, most algo-

rithms have been developed following a common pipeline
sketched in [36], starting with matching cost computation
and successive optimization strategies. Among the vast lit-
erature on traditional algorithms [11, 12, 20, 52, 53], Semi-
Global Matching (SGM) [18] is by far the most popular.
With the advent of deep learning, the first research efforts
focused on formulating the individual steps of the con-
ventional pipeline [36] as learnable neural networks, e.g.
matching cost computation [8,27,54], optimization [40,41]
and refinement [1, 3, 17]. Then, end-to-end deep stereo net-
works rapidly gained the main stage [22, 28, 30], thanks
to the top-positions achieved on the KITTI 2012 [15] and
2015 [29] benchmarks.

This research direction produced a large variety of deep
stereo architectures [5, 9, 13, 24, 43, 46, 49, 51, 55], as sur-
veyed in [32], as well as investigations on self-supervised
learning strategies [2, 23, 31, 44, 45, 48, 57], zero-shot gen-
eralization across datasets [1, 4, 56] and, more recently, un-
balanced stereo setups [1, 26].

Stereo benchmarks. Among the factors behind the in-
tensive research on stereo vision, the increasing availability
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Figure 2. Dataset acquisition overview. Our dataset acquisition procedure can be divided into 3 main parts. Left (blue): initial calibration
of our trinocular rig and the two stereo systems L− C and L−R. Middle (yellow): image acquisition without ground-truth. Right (red):
acquisition with ground-truth.

L C R

Figure 3. Cameras setup and acquisition stages. On left, we
show our camera rig, in which L and R are two 12 Mpx cameras,
and C is a wide-angle 2.3 Mpx camera. On right: i) acquisition of
passive stereo pairs, ii) painting of reflective/transparent surfaces,
iii) acquisition of textured stereo pairs.

of datasets and benchmarks plays a crucial role. For the
first decades, the dataset were limited to few dozen sam-
ples, acquired in controlled environments and mostly made
available by the Middlebury benchmark [19, 35–37]. In the
‘10s, more and more stereo datasets appeared, starting with
KITTI 2012 [16] and 2015 [29], collected in driving en-
vironments and annotated by means of a Velodyne LiDAR
sensor, then Middlebury 2014 [34], framing indoor environ-
ments at up to 6 Mpx and annotated through pattern projec-
tion, and ETH3D [39] which includes both indoor and out-
door scenes. Recently, other large-scale stereo benchmarks
dealing with driving scenarios have been released, although
not yet well-established as KITTI. Among them, we men-
tion DrivingStereo [50], Argoverse [6], Apolloscape [21]
and DSEC [14]. However, none of these more recent stereo
datasets focus on the hardest open challenges for stereo
matching as, instead, it is the case of our Booster dataset.
Indeed, architectures ranking on top of KITTI perform re-
markably well also on the above datasets. On the contrary,
we show that state-of-the-art networks struggle on Booster.

3. Processing pipeline

Camera setup and calibration. To collect our dataset,
we have built a custom stereo rig made of 2 high resolu-
tion cameras featuring a Sony IMX253LQR-C 12.4 Mpx
sensor and a lower resolution camera equipped with a Sony

IMX174LQJ-C 2.3 Mpx sensor mounted between the for-
mer two, as shown in Fig. 3 (left picture). From left to right
we denote as L, C, and R the three cameras, with L pro-
viding the reference image for both the balanced (L,R) and
unbalanced (L,C) stereo pairs, and the baselines of these
two setups being ∼ 8 and 4 centimeters, respectively.

Before acquiring the dataset, we need to calibrate our rig,
in particular the two stereo systems L−C and L−R. Fig.
2 includes an overview of the calibration procedure, with a
more detailed description provided in the supplement.

Image acquisition. Our trinocular rig has been em-
bodied into a portable setup in order to acquire a variety
of scenes across different environments. In addition, our
setup includes six portable projectors used to enrich the
scene with random textures during the acquisition of the
stereo pairs endowed with ground-truth (red block of Fig.
2). For each ground-truth acquisition, before starting, we
properly setup the stage in order to capture one or more ob-
jects/surfaces embodying some of the open-challenges pe-
culiarly addressed by our dataset. Then, the image acqui-
sition pipeline follows three main steps, visually resumed
in Fig. 3 (right pictures): i) passive images acquisition –
we collect a set of balanced and unbalances stereo images
under different lightning conditions. ii) scene painting – we
carefully cover any specular/transparent surface in the scene
with paint, thus allowing to properly project texture over
them. iii) textured images acquisition – we project random
patterns from multiple directions and acquire a hundred im-
ages with varying textures. Differently from the white-
black banded patterns often used for this purpose [10], we
project color textures since we exploit state-of-the-art deep
stereo networks to label the scene. We empirically observed
that color patterns result more distinctive for a deep stereo
network, that is used to process bright colors typical of the
synthetic datasets [28] where they have been trained. The
outcome of this procedure consists of a set of passive stereo
pairs – both unbalanced and at high-resolution – with dif-
ferent illumination conditions, representing the actual im-
ages that will be released with the dataset, and a larger set
of textured images – these latter used to produce ground-
truth disparities only, as detailed in the next paragraph, and
thus acquired at high-resolution only in order to produce the
finest annotations.
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Deep space-time stereo processing. Once a set of mul-
tiple high-resolution stereo pairs – augmented with distinc-
tive colorful textures according to the aforementioned strat-
egy – has been acquired for a scene, we deploy our deep
space-time stereo pipeline to infer a dense and accurate dis-
parity map for the passive pair. Purposely, we leverage a
pre-trained deep stereo network achieving high zero-shot
generalization accuracy. We expect that, in the presence
of the distinctive colorful texture we project in the scene as
described before, the deep network can correctly infer a re-
liable disparity map. Moreover, we exploit the availability
of multiple stereo pairs to further improve the outcome.

Driven by the observation that most stereo networks pro-
cess a cost-volume, we accumulate all the cost volumes
computed from each textured single stereo pair into an ag-
gregated one. The resulting volume will reduce the effect
of noise due to portions of the scene that may turn out not
properly textured in a single acquisition. Purposely, we se-
lect RAFT-Stereo [25], as the top-1 method on the Middle-
bury 2014 stereo benchmark at the time of writing. Specifi-
cally, it uses the dot product as a measure of visual similar-
ity between features f and g extracted respectively from the
reference and target images. Thus, RAFT-Stereo computes
a correlation volume storing the inner product between any
pixel features in the reference image and all those at the
same y-coordinate on the target image:

Cijk =
∑
h

fijk · gikh, C ∈ RH×W×W (1)

Then, the network recursively estimate a disparity map di

by means of a correlation look-up mechanism, implemented
as a recurrent neural network Θ processing reference image
features f , some additional context features c, the correla-
tion volume C and the disparity di−1 estimated at the pre-
vious iteration

di = Θ(f , c,di−1,C) (2)

until a final disparity map d is estimated after a fixed
number of iterations. We exploit the availability of T stereo
pairs and build an accumulated correlation volume C∗ by
averaging the correlation volumes computed from f t and gt

extracted from a single stereo pair t

C∗
ijk =

1

T

∑
t

∑
h

f tijk · gt
ikh, C ∈ RH×W×W (3)

Then, we exploit this enriched volume to estimate a set of
disparity maps from any given stereo pair

dt
i = Θ(f t, ct,dt

i−1,C
∗) (4)

Once the disparity maps dt have been estimated, we finally
compute their average to obtain an initial, ground-truth dis-
parity map d∗ as well as an uncertainty guess u∗ through
their variance. The pipeline sketched so far is effective at es-
timating accurate ground-truths up to half the resolution of
our textured images, i.e. about 6 Mpx, since RAFT-Stereo
has never observed samples at such higher resolution and
with such higher disparity range. Thus, the outcome of our
deep space-time stereo pipeline is a set of accurate disparity
maps which yet require additional processing.

Super-resolution and sharpening. The quality of the
disparity labels produced so far is dampened by two main
causes, i) the resolution, being half of the real image reso-
lution and ii) the presence of over-smoothed depth discon-
tinuities, a common concern in disparity maps predicted by
deep networks [7, 47]. To address both at once, we deploy
the neural disparity refinement architecture proposed in [1].
However, being our images at a much higher-resolution
compared to existing datasets, we pretrain the refinement
network following [1], then we overfit a single instance of
it on each scene, assuming the disparity map as both input
and ground-truth. This strategy allows us to preserve ac-
curate disparity values at high-resolution while sharpening
depth boundaries thanks to the network output formulation.

Besides, we replaced the sub-pixel prediction mecha-
nism described in [1] with the SMD head proposed by Tosi
et al. [47], since we empirically observed that the former
introduces undesired artefacts in our setting. Thus, each
neural disparity refinement network is optimized to infer a
bimodal Laplacian distribution

p(d) =
π

2b1
e−

d∗−µ1
b1 +

1− π

2b2
e−

d∗−µ2
b2 (5)

Once the network is trained, a sharpened disparity map d∗

is obtained at full resolution by exploiting the continuous
representation enabled by the refinement network, selecting
the mode with highest density value. Concerning the im-
plementation, a shared refinement network is pre-trained on
SceneFlow following the guidelines in [1]. Then, a single
instance is overfitted on each scene for about 300 steps be-
fore inferring the refined disparity map.

Manual cleaning and filtering. Once a full-resolution
disparity map has been obtained, we manually clean it from
any remaining artefact. To this aim, we project it into a 3D
point cloud to better visualize structural errors in the geom-
etry of the scene. We use the variance map u∗ as a guidance
during this operation, allowing to easily detect most of the
artifacts. Points removed from the point cloud are then fil-
tered out from the disparity map as well. Finally, we apply
a 35 × 35 bilateral filter – with σcolor = 5 and σdist = 50 –
to smooth objects surfaces and obtain the final map d∗.

Fig. 4 illustrates the pipeline described so far, showing
the increasing quality of 3D reconstruction yielded by our
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RGB & Mask Raft Passive Raft Spacetime SR & Sharpening Manual Filtering

Figure 4. Data annotation pipeline. From left to right: reference image (top) and material segmentation mask (bottom), disparity maps
(top) and point clouds (bottom) obtained by RAFT-Stereo on the passive pairs, by our deep space-time stereo algorithm, by the super
resolution & sharpening procedure, and after manual cleaning.

annotations after each step.
Accuracy assessment. We follow the strategy used by

Scharstein et al. [34] in the Middlebury 2014 dataset to
measure the accuracy of our ground-truth annotations. Ac-
cordingly, we manually select planar regions from the im-
ages and fit a plane to the recovered disparities over each
of them, then we measure the residuals between the fit-
ted plane equation and the actual disparities. We perform
this evaluation over 153 planar regions achieving an aver-
age residual error of 0.053, which turns out comparable to
that reported for the Middlebury 2014 dataset (0.032), yet
without applying an explicit sub-pixel refinement based on
plane fitting.

Left-right consistency (balanced setup). We also filter
out occluded pixels by performing a left-right consistency
check. Purposely, the processing pipeline described so far
is performed twice for each scene, producing two disparity
maps, d∗

L and d∗
R, for the left and right images, respectively.

Then, any pixel at coordinates (x, y) in d∗
L is filtered out in

case the absolute difference with its match x − dL(x, y), y
in d∗

R is larger than a threshold, set to 2 pixels in our case

|dL(x, y)− dR(x− dL(x, y), y)| > 2 (6)

The same procedure is performed on top of d∗
R, removing

any pixel at coordinate (x, y) after comparison with pixel
(x+ d∗

R(x, y), y) on the left disparity map.
The output of our overall annotation pipeline consists of

three high-resolution ground-truth disparity maps per scene:
two for the left and right images of the balanced setup, one
for the unbalanced setup.

Segmentation masks. Finally, we manually label im-
ages to annotate challenging surfaces, i.e. transparent or
specular, with segmentation masks. We cluster object sur-
faces into 4 classes (from 0 to 3) with increasing level
of transparency and/or specularity, with class 0 identifying
very opaque materials (e.g., a wood table) and class 3 those
highly transparent/specular (e.g., window glasses/mirrors).
An example of segmentation mask is shown in Fig. 4.

Warping (unbalanced setup). The ground-truths ob-

Balanced Setup Unbalanced Setup Illuminations

Figure 5. A scene from the Booster testing split. First two
columns: data made available in the balanced setup (12 Mpx stereo
pair, material segmentation mask, left and right disparity maps and
left-right consistency mask). Third column: data dealing with the
unbalanced setup (12 Mpx - 1.1 Mpx image pair, high-res disparity
map associated with the 12 Mpx image ). Last columns: additional
12 Mpx images acquired under different illuminations.

tained so far are aligned with images of L − R. However,
we want ground-truths also for the unbalanced L−C stereo
system. Being the rectification transformation an homog-
raphy (i.e., only a change of intrinsic parameters and a ro-
tation), we can easily perform a backward warping of the
ground-truths of the left images of L − R to align them to
the left images of L − C. When warping disparity maps,
we take into account the rotation of the camera reference
frame and the different baselines of the two stereo systems
before performing the warping. Additional details about the
warping procedure can be found in the supplement.

4. The Booster Dataset
Composition. To build up the dataset, we set the stage

in 64 different indoor scenes. Then, we collected a variety
of passive stereo images under different illumination con-
ditions, leading to a total of 419 stereo samples for which
we obtain dense annotations through the pipeline detailed in
Sec. 3. We split the 64 scenes into 38 and 26 for training and
testing purposes, respectively. As a result, Booster counts

21172



228 training images and 191 testing images. In defining the
split we aimed at having diversity of environments between
the training and test scenes as well as at achieving a bal-
anced distribution of challenging objects and materials (e.g.,
both splits contain a scene framing a mirror). Two main
benchmarks are defined in Booster: the Balanced bench-
mark, including 419 stereo pairs at 12 Mpx, and the Unbal-
anced one, featuring equally many 12 Mpx - 1.1 Mpx pairs.
The latter represents the first-ever real dataset for unbal-
anced stereo matching, a task studied so far only by simulat-
ing the unbalanced setup by resizing one of the two images
of a balanced pair same-resolution stereo images [1, 26].
More details regarding dataset images are reported in the
supplement. Fig. 5 concerns a sample from the testing split
and shows the data made available for any acquired scene.

Unlabeled samples. To encourage research on weakly-
supervised approaches, i.e. not requiring ground-truth la-
bels at training time, we release 15K additional samples
collected –in both balanced and unbalanced settings – in
a variety of indoor and outdoor environments.

Evaluation metrics. To assess the accuracy of stereo
algorithms and networks, we adopt a set of metrics in-
spired by Middlebury 2014 [34]. Specifically, we compute
the amount of pixels having error larger than a threshold τ
(bad-τ ). As initially our ground-truth maps are inferred at
half the input resolution, we assume 2 pixels as the lowest
threshold. Then, given the much higher resolution of our
images, we compute error rates up to bad-8. We also mea-
sure Mean Absolute Error (MAE) and Root Mean Squared
Error (RMSE). All metrics are computed on any valid pixel
(All), or in alternative, on pixels belonging to the material
class i (Class i) to evaluate the impact of non-Lambertian
objects. In the case of the balanced setup, we also evaluate
on not-occluded pixels identified by the left-right check of
our annotation pipeline (e.g., the bottom image in the third
column of Fig. 5).

5. Experiments

5.1. Balanced Stereo Benchmark

We start by considering the Balanced split of Booster and
perform a set of different experiments.

Off-the-shelf deep networks. We run a set of off-the-
shelf, state-of-the-art deep stereo networks on the test set
of Booster in order to assess their accuracy. We select
networks with freely available implementations and pre-
trained weights providing good performance on the Middle-
bury 2014 dataset, i.e. the most challenging among existing
benchmarks. This constraint limits our selection to HSM-
Net [49] LEAStereo [9], CFNet [42], RAFT-Stereo [25]
and Neural Disparity Refinement [1]. We also evaluate,
as references, the popular Semi-Global Matching algorithm
(SGM) [18] and the pivotal MC-CNN network [54] in its

fast variant because of memory constraints.
Tab. 1 collects the outcome of this evaluation. In the

top portion of the table, we compare the predicted disparity
maps with full-resolution ground-truths, on All (left) and
Cons (right) pixels, the latter being the pixels of the left im-
age that turn out consistent upon performing the left-right
check and, as such, are considered as not-occluded. Each
method processes input images either at the original resolu-
tion (F) or scaled to half (H) or quarter (Q) resolution. Deep
networks inferences are performed on a single 3090 RTX
GPU. We can notice how most methods can run only at Q
resolution, mainly because of memory constraints. Conse-
quently, their output is upsampled with nearest-neighbor in-
terpolation in order to perform the comparison with the full-
resolution ground-truth maps, with disparities scaled by the
upsampling factor itself. We can notice how all methods
struggle at achieving good results at such high resolution,
with RAFT-Stereo achieving the best results – not surpris-
ingly, perhaps, given its top-rank on Middlebury. Error met-
rics computed on All and Cons pixels yield similar scores,
proving that occlusions do not represent the main difficul-
ties in our benchmark. In the bottom portion of Tab. 1, pre-
dicted disparities are compared with ground-truth disparity
maps downsampled to a quarter (Q) of the original resolu-
tion. Although the error metrics are much lower in general,
we point out how they are still very far from those observed
on existing benchmarks [15,29,34,38], confirming that res-
olution is certainly a challenge in our benchmark, yet not
the only one – due to the large presence of transparent and
specular surfaces framed during acquisition.

Evaluation on challenging regions. We dig deeper into
the unique features of Booster by evaluating the accuracy
of the predicted disparities in regions of increasing level of
difficulty, as defined by means of the material segmentation
masks. Purposely, we select the top-performing network
from the previous evaluation, i.e. RAFT-Stereo, and evalu-
ate it on subsets of pixels defined by our manually annotated
masks. Tab. 2 collects the outcome of this evaluation, to-
gether with results on all valid pixels as a reference. Starting
from the least challenging category, we observe much lower
error scores – in particular, by evaluating on quarter resolu-
tion ground-truths (bottom), we achieve results comparable
with those of existing benchmarks [34]. By gradually in-
creasing the degree of difficulty of the considered pixels,
we witness a large increase of the errors. This confirms both
our claims on the open-challenges in deep stereo as well as
the significance of our segmentation masks.

Fine-tuning by the Booster training data. Finally, we
fine-tune RAFT-Stereo on the Booster training set to show
that the availability of annotated scenes can be effective in
improving the result in presence of the open challenges ad-
dressed in this paper. We run 100 epochs on batches of two
884×456 crops, extracted from images randomly resized to
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Fu
ll

re
s.

Input
Model Res.

SGM [18] Q
MC-CNN [54] Q
LEAStereo [9] Q
CFNet [42] Q
HSMNet [49] Q
RAFT-Stereo [25] Q

SGM [18] H
HSMNet [49] H
SGM+Neural Ref. [1] H
RAFT-Stereo [25] H

HSMNet [49] F

All pixels

bad-2 bad-4 bad-6 bad-8 MAE RMSE
(%) (%) (%) (%) (px.) (px.)

80.35 66.89 58.09 52.21 57.01 119.21
88.09 66.30 47.77 40.53 31.23 62.98
70.86 55.41 47.56 42.25 27.61 51.72
61.34 48.33 42.22 38.34 27.60 51.62
66.95 48.05 37.46 31.14 20.97 42.72
40.27 27.54 22.83 20.13 17.08 36.30

76.61 64.72 58.34 54.37 71.68 133.35
53.75 36.47 28.71 24.50 19.17 42.00
78.54 63.20 53.77 46.87 31.82 67.02
46.31 35.49 30.98 28.15 23.95 49.94

50.85 36.53 30.77 27.56 30.82 68.97

Cons pixels

bad-2 bad-4 bad-6 bad-8 MAE RMSE
(%) (%) (%) (%) (px.) (px.)

78.40 63.70 54.13 47.79 41.28 91.86
87.64 64.20 44.24 36.70 27.56 57.34
69.15 53.17 45.42 40.24 26.36 49.52
59.13 46.02 40.08 36.36 25.72 48.55
65.23 45.86 35.36 29.31 20.93 42.42
38.65 26.49 22.25 19.84 17.13 35.76

74.18 61.17 54.25 49.99 55.25 106.55
51.25 34.06 26.78 23.01 18.92 41.28
78.35 60.59 49.59 42.50 30.92 68.37
44.02 33.59 29.49 26.95 23.25 48.11

48.11 33.88 28.50 25.61 30.02 66.79

Q
ua

rt
er

re
s.

Input
Model Res.

SGM [18] Q
MC-CNN [54] Q
LEAStereo [9] Q
CFNet [42] Q
HSMNet [49] Q
RAFT-Stereo [25] Q

All pixels

bad-2 bad-4 bad-6 bad-8 MAE RMSE
(%) (%) (%) (%) (px.) (px.)

52.76 39.43 33.11 29.26 14.64 30.68
40.33 30.36 25.64 22.25 7.82 15.85
42.21 30.23 24.37 20.43 6.89 12.92
38.31 29.53 24.70 21.34 6.89 12.89
31.11 20.25 15.92 13.23 5.24 10.67
20.13 15.13 12.85 11.05 4.27 9.05

Cons pixels

bad-2 bad-4 bad-6 bad-8 MAE RMSE
(%) (%) (%) (%) (px.) (px.)

48.42 34.18 27.58 23.63 10.75 24.05
36.50 26.50 21.84 18.79 6.90 14.43
40.19 28.68 23.21 19.50 6.58 12.36
36.32 27.85 23.24 20.05 6.42 12.11
29.25 19.47 15.70 13.23 5.22 10.59
19.82 15.19 12.98 11.17 4.28 8.91

Table 1. Results on the Booster Balanced testing split. We run off-the-shelves stereo networks, using weights provided by their authors.
We evaluate on full resolution ground-truth maps, or by downsampling them to quarter resolution. Best scores in bold.

Fu
ll

re
s.

Category

All

Class 0
Class 1
Class 2
Class 3

All pixels

bad-2 bad-4 bad-6 bad-8 MAE RMSE
(%) (%) (%) (%) (px.) (px.)

40.27 27.54 22.83 20.13 17.08 36.30

32.81 16.67 11.11 7.92 3.72 9.38
42.95 27.47 21.60 18.21 10.20 19.96
73.59 60.69 51.03 44.51 36.67 47.44
81.54 71.93 65.22 59.62 47.73 59.38

Q
ua

rt
er

re
s.

Category

All

Class 0
Class 1
Class 2
Class 3

All pixels

bad-2 bad-4 bad-6 bad-8 MAE RMSE
(%) (%) (%) (%) (px.) (px.)

20.13 15.13 12.85 11.05 4.27 9.05

7.97 3.72 2.33 1.82 0.93 2.28
18.22 11.22 7.84 6.68 2.55 4.97
44.47 32.14 27.92 25.43 9.17 11.88
59.65 43.99 34.97 28.51 11.92 14.82

Table 2. Results on the Booster Balanced testing split – ma-
terial segmentation. We run RAFT-Stereo [25], using weights
made available by their authors and process quarter resolution im-
ages. We evaluate on full resolution ground-truth maps, or by
downsampling them to quarter resolution.

half or quarter of the original resolution, using the optimiza-
tion procedure from [25] and initial learning rate set to 1e-5.

Tab. 3 collects the results on All pixels, as well as on
each segmentation class. Compared to the results in Tab. 2,
all error metrics tend to improve. More specifically, we can
notice how the metrics do improve significantly for the most
challenging materials, at the cost of a minimal decrease
in accuracy within the simpler regions (Class 0). Overall
we reckon that, although our experiments show that avail-
ability of annotated data can help to better handle specu-
lar/transparent objects by deep stereo networks, the accu-
racy level turns out still much worse compared to opaque
surfaces. Hence, we observe that these kinds of materials
set forth really hard open challenges in stereo which, hope-
fully, may be addressed in future research thanks also to the
availability of the annotated data provided by Booster.

In Fig. 6 we provide some qualitative results dealing
with the predictions obtained by the networks evaluated in
Tab. 1 as well as, in the rightmost column, by RAFT-Stereo

Fu
ll

re
s.

Category

All

Class 0
Class 1
Class 2
Class 3

All pixels

bad-2 bad-4 bad-6 bad-8 MAE RMSE
(%) (%) (%) (%) (px.) (px.)

38.68 23.33 17.66 14.55 7.56 17.39

37.50 20.47 13.75 10.40 4.43 10.07
42.48 23.35 16.15 12.22 5.24 12.05
61.84 42.37 33.23 27.37 13.08 18.08
65.59 48.74 39.19 32.93 14.91 21.75

Q
ua

rt
er

re
s.

Category

All

Class 0
Class 1
Class 2
Class 3

All pixels

bad-2 bad-4 bad-6 bad-8 MAE RMSE
(%) (%) (%) (%) (px.) (px.)

14.46 9.47 7.32 5.76 1.87 4.23

10.29 4.61 2.76 2.00 1.08 2.33
12.09 6.35 4.62 3.58 1.28 2.82
27.22 16.83 13.06 10.65 3.25 4.42
32.91 21.08 15.36 10.46 3.70 5.32

Table 3. Results on the Booster Balanced testing split after fine
tuning on the training split – material segmentation. We run
RAFT-Stereo, fine-tuned on the Booster training split, processing
quarter resolution images. We evaluate on full resolution ground-
truth maps, or by downsampling them to quarter resolution.

after fine-tuning on the Booster training set (Tab. 3). After
fine-tuning on the Booster training split, RAFT-Stereo has
learned to handle transparent objects much better.

5.2. Unbalanced Stereo Benchmark

Here, we evaluate the considered stereo methods on the
Booster Unbalanced testing split. Tab. 4 collects the out-
come of this experiment. For most methods, we follow the
baseline approach defined in [1] and downsample the ref-
erence high-resolution image to the same resolution as the
second image. Yet, as HSMNet is designed to handle high-
resolution stereo pairs, for this network we upsample the
target up to the reference image size. We point out that
these results are not directly comparable to those in Tab. 1,
since the baseline length (and thus disparity values) in this
setup is halved, thus making the matching problem easier
(i.e., smaller research range). Therefore, being errors larger
than those of the Balanced split, it is evident the major dif-
ficulty of this scenario. Moreover, we highlight that, sim-
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RGB & GT MC-CNN [54] LEAStereo [9] CFNet [42] HSMNet [49] Neural Ref. [1] RAFT-Stereo [25] RAFT-Stereo (ft) [25]

Input Res. Q Q Q H H Q Q

Figure 6. Qualitative results on Booster Balanced testing split. We show the reference image (top) and the ground-truth map (bottom)
on leftmost column, followed by disparity (top) and error maps (bottom) for the deep models evaluated in our benchmark.

Model

SGM [18]
MC-CNN [54]
LEAStereo [9]
CFNet [42]
HSMNet [49] †
SGM+Neural Ref. [1] †
RAFT-Stereo [25]

RAFT-Stereo [25] (ft)

All pixels

bad-2 bad-4 bad-6 bad-8 MAE RMSE
(%) (%) (%) (%) (px.) (px.)

78.47 62.74 52.62 45.97 42.63 97.62
86.30 68.67 54.20 44.78 23.64 45.46
74.31 57.70 47.11 39.88 17.68 31.29
70.22 53.20 43.61 37.10 16.19 28.78
63.20 43.22 32.87 26.55 11.96 22.82
70.90 52.15 41.71 35.40 24.27 52.52
55.96 36.81 27.87 22.33 9.86 19.36

58.67 32.83 22.96 17.65 6.31 11.11

Table 4. Results on Booster Unbalanced testing split. We run
stereo networks, using weights made available by their authors.
We evaluate on full resolution ground-truth maps. † denotes im-
ages being resized to half the reference resolution (about 6 Mpx).
(ft) denotes fine-tuned on Booster Unbalanced training split.

ilarly to the Balanced setup, by fine-tuning RAFT-Stereo
on the Unbalanced training split, we can improve its per-
formance on nearly all metrics. Thus, future research on
stereo may leverage the finding that state-of-the-art deep
models hold the potential to better learn to match spec-
ular/transparent surfaces even in unbalanced setting when
properly fine-tuned with carefully annotated data.

5.3. Challenges in Monocular Depth Estimation

We argue that most of the difficult surfaces featured by
Booster set forth open-challenges to be addressed in future
research also for other image-based depth estimation ap-
proaches, such as, in particular, monocular depth estima-
tion. As a side experiment, thus, we run DPT [33] – a trans-
former for single image depth estimation – on the images
present in our dataset. Fig. 7 shows some qualitative exam-
ples, highlighting how scale-aligned DPT predictions are
very inaccurate on transparent surfaces.

6. Conclusion, Limitations and Future work
In this paper, we have presented the Benchmark on open-

challenges in stereo (Booster), a novel stereo dataset col-
lecting 419 images – acquired both in balanced and un-
balanced setups – featuring extremely challenging environ-
ments and kinds of objects. It comes with dense and accu-
rate ground-truth disparities, obtained through a novel deep

Figure 7. Qualitative results for monocular depth estimation.
From left to right: reference images, depth maps predictions by
DPT [33], ground-truth depth maps, error maps.

space-time stereo pipeline, as well as with manually an-
notated material segmentation masks. Compared to recent
stereo datasets targeting autonomous/assisted driving, such
as DrivingStereo [50], Booster includes a much smaller
number of annotated images and, hence, cannot be consid-
ered a large-scale dataset. Moreover, the deep space-time
pipeline and the small baseline used for annotations con-
straints the collected scenes to frame indoor environments.

Our experiments show that Booster unveils some of the
most intriguing challenges in deep stereo and provides hints
on promising research directions. In particular, follow-
up work fostered by Booster may be devoted to i) inves-
tigating on the ability of deep models suitably fine-tuned
on Booster to generalize to outdoor setting featuring simi-
lar difficult surfaces and materials, ii) devising a pipeline,
e.g, leveraging on Lidar sensors, to collect annotated data
with transparent/specular surfaces also in outdoor setting,
iii) build large scale synthetic datasets specifically address-
ing the open-challenges highlighted by Booster to enable
more effective pre-training and iv) building and scanning
scenes through successive depth layers, to gather multiple
depths at transparent/reflective objects which can be useful
for applications such as augmented reality.

Therefore, we are lead to believe that Booster holds the
potential to boost future research in deep stereo.
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