This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

Habitat-Web: Learning Embodied Object-Search Strategies
from Human Demonstrations at Scale

Ram Ramrakhya! Eric Undersander? Dhruv Batral? Abhishek Das?

!Georgia Institute of Technology

1{ram. ramrakhya, dbatra}@gatech.edu

Abstract

We present a large-scale study of imitating human demon-
strations on tasks that require a virtual robot to search for
objects in new environments — (1) ObjectGoal Navigation
(e.g. ‘find & go to a chair’) and (2) PICK&PLACE (e.g. ‘find
mug, pick mug, find counter, place mug on counter’). First,
we develop a virtual teleoperation data-collection infras-
tructure — connecting Habitat simulator running in a web
browser to Amazon Mechanical Turk, allowing remote users
to teleoperate virtual robots, safely and at scale. We collect
80k demonstrations for OBJECTNAV and 12k demonstra-
tions for PICK&PLACE, which is an order of magnitude
larger than existing human demonstration datasets in sim-
ulation or on real robots. Our virtual teleoperation data
contains 29.3M actions, and is equivalent to 22.6k hours of
real-world teleoperation time, and illustrates rich, diverse
strategies for solving the tasks. Second, we use this data to
answer the question — how does large-scale imitation learn-
ing (IL) (which has not been hitherto possible) compare to
reinforcement learning (RL) (which is the status quo)? On
OBJECTNAYV, we find that IL (with no bells or whistles) us-
ing 70k human demonstrations outperforms RL using 240k
agent-gathered trajectories. This effectively establishes an
‘exchange rate’ — a single human demonstration appears to
be worth ~4 agent-gathered ones. More importantly, we find
the IL-trained agent learns efficient object-search behavior
Jfrom humans — it peeks into rooms, checks corners for small
objects, turns in place to get a panoramic view — none of
these are exhibited as prominently by the RL agent, and to in-
duce these behaviors via contemporary RL techniques would
require tedious reward engineering. Finally, accuracy vs.
training data size plots show promising scaling behavior,
suggesting that simply collecting more demonstrations is
likely to advance the state of art further. On PICK&PLACE,
the comparison is starker — IL agents achieve ~18% suc-
cess on episodes with new object-receptacle locations when
trained with 9.5k human demonstrations, while RL agents
fail to get beyond 0%. Overall, our work provides compelling
evidence for investing in large-scale imitation learning.

Project page: ram81.github.io/projects/habitat-web.

2Meta Al Research
2{eunder‘sander‘ ,abhshkdz}@fb.com

1. Introduction

General-purpose robots that can perform a diverse set of
embodied tasks in a diverse set of environments have to be
good at visual exploration. Consider the canonical example
of asking a household robot, ‘Where are my keys?’. To
answer this (assuming the robot does not remember the
answer from memory), the robot would have to search the
house, often guided by intelligent priors — e.g. peeking into
the washroom or kitchen might be sufficient to be reasonably
sure the keys are not there, while exhaustively searching
the living room might be much more important since keys
are more likely to be there. While doing so, the robot has
to internally keep track of where all it has been to avoid
redundant search, and it might also have to interact with
objects, e.g. check drawers and cabinets in the living room
(but not those in the washroom or kitchen!).

This example illustrates fairly sophisticated exploration, in-
volving a careful interplay of various implicit objectives
(semantic priors, exhaustive search, efficient navigation, in-
teraction, efc.). Many recent tasks of interest in the embodied
Al community — e.g. ObjectGoal Navigation [1, 2], rear-
rangement [3,4], language-guided navigation [5,6] and inter-
action [7], question answering [8—12] — involve some flavor
of this visual exploration. With careful reward engineering,
reinforcement learning (RL) approaches to these tasks have
achieved commendable success [13—-17]. However, engi-
neering the ‘right’ reward function so that the learned policy
exhibits desired behavior is unintuitive and frustrating (even
for domain experts), expensive (requiring multiple rounds of
retraining under different rewards), and not scalable to new
tasks or behaviors. For complex tasks (e.g. object rearrange-
ment or tasks specified in open-ended natural language), RL
from scratch may not even get off the ground.

In this work, we advance the alternative research agenda of
imitation learning [18] — i.e. collecting a large dataset of
human demonstrations (that implicitly capture intelligent be-
havior we wish to impart to our agents) and learning policies
directly from these human demonstrations.

First, we develop a safe scalable virtual teleoperation data-
collection infrastructure — connecting the Habitat simulator

5173

(2) Imitation learning on
human demonstrations

(1) Human demonstrations

(a)

M Initial position [] Goal position [l Success area B Agent's Trajectory

40

357 ==
=

301 /
y

257 y
/

201 /

(3) Shortest path]

Success (%)

IL (MP3D) —e—
151 1 RL (on 240k episodes) ——
Y = (6.98 x log(X) +5.4) ---
Navigation goal: plant 104 75 50 75 160
Dataset size (x 1k episodes)
(b)

Figure 1. a) Example OBJECTNAV 1) human demonstration, 2) agent trained on human demonstrations, and 3) shortest path. Notice how
humans demonstrate sophisticated exploration behavior to succeed at this task in unseen environments, which is hard to engineer into the
right reward for an RL agent and is unlikely to be captured in shortest path demonstrations. An agent trained on human demonstrations learns
this exploration and object-search behavior. b) Success on the OBJECTNAV MP3D-VAL split vs. no. of human demonstrations for training.

running in a browser to Amazon Mechanical Turk (AMT).
We develop this in way that enables collecting human demon-
strations for a variety of tasks being studied within the Habi-
tat [19,20] ecosystem (e.g. PointNav [2], OBJECTNAV [, 2],
ImageNav [21], VLN-CE [6], MultiON [22], etc.).

We use this infrastructure to collect human demonstra-
tion datasets for 2 tasks requiring visual search — 1) Ob-
jectGoal Navigation (e.g. ‘find & go to a chair’) and 2)
PICK&PLACE (e.g. ‘find mug, pick mug, find counter, place
on counter’). In total we collect 92k human demonstra-
tions, 80k demonstrations for OBJECTNAV and 12k demon-
strations for PICK&PLACE. In contrast, the largest exist-
ing datasets have 3-10k human demonstrations in simula-
tion [23-25] or on real robots [26,27], an order of magnitude
smaller. This virtual teleoperation data contains 29.3M ac-
tions, which is equivalent to 22, 600 hours of real-world tele-
operation time assuming a LoCoBot motion model from [28]
(details in appendix (Sec. A.3)). The first thing this data pro-
vides is a ‘human baseline’ with sufficiently tight error-bars
to be taken seriously. On the OBJECTNAV validation split,
humans achieve 93.7+0.1% success and 42.5+0.5% Success
Weighted by Path Length (SPL) [2] (vs. 34.6% success and
7.9% SPL for the 2021 Habitat ObjectNav Challenge win-
ner [15]). The success rate (93.7%) suggests that this task is
largely doable for humans (but not 100%). The SPL (42.5%)
suggests that even humans need to explore significantly.
Beyond scale, the data is also rich and diverse in the strate-
gies that humans use to solve the tasks. Fig. 1 shows an
example trajectory of an AMT user controlling a LoCoBot
looking for a ‘plant’ in a new house — notice the peeking
into rooms, looping around the dining table — all of which is
(understandably) absent from the shortest path to the goal.
We use this data to answer the question — how does large-
scale imitation learning (IL) (which has not been hitherto
possible) compare to large-scale reinforcement learning (RL)
(which is the status quo)? On OBJECTNAV, we find that IL

(with no bells or whistles) using only 70k human demon-
strations outperforms RL using 240k agent-gathered trajec-
tories. This effectively establishes an ‘exchange rate’ — a
single human demonstration appears to be worth ~4 agent-
gathered ones. More importantly, we find the IL-trained
agent learns efficient object-search behavior — as shown in
Fig. 1 and Sec. 7. The IL agent learns to mimic human
behavior of peeking into rooms, checking corners for small
objects, turning in place to get a panoramic view — none
of these are exhibited as prominently by the RL agent. Fi-
nally, the accuracy vs. training-data-size plot (Fig. 1b) shows
promising scaling behavior, suggesting that simply collect-
ing more demonstrations is likely to advance the state of art
further. On PICK&PLACE, the comparison is even starker
— IL-agents achieve ~18% success on episodes with new
object-receptacle locations when trained with 9.5k human
demonstrations, while RL agents fail to get beyond 0%.

On both tasks, we find that demonstrations from humans
are essential; imitating shortest paths from an oracle pro-
duces neither accuracy nor the strategic search behavior. In
hindsight, this is perfectly understandable — shortest paths
(e.g. Fig. 1(a3)) do not contain any exploration but the task
requires the agent to explore. Essentially, a shortest path is
inimitable, but imitation learning is invaluable. Overall, our
work provides compelling evidence for investing in large-
scale imitation learning of human demonstrations.

2. Related work

Embodied Demonstrations from Humans. Prior expert
demonstration datasets for embodied tasks combining vision
and action (and optionally language) can be broadly catego-
rized into either consisting of shortest-path trajectories from
a planner with privileged information [5, 7, 8, 29], or con-
sisting of human-provided trajectories [23-25]. While some
works in the former collect natural language data from hu-

5174

mans [5, 7], we contend that collecting navigation data from
humans is equally crucial. Datasets with human-provided
navigation trajectories are typically small. TEACh [23],
CVDN [24] and WAY [25] have <10k episodes, while
the EmbodiedQA [8] dataset has ~700 human-provided
episodes — all prohibitively small for training proficient
agents. A key contribution of our work is a scalable web-
based infrastructure for collecting human navigation and in-
teraction demonstrations, that is easily extensible to any task
situated in the Habitat [19] simulator, including language-
based tasks. We have collected ~13x more demonstrations
(in total 92k) compared to prior works.

Exploration. Learning how to explore an environment to
gather sufficient information for use in downstream tasks
has a rich history [30]. Curiosity-based approaches typi-
cally use reinforcement learning to maximize intrinsic re-
wards that capture the surprise or state prediction error of
the agent [31-33]. State visitation count rewards are also
popular for learning exploration [34,35]. We refer the reader
to Ramakrishnan et al. [36] for a review of exploration ob-
jectives for embodied agents. For improving exploration in
OBJECTNAV specifically, SemExp [17] made use of a mod-
ular policy for semantic mapping and path planning, Ye et
al. [15] used time-decaying state visitation count reward,
and Maksymets et al. [16] used area coverage reward.

Most relatedly, Chen et al. [37] used ~700 human navigation
trajectories from the EmbodiedQA dataset [8] (ignoring the
questions) to learn task-independent exploration using imita-
tion learning. We likewise train agents via imitation learning
on human demonstrations, but rather than encouraging task-
agnostic exploration, we consider human demonstrations to
be a rich task-specific mix of exploration and efficient nav-
igation, that simple architectures without explicit mapping
and planning modules can be trained on.

3. Habitat-WebGL Infrastructure

To be able to train agents via imitation learning on human
demonstrations, we first need a reliable pipeline to collect
human demonstrations at scale. To this end, we develop a
web-based setup to connect the Habitat simulator [19,20] to
AMT users, building on the work of Newman ez al. [38].

Interface. Fig. 2 shows a screenshot of the interface an
AMT user interacts with to complete a data collection task.
This web application renders assets from Habitat-Sim run-
ning on the user’s browser via WebGL. All data collection
in this work was done in Matterport3D [39] scans, but any
Habitat-compatible asset may be used in future. Users can
see the agent’s first-person RGB view, and can move around
and grab / release objects using keyboard controls. On the
task page, users are provided an instruction and details about
keyboard controls to complete the task. For OBJECTNAYV,
we provide an instruction of the form ‘Find and go to the
<goal_object_category>’. For tasks requiring interaction

ObjectGoal Navigation Experiment
CONTROLS:

Submit

Figure 2. Screenshot of our Amazon Mechanical Turk interface
for collecting OBJECTNAV demonstrations. Users are provided the
agent’s first-person view of the environment and an instruction such
as “Find and go to chair”. They can make the agent look around
and move in the environment via keyboard controls, and can submit
the task upon successful navigation by clicking ‘Submit’.

with objects (e.g. PICK&PLACE), we highlight the object
under the user’s gaze by drawing a 3D bounding box around
it (pointed to by a crosshair as in video games). In our initial
pilots, we found this to improve user experience when grab-
bing objects instead of users having to guess when objects
are available to be picked up. When an object is successfully
grabbed, it disappears from the first-person view and imme-
diately appears in the ‘inventory’ area on the task interface.
When a grabbed object is released, it is dropped at the center
of the user’s screen where the crosshair would be pointing to.
If the crosshair points to a distance, the object is dropped on
the floor from a height at a distance of 1m from the agent’s
location. Upon completion, users submit the task by clicking
‘Submit’. At this point, the sequence of keyboard actions,
agent, and object states are recorded in our backend server.

Habitat simulator and PsiTurk. Our Habitat-WebGL ap-
plication is developed in Javascript, and allows us to access
all C++ simulator APIs through Javascript bindings. This
lets us use the full set of simulation features available in
Habitat. To simulate physics, we use the physics APIs from
Habitat 2.0 [20], including rigid body dynamics support
(C++ APIs exposed as Javascript bindings). Our interface
executes actions entered by users every 50ms (rendering 20
frames per second) and then steps physics for 50ms in the
simulator. All of our tasks on AMT are served using Psi-
Turk and an NGINX reverse proxy, and all data stored in a
MySQL database. We use PsiTurk to manage the tasks as it
provides us with useful helper functions to log task-related
metadata, as well as launch and approve tasks.

5175

See Section A.6 for details on how we validate human-
submitted AMT tasks and ensure data quality.

4. Tasks and Datasets

Using our web infrastructure, we collect demonstration
datasets for two embodied tasks — OBJECTNAV [1,2] and
PICK&PLACE, an instantiation of object rearrangement [3].

4.1. ObjectGoal Navigation

In the ObjectGoal Navigation (OBJECTNAV) task, an agent
is tasked with navigating to an instance of a specified object
category (e.g. ‘chair’) in an unseen environment. The agent
does not have access to a map of the environment and must
navigate using an RGBD camera and a GPS+Compass sensor
which provides location and orientation information relative
to the start of the episode. The agent also receives the goal ob-
ject category ID as input. The full action space is discrete and
consists of MOVE_FORWARD (0.25m), TURN_LEFT (30°),
TURN_RIGHT (30°), LOOK_UP (30°), LOOK_DOWN (30°),
and STOP actions. For the episode to be considered success-
ful, the agent must stop within 1 Euclidean distance of the
goal object within a maximum of 500 steps and be able to
turn to view the object from that end position [40].

Human Demonstrations (OBJECTNAV-HD). We collect
70k demonstrations on the 56 training scenes from Matter-
port3D [39] following the standard splits defined in [2,39].
For each scene, we collect ~59 demonstration episodes for
each unique goal object category with a randomly set start
location of the human demonstrator for each episode. This
amounts to an average of ~1250 demonstrations per scene.
Additionally, we collect 10k demonstrations on 25 train-
ing scenes from Gibson [41]. For each Gibson scene, we
collect ~66 demonstration episodes for each unique goal
object category. This amounts to ~396 demonstrations per
scene. Similar to when training artificial agents, humans
can view first-person RGB on the task interface, but unlike
artificial agents, humans do not get access to Depth and
GPS+Compass. We assume humans are sufficiently profi-
cient at inferring depth and odometry from vision, to the
extent required to accomplish the goal. In total, we collect
80k OBJECTNAV demonstrations amounting to ~19.5M
steps of experience, each episode averaging 243 steps.
Shortest Path Demonstrations. To compare against prior
embodied datasets of shortest paths [5,7,8,29] and to demon-
strate the unique advantage of human demonstrations, we
also generate a dataset of shortest paths. The analysis in
this section was performed on a subset of 35k demonstra-
tions of OBJECTNAV-HD (collected in first phase). These
demonstrations are generated by greedily fitting actions to
follow the geodesic shortest path to the nearest navigable
goal object viewpoint. Since shortest paths are (by design)
shorter than human demonstrations (average 67 vs. 243 steps
per demonstration), we compensate by generating a larger

number of shortest paths to roughly match the steps with
35k human demonstrations (7.6 M steps from 114k shortest
paths vs. 8.4 M steps from 35k human demonstrations).
Analysis. Table 8a reports statistics of our human and short-
est path demonstration datasets. Recall that an episode is
considered a failure if the target object is not found within
500 navigation steps. Under this definition, humans fail on
11.1% training set episodes; they fail on 0% episodes if we
relax the step-limit. Surprisingly, SPL for humans is 39.9%
for training split episodes, significantly lower than 94.9%
for shortest paths underscoring the difficulty in searching for
objects in in unseen environments.

We additionally report two metrics to demonstrate that the
OBJECTNAV task requires significant exploration. Occu-
pancy Coverage (OC) measures percentage of total area cov-
ered by the agent when navigating. To compute OC, we first
divide the map into voxel grids of 2.5m X 2.5m x 2.5m and
increment a counter for each visited voxel. Sight Coverage
(SC) measures the percentage of total navigable area visible
to the agent in its field of view (FOV) during an episode.
To compute SC, we project a mask on the top-down map of
the environment using the agent’s FOV, that is iteratively up-
dated at every step to update the area seen by the agent. OC
and SC metrics for human demonstrations show that humans
traverse 3-4x and observe 2x the area of the environment
when performing this task compared to shortest paths.

Fig. 8b,c show episode length and action histograms for
human and shortest path demonstrations. Human demonstra-
tions are longer (average ~243 vs. ~67 steps per demonstra-
tion) and have a slightly more uniform action distribution.

4.2. Object Rearrangement — PICK&PLACE

In the pick-and-place task (PICK&PLACE), an agent must
follow an instruction of the form ‘Place the <object> on
the <receptacle>’, without being told the location of the
<object> or <receptacle> in a new environment. The agent
must explore and navigate to the object, pick it up, explore
and navigate to the receptacle, and place the previously
picked-up object on it. Similar to OBJECTNAV, agents are
not equipped with a map of the environment, and only have
access to an RGBD camera and a GPS+compass sensor. At
a high level, PICK&PLACE can be thought of as a natural
extension of OBJECTNAV, performing it twice in the same
episode — once to find the specified object and again to find
the specified receptacle — delimited by grab and release ac-
tions. For object interaction, we use the ‘magic pointer’
abstraction defined in [3]. If the agent is not holding any
object, the grab/release action will pick the object pointed to
by its crosshair (at the center of its viewpoint) if within 1.5m
of the object. If the agent is already holding an object, the
grab/release action will drop the object at the crosshair loca-
tion. If there is no drop-off point within 1.5/ in the direction
of the crosshair, the object will be dropped on the floor 1m

5176

ObjectNav

OBJECTNAV PICK-AND-PLACE 10000 Human
Shortest path
8000
Human Shortest Path Human Shortest Path
6000
1) Total Episodes 80,217 114,165 11,955 25,747
2) Success 88.9% 100.0% 86.3% 100.0% oo
3) SPL 39.9% 94.9% 21.2% 90.9% 2000
4) Occupancy coverage 17.9% 4.6% 26.5% 9.2% 0
5) Sight coverage 67.7% 33.2% 70.3% 42.5% C T e et

(@ (b)

Human Shortest path

12,831

3 sToP

[MOVE FORWARD

[TURN LEFT

=1 TURN RIGHT
L7 [LOOK UP

=1 LOOK DOWN

-
© N
= =

ObjectNav
Actions
@
=

315M 324M

w
=

128M 1.22M

omLzs cosM__ooam o1 Ed oo oom

(©)

Figure 3. (a) Dataset statistics for human demonstrations vs. shortest paths for OBJECTNAV and PICK&PLACE. Coverage metrics are
computed on subset of 1000 episodes. (b) Comparison of episode lengths and action histograms for human demonstrations vs. shortest paths.
Human demonstrations are longer and have a more uniform action distribution than shortest paths.

in front of the agent. The full action space is discrete and
consists of MOVE_FORWARD (0.15m), MOVE_BACKWARD
(0.15m), TURN_LEFT (5°), TURN_RIGHT (5°), LOOK_UP
(5°), LOOK_DOWN (5°), GRAB_RELEASE, NO_OP (step
physics 50ms), and STOP. For the episode to be considered
successful, the agent must place the object on top of the re-
ceptacle — i.e. the object center should be at a height greater
than the receptacle center, and within 0.7m of the recepta-
cle object center — within 1500 steps. We picked this 0.7m
threshold distance between the object and receptacle based
on pilots on AMT. 0.7m was sufficiently strict for avoiding
false positives in the collected demonstrations where users
are able to submit the task without necessarily placing the
object on top of the receptacle.

Human Demonstrations (PICK&PLACE-HD). We col-
lect human demonstrations for PICK&PLACE on 9 scenes
from Matterport3D [39]. In each episode, objects and re-
ceptacles are instantiated by randomly sampling from 457
possible object-receptacle pairs. We initialize the object and
receptacle at randomly sampled locations in the environment,
and collect 3 demonstrations for each object-receptacle pair.
The agent, object, and receptacle locations are randomized
across all episodes (including the 3 we collect for each object-
receptacle pair). In total, we have 457 x 3 unique object-
receptacle-agent position initializations per scene, amount-
ing to 457x3x9 = ~12k demonstrations, which is ~11.5M
steps in experience, each episode averaging 932 steps.
Shortest Path Demonstrations. Similar to OBJECTNAV,
we generate shortest path demonstrations for PICK&PLACE.
These demonstrations are generated by first using the
geodesic shortest-path follower to the object, then using
a heuristic action planner to face and pick up the object,
then following the geodesic shortest-path to the receptacle,
and again using a heuristic action planner to drop the ob-
ject on the receptacle. We generated 25.7k shortest path
demonstrations for PICK&PLACE, each averaging 342 steps,
amounting to a total of ~8.8 million steps of experience.
Analysis. Table 8a reports statistics for human and short-
est path demonstrations. Similar to OBJECTNAV, humans
have significantly lower SPL, and 2x higher occupancy and
sight coverage compared to shortest paths, suggesting the
need for exploration. Comparing episode lengths and action
histograms (see appendix (Sec. A.1.1) for figure), human
demonstrations are longer and make use of all 9 actions.
Interestingly, humans often use the MOVE_BACKWARD ac-
tion to backtrack, which the shortest path agents do not use

(by design), instead of turning 180° and moving forward.
This behavior does not appear in OBJECTNAV shortest path
demonstrations because there is just one target object, and so
the geodesic shortest path would never involve backtracking
or making 180° turns.

5. Imitation Learning from Demonstrations

We use behavior cloning to learn a policy from demonstra-
tions. Let mg(a; | o) denote a policy parametrized by 6
that maps observations o; to a distribution over actions a;.
Let 7 denote a trajectory consisting of state, observation,
human action tuples: 7 = (s9, 0, ao, - - ., 57, o7, ar) and

Ny N .
T = {T(’) }i=1 denote a dataset of human demonstrations.
The learning problem can be summarized as:

N
0" = argmin, Z Z —log (mg(at|ot)) (1)

i=1 (o,ar) €

Inflection weighting introduced in Wijmans et al. [9], ad-
justs the loss function to upweight timesteps where actions
change (i.e. a;_1 # a:). Specifically, the inflection weight-
ing loss coefficient is computed as total no. of actions in
the dataset divided by the total no. of inflection points, and
this coefficient is multiplied with the loss at each inflection
timestep where a;_1 # a;. This approach was found to be
useful for tasks like navigation with long sequences of the
same actions, e.g. several ‘forward’ actions when navigating
corridors [9]. We use inflection weighting in all our experi-
ments and found it to help over vanilla behavior cloning.
Our base policy is a simple CNN+RNN architecture. We
first embed all sensory inputs using feed-forward modules.
For RGB, we use a randomly initialized ResNet18 [42]. For
depth, we use a ResNet50 that was pretrained on PointGoal
navigation using DD-PPO [13]. Then these RGB and depth
features (and optionally other task-specific features) are con-
catenated and fed into a GRU [43] to predict a distribution
over actions as1. Task-specific architectural choices over
this base policy are described in the next sections.

5.1. OBJECTNAV

Fig. 4a shows our OBJECTNAV architecture. Similar to
Anand et al. [44], we feed in RGBD inputs of size 640 x 480
passed through a 2X2-AvGPOOL layer to reduce the res-
olution (performing low-pass filtering + downsampling).
The agent also has a GPS+Compass sensor, which pro-
vides location and orientation relative to start of the episode.

5177

ResNet50
(Pointnav)
g b

ResNet18

ResNet18

=H
=H

*Find a Chair”

*Place the apple on the
plate)

[T1

LsTM

GPS + Compass.

SGE (0.1")

(a) OBJECTNAV architecture

(b) PICK&PLACE architecture

Method Success (1) SPL (1)

1) RL (ExploreTillSeen) [16] 20.0% 6.5%

2) RL (ExploreTillSeen + THDA) [16] 28.4% 11.0%

3) RL (Red Rabbit) [15] 34.6% 7.9%

4) IL w/ Shortest Paths 4.4% 2.2%

W IL w/ 35k Human Demos (similar #steps as row 4) 31.6% 8.5%
GRU . © ILw/50k Human Demos 32.4% 9.1%
) IL w/ 50k Human Demos (includes 10k THDA [16]) 33.2% 9.5%
8) IL w/ 70k Human Demos 35.4% 10.2%

9) IL w/ 70k Human Demos (includes 10k Gibson [41]) 33.9% 9.7%

10) IL w/ 80k Human Demos 33.8% 9.9%

11) Humans 93.7% 42.5%

(c) OBJECTNAV results on MP3D-VAL

Figure 4. Our policy architectures for a) OBJECTNAV and b) PICK&PLACE. Both are simple CNN+RNN networks that embed and
concatenate all sensory inputs, which are then fed into a GRU to predict actions. ¢) OBJECTNAV results on the MP3D VAL split [2,39].

GPS+Compass inputs are pass through fully-connected lay-
ers to embed them to 32-d vectors. In addition to RGBD and
GPS+Compass, following Ye et al. [15], we use two addi-
tional semantic features — semantic segmentation (SemSeg)
of the input RGB and a ‘Semantic Goal Exists’ (SGE) scalar
which is the fraction of the visual input occupied by the
goal category. These semantic features are computed using
a pretrained and frozen RedNet [45] that was pretrained on
SUN RGB-D [46] and finetuned on 100k randomly sampled
front-facing views rendered in the Habitat simulator. Finally,
we also feed in the object goal category embedded into a
32-d vector. All of these input features are concatenated to
form an observation embedding, and fed into a 2-layer, 512-
d GRU at every timestep. We train this policy for ~400M
steps (= ~21 epochs on ~70k demonstration episodes). We
evaluate checkpoints at every ~15M steps for the last 50M
steps of training, and report metrics for checkpoints with the
highest success on the validation split.

5.2. PICK&PLACE

Fig. 4b shows our PICK&PLACE architecture. We feed
in RGBD inputs of size 256 x 256. In addition to RGBD
observations, the policy gets as input language instructions of
the form ‘Place the <object> on the <receptacle>’ encoded
using a single-layer LSTM [47]. RGBD and instruction
features are concatenated to form an observation embedding,
which is fed into a 2-layer, 512-d GRU at every timestep.
We train this policy for ~90M steps (= ~10 epochs on
~9.5k demonstration episodes). We evaluate checkpoints
at every ~10M steps during training, and report metrics for
checkpoints with the highest success on the validation split.

6. Experiments & Results
6.1. OBJECTNAV

Table 4c reports results on the MP3D VAL split for several
baselines. First, we compare our approach with two state-
of-the-art RL approaches from prior work. Maksymets et
al. [16] (row 1) train their policy using a reward structure
that breaks OBJECTNAV into two subtasks — exploration
and direct navigation to goal object once it is spotted. This

agent gets a positive reward for maximizing area coverage
until it sees the goal object. It then receives a navigation
reward to minimize distance-to-object. This policy achieves
20.0% success and 6.5% SPL (row 1), which is 15.4% worse
on success and 3.7% worse on SPL compared to behavior
cloning on 70k human demonstrations (row 8). [16] then
combine this reward structure with Treasure Hunt Data Aug-
mentation (THDA) — inserting arbitrary 3D target objects
in the scene to augment the set of training episodes. With
THDA, this achieves 28.4% success and 11.0% SPL (row 2),
7.0% worse and 0.8% better respectively than our approach
(row 8). Ye et al. [15] (row 3) train their policy with a combi-
nation of exploration and distance-based navigation rewards,
and their representations with several auxiliary tasks (e.g. in-
verse dynamics and predicting map coverage). This achieves
34.6% success and 7.9% SPL (row 3), which is 0.8% worse
on success and 2.3% worse on SPL than our approach (row
8). IL on a dataset of shortest paths achieves 4.4% success
and 2.2% SPL (row 4), significantly worse than training on
35k human demonstrations (31.6% success, 8.5% SPL). Re-
call that comparison of shortest path demonstrations was
done with a subset of 35k OBJECTNAV-HD demonstrations
that were collected in the first phase of the project. Next, we
also collected 10k human demonstrations on OBJECTNAV
episodes generated in THDA fashion — i.e. asking humans
to find randomly inserted objects. Notice that this involves
pure exhaustive search, since there are no semantic priors
that humans can leverage in this setting. An IL agent trained
on 10k THDA demonstrations combined with the original
40k demonstrations achieves 33.2% success and 9.5% SPL
(row 7) which is 0.8% better on success and 0.4% better
on SPL than 50k non-THDA demonstrations (row 6), i.e.
adding these THDA demonstrations with exhaustive search
behavior helps. We also collected 10k demonstrations on
Gibson [41] OBJECTNAV episodes to compare effect of
different scene datasets. An agent trained on 10k Gibson
demonstrations combined with 60k MP3D demonstrations
achieves 33.9% success and 9.7% SPL (row 9), which is
1.5% worse on success and 0.5% worse on SPL compared
to when we use MP3D-only demonstrations (row 8).

Finally, we also benchmark human performance on the

5178

Method Success (1) SPL (1)

1) IL wo/ Vision 0.0% 0.0%
2)IL wo/ Semantic Input 22.7% 6.1%
3)IL w/ RGBD + Semantic Input 31.6% 8.5%

Table 1. ObjectNav ablation results on the MP3D VAL split [2,39].

MP3D VAL split — 93.7% success, 42.5% SPL (row 11).
ObjectNav Sensor Ablations. Table | reports results on
the MP3D VAL split for various ablations of our approach
trained on 35k human demonstrations. First, without any
visual input (row 1), i.e. no RGBD and semantic inputs, the
agent fails to learn anything (0% success, 0% SPL). Second,
without SemSeg and SGE features (and keeping only RGB
and Depth features) to the policy, performance drops by
8.9% success and 2.4% SPL (row 2 vs. 3).

Habitat ObjectNav Challenge Results. Table 2 compares
our results with prior approaches from the 2020 and 2021
Habitat Challenge leaderboards. Our approach (IL w/ 70k
demonstrations) achieves 27.8% success and 9.9% SPL (row
8), outperforming prior RL-trained counterparts — 3.3%
better success, 3.5% better SPL than Red Rabbit (6-Act
Base) [15] (row 5), and 6.7% better success, 1.1% better
SPL than ExploreTillSeen + THDA [16] (row 7).

Team / Method Success (1) SPL (1)
1) DD-PPO baseline [13,15] 6.2% 2.1%
2) Active Exploration (Pre-explore) 8.9% 4.1%

3) SRCB-robot-sudoer 14.4% 7.5%

4) SemExp [48] 17.9% 7.1%
5) Red Rabbit (6-Act Base) [15] 24.5% 6.4%
6) Red Rabbit (6-Act Tether) [15] 21.1% 8.1%
7) ExploreTillSeen + THDA [16] 21.1% 8.8%

8) IL w/ 70k Human Demos 27.8% 9.9%

Table 2. Results on Habitat ObjectNav Challenge TEST-STD [49].

Performance vs. Dataset size. To investigate scaling be-
havior, we plot VAL success against the size of the human
demonstrations dataset in Fig. 1b. We created splits of the
human demonstrations’ dataset of increasing sizes, from 4%
to 70k, and trained models with the same set of hyperparam-
eters on each split. All hyperparameters were picked early
in the course of the data collection (on the 4k and 12k sub-
splits) and fixed for later experiments. So VAL performance
in the small-data regime may be an optimistic estimate and
in the large data regime a pessimistic estimate. True scal-
ing behavior may be even stronger. Increasing dataset size
consistently improves performance and has not yet saturated,
suggesting that simply collecting more demonstrations is
likely to lead to further gains.

Sample Efficiency. Fig. 5 plots VAL success against no. of
training steps of experience (in millions) in Fig. 5a and
against unique steps of experience in Fig. 5b. Recall that
IL involves ~21 epochs on a static dataset of ~70k demos,
while RL (from [15]) gathers unique agent-driven trajectories

“ 3x more “ 7x more
_

304 30+

20 20

Success (%)
Success (%)

10- L — 10- L —

RL RL
0 100 200 300 400 % 50 100 150
Steps (in Millions) Unique Steps (in Millions)

(a) (b)
Figure 5. Comparing RL and IL on (a) VAL success vs. no. of
training steps, and (b) VAL success vs. no. of unique training steps.
This distinguishes between an IL agent that learns from a static

dataset vs. an RL agent that gathers unique trajectories on-the-fly.

VAL TEST

Method Success % () SPL % (1) Success % (1) SPL % (1)
E 1) IL w/ Shortest Paths 1.9 1.8 1.7% 1.6
& 2) IL w/ Human Demos 17.6 +o0.8 9.7 +0.3 17.5 9.8
E 3) Humans 87.2 21.8% 89.1 21.9
E 4) IL w/ Shortest Paths 1.3 1.2 1.1 1.0
§ 5) IL w/ Human Demos 15.9 +0.2 8.4 +0.4 15.1 8.3
] 6) Humans 85.0 21.0 86.1 20.5
2 70 1L w/ Shortest Paths - - 0.2 0.3
2{ 8 IL w/Human Demos - - 8.3 41
Z 9) Humans — — 94.9 20.5

Table 3. Pick-and-place results on splits constructed with unseen
initializations in seen environments (1-3), with unseen instructions
(4-6), and with unseen environments (7-9).

on-the-fly. Fig. 5a shows that IL behaves like supervised
learning (as expected) with improvements coming from long
training schedules; unfortunately, this means that wall-clock
training times are not lower than RL. Fig. 5b shows that IL
requires 7x fewer unique steps of experience to outperform
success and is thus much more sample-efficient.

Zero-shot results on Gibson [41] are in Section A.2.

6.2. PICK&PLACE

Results. We report results in Table 3 across three evaluation
splits. 1) New Initializations: new locations of objects and
receptacles. This tests generalization to unseen locations in
seen environments. 2) New Instructions: compositionally
novel object-receptacle combinations of objects and recepta-
cles individually seen during training. 3) New Environments:
generalization to 2 scenes held out from training. Similar to
OBJECTNAV and as described in Section 4, we also report re-
sults with shortest paths. Again, these paths are significantly
shorter (average 342 vs. 932 steps per demonstration) and
hence, we generate a larger dataset of 25.7k episodes roughly
matching the cumulative steps of experience with human
demonstrations (8.8 M shortest path steps vs. 11.50/ human
steps). Training on 9.5k human demonstrations achieves
17.5% success, 9.8% SPL on new object-receptacle initial-
izations (row 2). Across splits, training on shortest paths
hurts success by 8-16%. Going to new object-receptacle
pairs, success drops by 2.4% (row 5 vs. 2), and then going to
new environments further hurts success by 6.8% (row 8 vs.
5). We also trained an RL policy with the exploration and
distance-based rewards from [16], but it failed to get beyond

5179

[Start position

B Goal position

[C] Success Area

© Agent Position
BT Agent's Trajectory
v Agent's View

(4.) Peek

(5.) Panoramic Turn (6.) Checking Corners

Figure 6. Visualizations of different learnt agent behaviors. Best viewed in the video at ram81.github.io/projects/habitat-web.

0% success on new object-receptacle intializations. See the Method OC(%) SC(%) GORTS(%) FPecks(%) PT(%) Beeline(%) ES(%)
. L X ’) ILw/shortestpaths 42411 312432 205213 3.0iL9 0.0-00 00452 101435
append1x (Sec. A12) for training details. 2) ILw/humandemos 2Ldiis 7T21:3s5 22441 19.6+14 43423 10.3+5.1 553456
. i . 3) RL[I5] 14.6+16 66.6+5.1 277485 9.745.5 0.0+0.0 0.1+22 49.0+7.0

Performance vs. Dataset size. Similar to OBJECTNAV, we 4) Humans 154416 70.3%3.4 - 138+39 b5.li2a 236248 BH2lise

trained policies on 2.5k to 9.5k subsets of our PICK&PLACE
data, and found that performance continues to improve with
more data. Figure in appendix (Sec. A.1.3).

7. Characterizing Learned Behaviors

To characterize the behaviors learnt by our best IL agents, we
first sample 300 validation OBJECTNAV episodes for each
method and manually categorize the behavior observed. A
subset of observed behaviors are visualized in Fig. 13. Our
agents demonstrate sophisticated object-search behaviors e.g.
peeking into rooms to maximize sight coverage (SC), instead
of occupancy coverage (OC), checking corners of rooms for
small objects, beelining to goal object once seen, exhaustive
search (ES), turning in place to get a panoramic view (PT),
and looping back to recheck some areas. Amusingly, unlike
shortest path / RL agents, these IL agents also stand idle
and ‘look around’ i.e. turn in place, like humans. Table 4
quantifies these behaviors. See appendix (Sec. A.4) for
details on how these were computed. Agents trained with
IL on human demonstrations have higher coverage (both
occupancy and sight), peeking behavior, panoramic turns,
beelines, and exhaustive search than RL. RL-trained agents
achieve higher average Goal Room Time Spent (GRTS) —
i.e. time spent in the room containing the target object —
but also have significantly higher variance in GRTS across
scenes compared to IL agents. See appendix (Sec. A.4) for
a per-scene breakdown of GRTS as well as histograms of

Table 4. Quantifying semantic exploration behaviors for IL agents
trained on shortest paths (row 1) and human demonstrations (row
2), the Red Rabbit RL agent [15] (row 3), and humans (row 4).

time spent in each room (instead of just target room) when
searching for a target object. We also discuss limitations of
our approach in the appendix Sec. A.7.

8. Conclusion

We developed the infrastructure to collect human demon-
strations at scale and using this, trained imitation learning
(IL) agents on 92k+ human demonstrations for OBJECTNAV
and PICK&PLACE. On OBJECTNAV, we found that IL us-
ing 70k human demonstrations outperforms RL using 240k
agent-gathered trajectories, and on PICK&PLACE, IL agents
get to ~18% success while RL fails to get beyond 0%. Qual-
itatively, we found that IL agents pick up on sophisticated
object-search behavior implicitly captured in human demon-
strations, much more prominently than RL agents. Overall,
we believe our work makes a compelling case for investing
in large-scale imitation learning of human demonstrations.
Acknowledgements. We thank Devi Parikh for help with
idea conceptualization. The Georgia Tech effort was sup-
ported in part by NSF, ONR YIP, and ARO PECASE. The
views and conclusions contained herein are those of the au-
thors and should not be interpreted as necessarily represent-
ing the official policies or endorsements, either expressed or
implied, of the U.S. Government, or any sponsor.

5180

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

[9]

(10]

(11]

M. Savva, A. X. Chang, A. Dosovitskiy, T. Funkhouser,
and V. Koltun, “Minos: Multimodal indoor simula-
tor for navigation in complex environments,” arXiv
preprint arXiv:1712.03931,2017. 1,2, 4

P. Anderson, A. X. Chang, D. S. Chaplot, A. Doso-
vitskiy, S. Gupta, V. Koltun, J. Kosecka, J. Malik,
R. Mottaghi, M. Savva, and A. R. Zamir, “On eval-
uation of embodied navigation agents,” arXiv preprint
arXiv:1807.06757,2018. 1,2,4,6,7

D. Batra, A. X. Chang, S. Chernova, A. J. Davi-
son, J. Deng, V. Koltun, S. Levine, J. Malik, 1. Mor-
datch, R. Mottaghi, M. Savva, and H. Su, “Rearrange-
ment: A Challenge for Embodied Al,” arXiv preprint
arXiv:2011.01975, 2020. 1,4

L. Weihs, M. Deitke, A. Kembhavi, and R. Mottaghi,
“Visual room rearrangement,” in CVPR, 2021. 1

P. Anderson, Q. Wu, D. Teney, J. Bruce, M. John-
son, N. Siinderhauf, I. Reid, S. Gould, and A. van den
Hengel, “Vision-and-language navigation: Interpret-
ing visually-grounded navigation instructions in real
environments,” in CVPR, 2018. 1,2, 3, 4

J. Krantz, E. Wijmans, A. Majumdar, D. Batra, and
S. Lee, “Beyond the nav-graph: Vision-and-language
navigation in continuous environments,” in ECCV,
2020. 1,2

M. Shridhar, J. Thomason, D. Gordon, Y. Bisk, W. Han,
R. Mottaghi, L. Zettlemoyer, and D. Fox, “ALFRED:
A Benchmark for Interpreting Grounded Instructions
for Everyday Tasks,” in CVPR, 2020. 1, 2, 3,4

A. Das, S. Datta, G. Gkioxari, S. Lee, D. Parikh, and
D. Batra, “Embodied Question Answering,” in CVPR,
2018.1,2,3,4

E. Wijmans, S. Datta, O. Maksymets, A. Das,
G. Gkioxari, S. Lee, 1. Essa, D. Parikh, and D. Ba-
tra, “Embodied Question Answering in Photorealistic
Environments with Point Cloud Perception,” in CVPR,
2019. 1,5

A. Das, F. Carnevale, H. Merzic, L. Rimell, R. Schnei-
der, J. Abramson, A. Hung, A. Ahuja, S. Clark,
G. Wayne, and F. Hill, “Probing emergent semantics
in predictive agents via question answering,” in ICML,
2020. 1

A. Das, Building agents that can see, talk, and act.
PhD thesis, Georgia Institute of Technology, 2020. 1

[12]

[13]

5181

L. Yu, X. Chen, G. Gkioxari, M. Bansal, T. L. Berg, and
D. Batra, “Multi-target embodied question answering,”’
in CVPR, 2019. 1

E. Wijmans, A. Kadian, A. Morcos, S. Lee, 1. Essa,
D. Parikh, M. Savva, and D. Batra, “DD-PPO: Learn-
ing near-perfect pointgoal navigators from 2.5 billion
frames,” in ICLR, 2020. 1,5,7, 12

J. Ye, D. Batra, E. Wijmans, and A. Das, “Auxiliary
tasks speed up learning pointgoal navigation,” in CoRL,
2020. 1

J. Ye, D. Batra, A. Das, and E. Wijmans, “Auxiliary
Tasks and Exploration Enable ObjectNav,” in ICCV,
2021.1,2,3,6,7,8, 12

0. Maksymets, V. Cartillier, A. Gokaslan, E. Wijmans,
W. Galuba, S. Lee, and D. Batra, “THDA: Treasure
Hunt Data Augmentation for Semantic Navigation,” in
ICCV,2021. 1,3,6,7

D. S. Chaplot, D. Gandhi, A. Gupta, and R. Salakhut-
dinov, “Object goal navigation using goal-oriented se-
mantic exploration,” in NeurIPS, 2020. 1, 3

S. Schaal, “Learning from demonstration,” in NIPS,
1996. 1

M. Savva, A. Kadian, O. Maksymets, Y. Zhao, E. Wi-
jmans, B. Jain, J. Straub, J. Liu, V. Koltun, J. Malik,
et al., “Habitat: A platform for embodied Al research,”
in ICCV, 2019. 2,3, 13

A. Szot, A. Clegg, E. Undersander, E. Wijmans,
Y. Zhao, J. Turner, N. Maestre, M. Mukadam, D. S.
Chaplot, O. Maksymets, A. Gokaslan, V. Vondrus,
S. Dharur, F. Meier, W. Galuba, A. Chang, Z. Kira,
V. Koltun, J. Malik, M. Savva, and D. Batra, “Habitat
2.0: Training home assistants to rearrange their habitat,”
in NeurIPS, 2021. 2, 3

Y. Zhu, R. Mottaghi, E. Kolve, J. J. Lim, A. Gupta,
L. Fei-Fei, and A. Farhadi, “Target-driven visual navi-
gation in indoor scenes using deep reinforcement learn-
ing,” in ICRA, 2017. 2

S. Wani, S. Patel, U. Jain, A. X. Chang, and M. Savva,
“MultiON: Benchmarking Semantic Map Memory us-
ing Multi-Object Navigation,” in NeurIPS, 2020. 2

A. Padmakumar, J. Thomason, A. Shrivastava,
P. Lange, A. Narayan-Chen, S. Gella, R. Pira-
muthu, G. Tur, and D. Hakkani-Tur, “TEACh: Task-
driven Embodied Agents that Chat,” arXiv preprint
arXiv:2110.00534,2021. 2, 3

[24]

[25]

(26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

[35]

J. Thomason, M. Murray, M. Cakmak, and L. Zettle-
moyer, “Vision-and-dialog navigation,” in CoRL, 2020.
2,3

M. Hahn, J. Krantz, D. Batra, D. Parikh, J. M.
Rehg, S. Lee, and P. Anderson, “Where are you?
localization from embodied dialog,” arXiv preprint
arXiv:2011.08277,2020. 2, 3

A. Mandlekar, D. Xu, J. Wong, S. Nasiriany, C. Wang,
R. Kulkarni, L. Fei-Fei, S. Savarese, Y. Zhu, and
R. Martin-Martin, “What matters in learning from of-

fline human demonstrations for robot manipulation,” in
CoRL,2021. 2

F. Ebert, Y. Yang, K. Schmeckpeper, B. Bucher,
G. Georgakis, K. Daniilidis, C. Finn, and S. Levine,
“Bridge data: Boosting generalization of robotic
skills with cross-domain datasets,” arXiv preprint
arXiv:2109.13396, 2021. 2

J. Krantz, A. Gokaslan, D. Batra, S. Lee, and
O. Maksymets, ‘“Waypoint models for instruction-
guided navigation in continuous environments,” in
ICCV,2021. 2,13

D. Gordon, A. Kembhavi, M. Rastegari, J. Redmon,
D. Fox, and A. Farhadi, “IQA: Visual Question An-
swering in Interactive Environments,” in CVPR, 2018.
2,4

J. Schmidhuber, “A possibility for implementing curios-
ity and boredom in model-building neural controllers,”
in Proc. of the international conference on simulation
of adaptive behavior: From animals to animats, 1991.
3

B. C. Stadie, S. Levine, and P. Abbeel, “Incentivizing
exploration in reinforcement learning with deep predic-
tive models,” arXiv preprint arXiv:1507.00814, 2015.
3

D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell,
“Curiosity-driven exploration by self-supervised predic-
tion,” in ICML, 2017. 3

Y. Burda, H. Edwards, D. Pathak, A. Storkey, T. Darrell,
and A. A. Efros, “Large-scale study of curiosity-driven
learning,” arXiv preprint arXiv:1808.04355, 2018. 3

M. Bellemare, S. Srinivasan, G. Ostrovski, T. Schaul,
D. Saxton, and R. Munos, “Unifying count-based ex-
ploration and intrinsic motivation,” in NeurIPS, 2016.
3

H. Tang, R. Houthooft, D. Foote, A. Stooke, X. Chen,
Y. Duan, J. Schulman, F. De Turck, and P. Abbeel, “#

[36]

[37]

[38]

[40

[t}

5182

exploration: A study of count-based exploration for
deep reinforcement learning,” in NeurIPS, 2017. 3

S. K. Ramakrishnan, D. Jayaraman, and K. Grauman,
“An exploration of embodied visual exploration,” arXiv
preprint arXiv:2001.02192, 2020. 3

T. Chen, S. Gupta, and A. Gupta, “Learning exploration
policies for navigation,” in /CLR, 2019. 3

B. Newman, K. Carlberg, and R. Desai, “Optimal as-
sistance for object-rearrangement tasks in augmented
reality,” arXiv preprint arXiv:2010.07358, 2020. 3

A. Chang, A. Dai, T. Funkhouser, M. Halber, M. Niess-
ner, M. Savva, S. Song, A. Zeng, and Y. Zhang, “Mat-
terport3D: Learning from RGB-D Data in Indoor En-
vironments,” in 3DV, 2017. MatterPort3D dataset li-
cense: http://kaldir.vc.in.tum.de/matterport/MP_
TOS.pdf. 3,4,5,6,7, 13

D. Batra, A. Gokaslan, A. Kembhavi, O. Maksymets,
R. Mottaghi, M. Savva, A. Toshev, and E. Wij-
mans, “Objectnav revisited: On evaluation of em-
bodied agents navigating to objects,” arXiv preprint
arXiv:2006.13171, 2020. 4

F. Xia, A. R. Zamir, Z. He, A. Sax, J. Malik,
and S. Savarese, “Gibson env: Real-world per-
ception for embodied agents,” in CVPR, 2018.
Gibson dataset license agreement available at
storage.googleapis.com/gibson_material/Agreement
GDS 06-04-18.pdf. 4, 6,7, 13

K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual
Learning for Image Recognition,” in CVPR, 2016. 5,
12

K. Cho, B. Van Merriénboer, C. Gulcehre, D. Bah-
danau, F. Bougares, H. Schwenk, and Y. Bengio,
“Learning phrase representations using rnn encoder-
decoder for statistical machine translation,” in EMNLP,
2014. 5

A. Anand, E. Belilovsky, K. Kastner, H. Larochelle,
and A. Courville, “Blindfold baselines for embodied
qa,” arXiv preprint arXiv:1811.05013,2018. 5

J. Jiang, L. Zheng, F. Luo, and Z. Zhang, “Red-
Net: Residual Encoder-Decoder Network for in-
door RGB-D Semantic Segmentation,” arXiv preprint
arXiv:1806.01054, 2018. 6

S. Song, S. P. Lichtenberg, and J. Xiao, “Sun RGB-D:
A RGB-D scene understanding benchmark suite,” in
CVPR, 2015. 6

[47]

(48]

[49]

(50]

(51]

S. Hochreiter and J. Schmidhuber, “Long Short-Term
Memory,” Neural Computation, 1997. 6, 12

D. S. Chaplot, D. Gandhi, A. Gupta, and R. Salakhut-
dinov, “Object goal navigation using goal-oriented se-
mantic exploration,” in NeurlPS, 2020. 7, 13

H. Team, “Habitat challenge, 2020.” https://
aihabitat.org/challenge/2020, 2020. 7

A. Mousavian, A.toshev, M. Fiser, J. Kosecka,
A. Wahid, and J. Davidson, “Visual representations

for semantic target driven navigation,” in /CRA, 2019.
13

D. S. Chaplot, S. Gupta, D. Gandhi, A. Gupta, and
R. Salakhutdinov, “Learning to explore using active
neural mapping,” in ICLR, 2020. 13

5183

