
Towards Better Understanding Attribution Methods

Sukrut Rao, Moritz Böhle, Bernt Schiele
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Fig. 1. Left: Illustration of DiFull and ML-Att. In DiFull, we evaluate models on image grids (col. 1). Crucially, we employ separate
classification heads for each subimage that cannot possibly be influenced by other subimages; this yields ‘ground truths’ for possible and
impossible attributions (col. 2). For ML-Att, we evaluate methods at different network layers; here we show results for Grad-CAM and
IntGrad. Further, we show results after smoothing IntGrad (S-IntGrad), which we find to perform well (Sec. 5.2). Right: Visualisation of
our AggAtt evaluation. By sorting attributions into percentile ranges w.r.t. their performance and aggregating them over many samples, we
obtain a holistic view of a methods’ performance. AggAtt can thus reflect both best and worst case behaviour of an attribution method.

Abstract

Deep neural networks are very successful on many vision
tasks, but hard to interpret due to their black box nature. To
overcome this, various post-hoc attribution methods have
been proposed to identify image regions most influential to
the models’ decisions. Evaluating such methods is chal-
lenging since no ground truth attributions exist. We thus
propose three novel evaluation schemes to more reliably
measure the faithfulness of those methods, to make compar-
isons between them more fair, and to make visual inspec-
tion more systematic. To address faithfulness, we propose
a novel evaluation setting (DiFull) in which we carefully
control which parts of the input can influence the output in
order to distinguish possible from impossible attributions.
To address fairness, we note that different methods are ap-
plied at different layers, which skews any comparison, and
so evaluate all methods on the same layers (ML-Att) and
discuss how this impacts their performance on quantita-
tive metrics. For more systematic visualizations, we pro-
pose a scheme (AggAtt) to qualitatively evaluate the meth-
ods on complete datasets. We use these evaluation schemes
to study strengths and shortcomings of some widely used
attribution methods. Finally, we propose a post-processing
smoothing step that significantly improves the performance
of some attribution methods, and discuss its applicability.

1. Introduction
Deep neural networks (DNNs) are highly successful on

many computer vision tasks. However, their black box na-
ture makes it hard to interpret and thus trust their decisions.
To shed light on the models’ decision-making process, sev-
eral methods have been proposed that aim to attribute im-
portance values to individual input features (see Sec. 2).
However, given the lack of ground truth importance values,
it has proven difficult to compare and evaluate these attri-
bution methods in a holistic and systematic manner.

In this work, we take a three-pronged approach towards
addressing this issue. In particular, we focus on three im-
portant components for such evaluations: reliably measur-
ing the methods’ model-faithfulness, ensuring a fair com-
parison between methods, and providing a framework that
allows for systematic visual inspections of their attributions.

First, we propose an evaluation scheme (DiFull), which
allows distinguishing possible from impossible importance
attributions. This effectively provides ground truth annota-
tions for whether or not an input feature can possibly have
influenced the model output. As such, it can highlight dis-
tinct failure modes of attribution methods (Fig. 1, left).

Second, a fair evaluation requires attribution methods to
be compared on equal footing. However, we observe that
different methods explain DNNs to different depths (e.g.,
full network or classification head only). Thus, some meth-
ods in fact solve a much easier problem (i.e., explain a much
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shallower network). To even the playing field, we propose
a multi-layer evaluation scheme for attributions (ML-Att)
and provide a thorough evaluation of commonly used meth-
ods across multiple layers and models (Fig. 1, left). When
compared on the same level, we find that performance dif-
ferences between some methods essentially vanish.

Third, relying on individual examples for a qualitative
comparison is prone to skew the comparison and cannot
fully represent the evaluated attribution methods. To over-
come this, we propose a qualitative evaluation scheme for
which we aggregate attribution maps (AggAtt) across many
input samples. This allows us to observe trends in the per-
formance of attribution methods across complete datasets,
in addition to looking at individual examples (Fig. 1, right).
Contributions. (1) We propose a novel evaluation set-
ting, DiFull, in which we control which regions can-
not possibly influence a model’s output, which allows us
to highlight definite failure modes of attribution methods.
(2) We argue that methods can only be compared fairly
when evaluated on the same layer. To do this, we in-
troduce ML-Att and evaluate all attribution methods at
multiple layers. We show that, when compared fairly,
apparent performance differences between some methods
effectively vanish. (3) We propose a novel aggregation
method, AggAtt, to qualitatively evaluate attribution meth-
ods across all images in a dataset. This allows to quali-
tatively assess a method’s performance across many sam-
ples (Fig. 1, right), which complements the evaluation
on individual samples. (4) We propose a post-processing
smoothing step that significantly improves localization
performance on some attribution methods. We observe
significant differences when evaluating these smoothed
attributions on different architectures, which highlights
how architectural design choices can influence an attri-
bution method’s applicability. Our code is available at
https://github.com/sukrutrao/Attribution-Evaluation.

2. Related Work
Post-hoc attribution methods broadly use one of three
main mechanisms. Backpropagation-based methods [26,
27, 30–32, 35] typically rely on the gradients with respect
to the input [26, 27, 30, 32] or with respect to intermediate
layers [17,35]. Activation-based methods [6,8,12,23,33,36]
weigh activation maps to assign importance, typically of the
final convolutional layer. The activations may be weighted
by their gradients [6,12,23,36] or by estimating their impor-
tance to the classification score [8, 33]. Perturbation-based
methods [7, 9, 16, 18, 34] treat the network as a black-box
and assign importance by observing the change in output
on perturbing the input. This is done by occluding parts of
the image [16, 18, 34] or optimizing for a mask that maxi-
mizes/minimizes class confidence [7, 9].

In this work, we evaluate on a diverse set of attribution

methods spanning all three categories.
Evaluation Metrics: Several metrics have been proposed
to evaluate attribution methods, and can broadly be cate-
gorised into Sanity checks, localization-, and perturbation-
based metrics. Sanity checks [1, 2, 17] test for basic prop-
erties an attribution method must satisfy (e.g., the explana-
tion should depend on the model parameters). Localization-
based metrics evaluate how well attributions localize class
discriminative features of the input. Typically, this is done
by measuring how well attributions coincide with object
bounding boxes or image grid cells (see below) [4, 5, 9, 22,
35]. Perturbation-based metrics measure model behaviour
under input perturbation to estimate feature importance.
Examples include removing the most [21] or least [31]
salient pixels, or using the attributions to scale input features
and measuring changes in confidence [6]. Our work com-
bines aspects from localization metrics and sanity checks to
evaluate the model-faithfulness of an attribution method.
Localization on Grids: Relying on object bounding boxes
for localization assumes that the model only relies on in-
formation within those bounding boxes. However, neural
networks are known to also rely on context information for
their decisions, cf. [25]. Therefore, recent work [3, 4, 24]
proposes creating a grid of inputs from distinct classes and
measuring localization to the entire grid cell, which allows
evaluation on datasets where bounding boxes are not avail-
able. However, this does not guarantee that the model only
uses information from within the grid cell, and may fail for
similar looking features (Fig. 3, right). In our work, we
propose a metric that controls the flow of information and
guarantees that grid cells are classified independently.

3. Evaluating Attribution Methods
We present our evaluation settings for better understand-

ing the strengths and shortcomings of attribution methods.
Similar to the Grid Pointing Game (GridPG) [4], these met-
rics evaluate attribution methods on image grids with mul-
tiple classes. In particular, we propose a novel quantitative
metric, DiFull, and extension to it, DiPart (3.1), as stricter
tests of model faithfulness than GridPG. Further, we present
a qualitative metric, AggAtt (3.2) and an evaluation setting
that compares methods at identical layers, ML-Att (3.3)

3.1. Quantitative Evaluation: Disconnecting Inputs

In the following, we introduce the quantitative metrics
that we use to compare attribution methods. For this, we
first describe GridPG and the grid dataset construction it
uses [4]. We then devise a novel setting, in which we care-
fully control which features can influence the model output.
By construction, this provides ground truth annotations for
image regions that can or cannot possibly have influenced
the model output. While GridPG evaluates how well the
methods localize class discriminative features, our metrics
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(a) GridPG (b) DiFull (c) DiPart

Fig. 2. Our three evaluation settings. In GridPG, the classification scores are influenced by the entire input. In DiFull, on the other hand,
we explicitly control which inputs can influence the classification score. For this, we pass each subimage separately through the spatial
layers, and then construct individual classification heads for each of the subimages. DiPart serves as a more natural setting to DiFull, that
still provides partial control over information. We show a 1× 2 grid for readability, but the experiments use 2× 2 grids.

complement it by evaluating their model-faithfulness.

3.1.1 Grid Data and GridPG
For GridPG [4], the attribution methods are evaluated on a
synthetic grid of n× n images in which each class may oc-
cur at most once. In particular, for each of the occurring
classes, GridPG measures the fraction of positive attribu-
tion assigned to the respective grid cell versus the overall
amount of positive attribution. Specifically, let A+(p) refer
to the positive attribution given to the pth pixel. The local-
ization score for the subimage xi is given by:

Li =

∑
p∈xi

A+(p)∑n2

j=1

∑
p∈xj

A+(p)
(1)

An ‘optimal’ attribution map would thus yield Li=1, while
uniformly distributing attributions would yield Li=

1
n2 .

By only using confidently classified images from distinct
classes, GridPG aims to ensure that the model does not find
‘positive evidence’ for any of the occurring classes in the
grid cells of other classes. However, specifically for class-
combinations that share low-level features, this assumption
might not hold, see Fig. 3 (right): despite the two dogs (up-
per left and lower right) being classified correctly as single
images, the output for the logit of the dog in the upper left
is influenced by the features of the dog in the lower right in
the grid image. Since all images in the grid can indeed in-
fluence the model output in GridPG1, it is unclear whether
such an attribution is in fact not model-faithful.

3.1.2 Proposed Metric: DiFull
As discussed, the assumption in GridPG that no feature out-
side the subimage of a given class should positively influ-

1As shown in Fig. 2a, the convolutional layers of the model under con-
sideration process the entire grid to obtain feature maps, which are then
classified point-wise. Finally, a single output per class is obtained by glob-
ally pooling all point-wise classification scores. As such, the class logits
can, of course, be influenced by all images in the grid.

ence the respective class logit might not hold. Hence, we
propose to fully disconnect (DiFull) the individual subim-
ages from the model outputs for other classes. For this, we
introduce two modifications. First, after removing the GAP
operation, we use n × n classification heads, one for each
subimage, only locally pooling those outputs that have their
receptive field center above the same subimage. Second, we
ensure that their receptive field does not overlap with other
subimages by zeroing out the respective connections.

In particular, we implement DiFull by passing the subim-
ages separately through the CNN backbone of the model
under consideration2, see Fig. 2b. Then, we apply the clas-
sification head separately to the feature maps of each subim-
age. As we discuss in the supplement, DiFull has similar
computational requirements as GridPG.

As a result, we can guarantee that no feature outside the
subimage of a given class can possibly have influenced the
respective class logit—they are indeed fully disconnected.

3.1.3 Natural Extension: DiPart
At one end, GridPG allows any subimage to influence the
output for any other class, while at the other, DiFull com-
pletely disconnects the subimages. In contrast to GridPG,
DiFull might be seen as a constructed setting not seen in
typical networks. As a more natural setting, we therefore
propose DiPart, for which we only partially disconnect the
subimages from the outputs for other classes, see Fig. 2c.
Specifically, we do not zero out all connections (Sec. 3.1.2),
but instead only apply the local pooling operation from
DiFull and thus obtain local classification heads for each
subimage (as in DiFull). However, in this setting, the clas-
sification head for a specific subimage can be influenced by
features in other subimages that lie within the head’s recep-
tive field. For models with a small receptive field, this yields

2Note that this is equivalent to setting the respective weights of a con-
volutional kernel to zero every time it overlaps with another subimage.

10225



very similar results as DiFull (Sec. 5 and Supplement).

3.2. Qualitative Evaluation: AggAtt

In addition to quantitative metrics, attribution methods
are often compared qualitatively on individual examples for
a visual assessment. However, this is sensitive to the choice
of examples and does not provide a holistic view of the
method’s performance. By constructing standardised grids,
in which ‘good’ and ‘bad’ (GridPG) or possible and impos-
sible (DiFull) attributions are always located in the same re-
gions, we can instead construct aggregate attribution maps.

Thus, we propose a new qualitative evaluation scheme,
AggAtt, for which we generate a set of aggregate maps for
each method that progressively show the performance of the
methods from the best to the worst localized attributions.

For this, we first select a grid location and then sort all
corresponding attribution maps in descending order of the
localization score, see Eq. (1). Then, we bin the maps into
percentile ranges and, finally, obtain an aggregate map per
bin by averaging all maps within a single bin. In our exper-
iments, we observed that attribution methods typically per-
formed consistently over a wide range of inputs, but showed
significant deviations in the tails of the distributions (best
and worst case examples). Therefore, to obtain a succinct
visualization that highlights both distinct failure cases as
well as the best possible results, we use bins of unequal
sizes. Specifically, we use smaller bins for the top and bot-
tom percentiles. For an example of AggAtt, see Fig. 1.

As a result, AggAtt allows for a systematic qualitative
evaluation and provides a holistic view of the performance
of attribution methods across many samples.

3.3. Attributions Across Network Layers: ML-Att

Attribution methods often vary significantly in the de-
gree to which they explain a model. Activation-based at-
tribution methods like Grad-CAM [23], e.g., are typically
applied on the last spatial layer, and thus only explain a frac-
tion of the full network. This is a significantly easier task
as compared to explaining the entire network, as is done by
typical backpropagation-based methods. Activations from
deeper layers of the network would also be expected to lo-
calize better, since they would represent the detection of
higher level features by the network (Fig. 1, left).

For a fair comparison between methods, we thus propose
a multi-layer evaluation scheme for attributions (ML-Att).
Specifically, we evaluate methods at various network lay-
ers and compare their performance on the same layers. For
this, we evaluate all methods at the input, an intermediate,
and the final spatial layer of multiple network architectures,
see Sec. 4 for details. Importantly, we find that apparent
differences found between some attribution methods vanish
when compared fairly, i.e., on the same layer (Sec. 5.1).

Lastly, we note that most attribution methods have been

designed to assign importance values to input features of the
model, not intermediate network activations. The general-
isation to intermediate layers, however, is straightforward.
For this, we simply divide the full model ffull into two vir-
tual parts: ffull=fexplain ◦ fpre. Specifically, we treat fpre as
a pre-processing step and use the attribution methods to ex-
plain the outputs of fexplain with respect to the inputs fpre(x).
Note that in its standard use case, in Grad-CAM fpre(x) is
given by all convolutional layers of the model, whereas for
most gradient-based methods fpre(x) is the identity.

4. Experimental Setup
Dataset and Architectures: We run our experiments on
VGG11 [28] and Resnet18 [10] trained on Imagenet [19];
similar results were observed on CIFAR10 [14] (in supple-
ment). For each model, we separately select images from
the validation set that were classified with a confidence
score of at least 0.99. By only using highly confidently
classified images [3, 4], we ensure that the features within
each grid cell constitute positive evidence of its class for the
model, and features outside it contain low positive evidence
since they get confidently classified to a different class.
Evaluation on GridPG, DiFull, and DiPart: We evaluate
on 2×2 grids constructed by randomly sampling images
from the set of confidently classified images (see above).
Specifically, we generate 2000 attributions per method for
each of GridPG, DiFull, and DiPart. For GridPG, we use
images from distinct classes, while for DiFull and DiPart
we use distinct classes except in the bottom right corner,
where we use the same class as the top left. By repeat-
ing the same class twice, we can test whether an attribu-
tion method simply highlights class-related features, irre-
spective of them being used by the model. Since subimages
are disconnected from the classification heads of other loca-
tions in DiFull and DiPart, the use of repeating classes does
not change which regions should be attributed (Sec. 3.1.2).
Evaluation at Intermediate Layers: We evaluate each
method at the input (image), middle3 (Conv5 for VGG11,
Conv3 x for Resnet18), and final spatial layer (Conv8
for VGG11, Conv5 x for Resnet18) of each network, see
Sec. 3.3. Evaluating beyond the input layer leads to lower
dimensional attribution maps, given by the dimensions of
the activation maps at those layers. Thus, as is common
practice [23], we upsample those maps to the dimensions
of the image (448× 448) using bilinear interpolation.
Qualitative Evaluation on AggAtt: As discussed, for Ag-
gAtt we use bins of unequal sizes (Sec. 3.2). In particu-
lar, we bin the attribution maps into the following percentile
ranges: 0–2%, 2–5%, 5–50%, 50–95%, 95–98%, and 98–
100%; cf. Fig. 1. Further, in our experiments we evaluate
the attributions for classes at the top-left grid location.

3We show a single intermediate layer to visualize trends from the input
to the final layer. Results on all layers can be found in the supplement.
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Fig. 3. Left: Example Attributions on the Standard, GridPG, and DiFull Settings. We show attributions for all methods on their typically
evaluated layers, i.e. input for backpropagation-based and perturbation-based, and final layer for activation-based methods. Blue boxes
denote the object bounding box (Standard) or the grid cell (GridPG, DiFull) respectively. For DiFull, we use images of the same class at
the top-left and bottom-right corners as in our experiments. Right: Occlusion attributions for an example evaluated on GridPG, DiFull, and
DiPart. The top-left and bottom-right corners contain two different species of dogs, which share similar low-level features, causing both to
be attributed in GridPG. In contrast, our disconnected construction in DiFull and DiPart ensures that the bottom-right subimage does not
influence the classification of the top-left, and thus should not be attributed by any attribution methods, even though some do erroneously.

Attribution Methods: We evaluate a diverse set of attri-
bution methods, for an overview see Sec. 2. As discussed
in Sec. 3.3, to apply those methods to intermediate network
layers, we divide the full model into two virtual parts fpre
and fexplain and treat the output of fpre as the input to fexplain
to obtain importance attributions for those ‘pre-processed’
inputs. In particular, we evaluate the following methods.
From the set of backpropagation-based methods, we eval-
uate on Guided Backpropagation [30], Gradient [27], Int-
Grad [32], and IxG [26]. From the set of activation-based
methods, we evaluate on Grad-CAM [23], Grad-CAM++
[6], Ablation-CAM [8], Score-CAM [33], and Layer-CAM
[12]. Note that in our framework, these methods can be re-
garded as using the classification head only (except [12]) for
fexplain, see Sec. 3.3. In order to evaluate them at earlier lay-
ers, we simply expand fexplain accordingly to include more
network layers. From the set of perturbation-based meth-
ods, we evaluate Occlusion [34] and RISE [16]. These are
typically evaluated on the input layer, and measure output
changes when perturbing (occluding) the input (Fig. 3, left).
Note that Occlusion involves sliding an occlusion kernel of
size K with stride s over the input. We use K=16, s=8
for the input, and K=5, s=2 at the middle and final layers
to account for the lower dimensionality of the feature maps.
For RISE, we use M=1000 random masks , generated sep-
arately for evaluations at different network layers.

5. Experimental Results and Discussion

In this section, we first present the quantitative results for
all attribution methods on GridPG, DiPart, and DiFull and
compare their performance at multiple layers (5.1). Fur-
ther, we present a simple smoothing mechanism that pro-
vides highly performant attributions on all three settings,
and discuss architectural considerations that impact its ef-

fectiveness (5.2). Finally, we present qualitative results us-
ing AggAtt, and show its use in highlighting strengths and
deficiencies of attribution methods (5.3).

5.1. Evaluation on GridPG, DiFull, and DiPart

We perform ML-Att evaluation using the input (Inp),
a middle layer (Mid), and before the classification head
(Fin) (x-ticks in Fig. 4) for all three quantitative evalua-
tion settings (GridPG, DiFull, DiPart, minor columns in
Fig. 4) discussed in Sec. 3. In the following, we discuss
the methods’ results, grouped by their ‘method family’:
backpropagation-based, activation-based, and perturbation-
based methods (major columns in Fig. 4).
Backpropagation-based methods: We observe that all
methods perform poorly at the initial layer on GridPG
(Fig. 4, left). Specifically, we observe gradient-based meth-
ods to yield noisy attributions that do not seem to reflect
the grid structure of the images; i.e., positive attributions
are nearly as likely to be found outside of a subimage for a
specific class as they are to be found inside.

However, all methods improve on later layers. At the
final layer, IntGrad and IxG show very good localization
(comparable to Grad-CAM), which suggests that the meth-
ods may have similar explanatory power when compared on
an equal footing. We note that IxG at the final layer has been
previously proposed under the name DetGrad-CAM [20].

On DiFull, all methods show near-perfect localization
across layers (Fig. 8). No attribution is given to discon-
nected subimages since the gradients with respect to them
are zero (after all, they are fully disconnected); degradations
for other layers can be attributed to the applied upsampling.

Similar results are seen in DiPart, but with decreasing
localization when moving backwards from the classifier,
which can be attributed to the fact that the receptive field
can overlap with other subimages in this setting. Given the
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Fig. 4. Quantitative Results on VGG11 and Resnet18. For each metric, we evaluate all attribution methods with respect to the input
image (Inp), a middle (Mid), and the final (Fin) spatial layer. We observe the performance to improve from Inp to Fin on most settings.
Similar to the backpropagation-based methods, the results for methods on DiPart are very similar to those in DiFull for activation and
perturbation-based; for details, see supplement. The symbol * denotes boxes that collapse to a single value, for better readability.

Fig. 5. Smoothing the attributions for IntGrad and IxG signifi-
cantly improves their performance at the input image and middle
layer. For reference, we show Grad-CAM on the final spatial layer.

similarity between the results for DiFull and DiPart, we re-
strict our discussion to DiFull; for DiPart, see supplement.

Activation-based methods: We see that all methods with
the exception of Layer-CAM improve in localization perfor-
mance from input to final layer on all three settings. Since
attributions are computed using a scalar weighted sum of at-
tribution maps, this improvement could be explained by im-
proved localization of activations from later layers. In par-
ticular, localization is very poor at early layers, which is a
well-known limitation (cf. [12]) of Grad-CAM. The weight-
ing scheme also causes final layer attributions for all meth-
ods except Layer-CAM to perform worse on DiFull than on
GridPG, since these methods attribute importance to both
instances of the repeated class (Fig. 8). This issue is absent
in Layer-CAM since it does not apply a pooling operation.

Perturbation-based methods: We observe (Fig. 4, right)
Occlusion to perform well across layers on DiFull, since
occluding disconnected subimages cannot affect the model
outputs and are thus not attributed importance. However,
the localization drops slightly for later layers. This is due
to the fact that the relative size (w.r.t. activation map) of
the overlap regions between occlusion kernels and adjacent
subimages increases. This highlights the sensitivity of per-
formance to the choice of hyperparameters, and the tradeoff
between computational cost and performance.

On GridPG, Occlusion performance improves with lay-
ers. On the other hand, RISE performs poorly across all
settings and layers. Since it uses random masks, pixels out-
side a target grid cell that share a mask with pixels within
get attributed equally. So while attributions tend to concen-
trate more in the target grid cell, the performance can be
inconsistent (Fig. 8).

5.2. Smoothing Attributions

From Sec. 5.1, we see that Grad-CAM localizes well at
the final layer in GridPG, but performs poorly on all the
other settings as a consequence of global pooling of gradi-
ents (for DiFull) and poor localization of early layer features
(for GridPG early layers). Since IxG, in contrast, does not
use a pooling operation, it performs well on DiFull at all
layers and on GridPG at the final layer. However, it per-
forms poorly at the input and middle layers on GridPG due
to the noisiness of gradients; IntGrad shows similar results.

Devising an approach to eliminate this noise would pro-
vide an attribution method that performs well across set-
tings and layers. Previous approaches to reduce noise in-
clude averaging attribution maps over many perturbed sam-
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Fig. 6. Qualitative Results for VGG11 on GridPG evaluated at the top-left corner. Centre: Aggregate attributions sorted and binned
in descending order of localization. Each column corresponds to a bin, and set of three rows corresponds to a method. For each method,
the three rows from top to bottom show the aggregate attributions at the input, middle, and final spatial layers. Left: Examples from the
first bin, which corresponds to the best set of attributions. Right: Similarly, we show examples from the last bin, which corresponds to the
worst set of attributions. For smooth IxG, we use K = 129 for the input layer, K = 17 at the middle layer, and K = 9 at the final layer.
All examples shown correspond to images whose attributions lie at the median position in their respective bins.

Fig. 7. Qualitative Visualization of smoothing IxG attribution
maps for various kernel sizes, including both positive and neg-
ative attributions. Top: Aggregate attribution maps for VGG11
on GridPG at the top-left corner across the dataset. We see that
positive attributions (green) aggregate to the top-left grid cell and
negative attributions (red) aggregate outside when smoothing with
large kernel sizes. Middle and Bottom: Examples of smoothing on
a single grid and non-grid image. Positive attributions concentrate
inside the bounding box when smoothed with large kernels.

ples (SmoothGrad [29], see supplement for a comparison)
or adding a gradient penalty during training [13]. However,
SmoothGrad is computationally expensive as it requires
several passes on the network to obtain attributions, and is
sensitive to the chosen perturbations. Similarly, adding a
penalty term during training requires retraining the network.

Here, we propose to simply apply a Gaussian smoothing
kernel on existing IntGrad and IxG attributions. We evalu-
ate on DiFull and GridPG using several kernel sizes, using
standard deviation K/4 for kernels of size K. We refer to
the smooth versions as S-IntGrad and S-IxG respectively.

On VGG11 (Fig. 5, top), we find that S-IntGrad and S-
IxG localize significantly better than IntGrad and IxG, and
the performance improves with increasing kernel size. In
detail, S-IntGrad on the input layer with K=257 outper-
forms Grad-CAM on the final layer, despite explaining the
full network. While performance on DiFull drops slightly as

smoothing leaks attributions across grid boundaries, both S-
IntGrad and S-IxG localize well across settings and layers.
However, on Resnet18 (Fig. 5, bottom), while S-IntGrad
improves similarly, S-IxG does not, which we discuss next.
Impact of Network Architecture: A key difference be-
tween the VGG11 and Resnet18 architectures used in our
experiments is that VGG11 does not have batch normaliza-
tion (BatchNorm) layers. We note that batch norm effec-
tively randomizes the sign of the input vectors to the sub-
sequent layer, by centering those inputs around the origin
(cf. [11,13]). Since the sign of the input determines whether
a contribution (weighted input) is positive or negative, a
BatchNorm layer will randomize the sign of the contribu-
tion and the ‘valence’ of the contributions will be encoded
in the BatchNorm biases. To test our hypothesis, we eval-
uate S-IxG on a VGG11 with BatchNorm layers (Fig. 5,
middle), and observe results similar to Resnet18: i.e., we
observe no systematic improvement by increasing the ker-
nel size of the Gaussian smoothing operation. This shows
that the architectural choices of a model can have a signifi-
cant impact on the performance of attribution methods.

5.3. Qualitative Evaluation using AggAtt

In this section, we present qualitative results using Ag-
gAtt for select attributions evaluated on GridPG and DiFull
and multiple layers. First, to investigate the qualitative im-
pact of smoothing, we use AggAtt to compare IxG, S-IxG,
and Grad-CAM attributions on GridPG on multiple layers.
We employ AggAtt on DiFull to highlight specific charac-
teristics and failure cases of some attribution methods.
AggAtt on GridPG: We show AggAtt results for IxG,
S-IxG, and Grad-CAM at three layers on GridPG using
VGG11 on the images at the top-left corner (Fig. 6). For
each method, a set of three rows corresponds to the attribu-
tions at input, middle, and final layers. For S-IxG, we set K
to 129, 17, and 9 respectively. We further show individual
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Fig. 8. Qualitative Results for VGG11 on DiFull evaluated at the top-left corner. Centre: Aggregate attributions sorted and binned in
descending order of localization. Each column corresponds to a bin and each row corresponds to a method applied at its standard layer.
Left: Examples from the first bin, which corresponds to the best set of attributions. Right: Examples from the last bin, which corresponds
to the worst set of attributions. All examples shown correspond to images whose attributions lie at the median position in their bins.

samples (median bin) of the first and last bins per method.
We observe that the aggregate visualizations are consis-

tent with the quantitative results (Figs. 4 and 5) and the in-
dividual examples shown for each bin. The performance
improves for IxG and Grad-CAM from input to final layer,
while S-IxG localizes well across three layers. Finally, the
last two columns show that all the attribution methods per-
form ‘poorly’ for some inputs; e.g., we find that IxG and
Grad-CAM on the final layer attribute importance to other
subimages if they exhibit features that are consistent with
the class in the top-left subimage. While the attributions
might be conceived as incorrect, we find that many ‘fail-
ure cases’ on GridPG highlight features that the underlying
model might in fact use, even if they are in another subim-
age. Given the lack of ground truth, it is difficult to assess
whether these attributions faithfully reflect model behaviour
or deficiencies of the attribution methods.

Despite explaining significantly more layers, S-IntGrad
and S-IxG at the input layer not only match Grad-CAM
at the final layer quantitatively (Fig. 5) and qualitatively
(Fig. 6), but are also highly consistent with it for individual
explanations. Specifically, the Spearman rank correlation
between the localization scores of Grad-CAM (final layer)
and S-IntGrad (input layer) increases significantly as com-
pared to IntGrad (input layer) (e.g., 0.34→0.80 on VGG11),
implying that their attributions for any input tend to lie in
the same AggAtt bins (see supplement).

To further understand the effect of smoothing, we visual-
ize S-IxG with varying kernel sizes while including negative
attributions (Fig. 7). The top row shows aggregate attribu-
tions across the dataset, while the middle and bottom rows
show an example under the GridPG and standard localiza-
tion settings respectively. We observe that while IxG attri-
butions appear noisy (column 2), smoothing causes positive
and negative attributions to cleanly separate out, with the
positive attributions concentrating around the object. For
instance, in the second row, IxG attributions concentrate
around both the dog and the wolf, but S-IxG with K=129
correctly attributes only the dog positively. This could in-
dicate a limited effective receptive field (RF) [15] of the
models. Specifically, note that for piece-wise linear mod-
els, summing the contributions (given by IxG) over all in-
put dimensions within the RF exactly yields the output logit

(disregarding biases). Models with a small RF would thus
be well summarised by S-IxG for an adequately sized ker-
nel; we elaborate on this in the supplement.
AggAtt on DiFull: We visually evaluate attributions on
DiFull for one method per method family, i.e., from
backpropagation-based (IxG, input layer), activation-based
(Grad-CAM, final layer), and perturbation-based (RISE, in-
put layer) methods at their standard layers (Fig. 8). The
top row corroborates the near-perfect localization shown by
the backpropagation-based methods on DiFull. The middle
row shows that Grad-CAM attributions concentrate at the
top-left and bottom-right corners, which contain images of
the same class, since global pooling of gradients makes it
unable to distinguish between the two even though only the
top-left instance (here) influences classification. Finally, for
RISE, we observe that while attributions localize well for
around half the images, the use of random masks results in
noisy attributions for the bottom half.

6. Conclusion

In this work, we proposed schemes to evaluate model-
faithfulness of attribution methods in a fair and systematic
manner. We first proposed a quantitative metric, DiFull, that
constrains input regions that can affect classification. This
yields regions in which any attribution is necessarily un-
faithful and allows to highlight distinct failure cases of some
attribution methods. Then, we proposed a multi-layer eval-
uation scheme, ML-Att, that compares methods fairly, and
found that the performance gap between methods narrows
considerably when done so. Finally, we proposed AggAtt,
a novel qualitative evaluation scheme that allows for suc-
cinctly visualizing the variation in performance of attribu-
tion methods in a systematic and holistic manner. Overall,
we find that fair comparisons, holistic evaluations (DiFull,
GridPG, AggAtt, ML-Att), and careful disentanglement of
model behaviour from the explanations provide better in-
sights in the performance of attribution methods.
Limitations. We note that while our method can distin-
guish between possibly correct and impossibly correct attri-
butions, our method cannot evaluate the correctness of spe-
cific attributions within the target grid cells, since ground
truths for these are unknown.
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