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Figure 1. Overview of our RADIal dataset. RADIal includes a set of 3 sensors (camera, laser scanner, high-definition radar) and
comes with GPS and vehicle’s CAN traces; 25k synchronized samples are recorded is raw format. (a) Camera image with projected laser
point cloud in red and radar point cloud in indigo, vehicle annotation in orange and free-driving-space annotation in green; (b) Radar
power spectrum with bounding box annotations; (c) Free-driving-space annotation in bird-eye view, with vehicles annotated with orange
bounding boxes, radar point cloud in indigo and laser point cloud in red; (d) Range-azimuth map in Cartesian coordinates overlayed with
radar point cloud and laser point cloud; (e) GPS trace in red and odometry trajectory reconstruction in green.

Abstract

With their robustness to adverse weather conditions and
ability to measure speeds, radar sensors have been part of
the automotive landscape for more than two decades. Re-
cent progress toward High Definition (HD) Imaging radar
has driven the angular resolution below the degree, thus
approaching laser scanning performance. However, the
amount of data a HD radar delivers and the computational
cost to estimate the angular positions remain a challenge.
In this paper, we propose a novel HD radar sensing model,
FFT-RadNet, that eliminates the overhead of computing
the range-azimuth-Doppler 3D tensor, learning instead to
recover angles from a range-Doppler spectrum. FFT-
RadNet is trained both to detect vehicles and to segment free
driving space. On both tasks, it competes with the most re-
cent radar-based models while requiring less compute and
memory. Also, we collected and annotated 2-hour worth
of raw data from synchronized automotive-grade sensors
(camera, laser, HD radar) in various environments (city
street, highway, countryside road). This unique dataset,
nick-named RADIal for “Radar, LiDAR et al.”, is available
at https://github.com/valeoai/RADIal.

1. Introduction

Automotive radars have been in production since the
late 90s. They are the preferred, most affordable sensors
for adaptive cruise control, blind spot detection and auto-
matic emergency braking functions. However, they have
a poor angular resolution, which hinders their use in auto-
mated driving systems. Indeed, such systems need a high
level of safety and robustness, usually reached through re-
dundancy mechanisms. While sensing is improved by fus-
ing several modalities, the overall combination works only
if each sensor achieves sufficient and comparable perfor-
mances. High-definition (HD) imaging radar has emerged
to meet these requirements. By using dense virtual antenna
arrays, these new sensors achieve high angular resolution
both in azimuth and elevation (horizontal and vertical angu-
lar positions, resp.) and produce denser point clouds.

With the rapid progress of deep learning and the avail-
ability of public driving datasets, e.g., [4, 6, 12], the per-
ception ability of vision-based driving systems (detection of
objects, structures, markings and signs, estimation of depth,
forecasting of other road users’ movements) has consider-
ably improved. These advances quickly extended to depth
sensors such as laser scanners (LiDAR), with the help of
specific architectures to deal with 3D point clouds [19, 42].
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nuScenes [4] 2019 large ✗ ✗ ✗ ✓ ✓ LD CLO ✓ 3D boxes
Astyx [24] 2019 small ✗ ✗ ✗ ✓ ✓ HD CL ✗ 3D boxes
RadarRobotCar [1] 2020 large ✗ ✗ ✓ ✗ ✗ S CLO ✓ ✗
CARRADA [31] 2020 small ✗ ✓ ✓ ✓ ✓ LD C ✓ 2D boxes, seg.
RADIATE [38] 2020 medium ✗ ✗ ✓ ✗ ✗ S CLO ✓ 2D boxes
MulRan [17] 2020 medium ✗ ✗ ✓ ✓ ✗ S CLO ✓ ✗
Zendar [27] 2020 small ✗ ✗ ✓ ✓ ✓ HD CL ✓ 2D boxes
CRUW [41] 2021 medium ✗ ✗ ✓ ✗ ✗ LD C ✓ point location
RadarScenes [36] 2021 large ✗ ✗ ✗ ✓ ✓ HD CO ✓ point-wise
RADDet [43] 2021 small ✗ ✓ ✓ ✗ ✓ LD C ✓ 2D boxes

RADIal (ours) 2022 medium ✓ ✓ ✓ ✓ ✓ HD CLO ✓ 2D boxes, seg.

Table 1. Publicly-available driving datasets with radar. The dataset is ‘small’ (<15k frames), ‘large’ (>130k frames) or ‘medium’ (in
between). The radar is low-definition (‘LD’), high-definition (‘HD’) or scanning (‘S’) and its data is released in different representations,
amounting to different signal processing pipelines: analog-to-digital converter (‘ADC’) signal, range-azimuth-Doppler (‘RAD’) tensor,
range-azimuth (‘RA’) view, range-Doppler (‘RD’) view, point cloud (‘PC’). The presence of Doppler information depends on the radar
sensor. Other sensor modalities are camera (‘C’), LiDAR (‘L’) and odometry (‘O’). RADIal is the only dataset providing each representation
of a HD radar, combined with camera, LiDAR and odometry, while proposing detection and free-space segmentation tasks.

Quite surprisingly, the adoption of deep learning for
radar processing in this context is much slower, compared
to the other sensors. This might be explained by the com-
plex nature of the data and the lack of public datasets. In-
deed, recent key contributions in the field of radar-based ve-
hicle’s perception have appeared together with the release of
datasets. Interestingly, most of the recent works exploit the
range-azimuth (RA) representation of the radar data (either
in polar or Cartesian coordinates). Similar to a bird’s eye
view (see Figure 1d), this representation is easy to interpret
and allows simple data augmentation with translations and
rotations. However, one barely-mentioned drawback is that
the generation of the RA radar maps incurs significant pro-
cessing costs (tens of GOPS, see Section 6.5), which com-
promises its viability on embedded hardware. While novel
HD radars offer better resolution, they make this computa-
tional complexity issue even more acute.

Owing to the promising capabilities of HD radars, our
work attacks this issue to improve their practicality. In par-
ticular, we propose: (1) FFT-RadNet, an optimized deep
architecture that processes HD radar data at reduced cost,
toward two different perception tasks, namely vehicle de-
tection and free-space segmentation; (2) An empirical anal-
ysis comparing various radar signal representations in terms
of performance, complexity and memory footprint; (3) RA-
DIal, the first raw HD radar dataset, including several other
automotive-grade sensors, as described in Table 1.

The paper is organized as follows: Sections 2 and 3 dis-
cuss radar background and related work; FFT-RadNet and
RADIal are introduced in Sections 4 and 5 resp.; Experi-
ments are reported in Section 6, and Section 7 concludes.

2. Radar background

Radars are usually composed of a set of transmitting
and receiving antennas. The transmitters emit electromag-
netic waves which are reflected back to the receivers by
the objects in the environment. Standard in the automotive
industry [3, 13], a frequency-modulated continuous-wave
(FMCW) radar emits a sequence of frequency-modulated
signals called chirps. The frequency difference between the
emission and reception is mostly due to the radial distance
of the obstacle. This distance is thus extracted via a Fast
Fourier Transform (FFT) along the chirp sequence (range-
FFT). A second FFT (Doppler-FFT) along the time axis ex-
tracts the phase difference, which captures the radial ve-
locity of the reflector. The combination of these 2 FFTs
provides a range-Doppler (RD) spectrum for each receiving
antenna (Rx), stored for all Rx in an RD tensor. The angle-
of-arrival (AoA) can be estimated by using more than one
Rx. A phase difference in the received signal is observed
due to the small distance between Rx antennas. A common
practice is to apply a third FFT (angle-FFT) along the chan-
nel axis to estimate this AoA.

Radar’s capability to discriminate between two targets
with same range and velocity but different angles is called
its angular resolution. It is directly proportional to the an-
tenna aperture, that is, the distance between the first and
last antennas. The multiple inputs multiple outputs (MIMO)
approach [9] is commonly used to improve the angular res-
olution without increasing the physical aperture: Angular
resolution increases by a factor of 2 for each added emit-
ting antenna (Tx). Denoting NTx and NRx the number of its
Tx and Rx channels respectively, a MIMO system builds a
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virtual array of NTx·NRx antennas. In order to prevent emit-
ted signals from interfering, the transmitters emit the same
signal at the same time, but with a slight phase shift ∆ϕ

between two consecutive antennas. The downside of this
approach is that the signature of each reflector appears NTx
times in the RD spectrum, making the data interleaved.

To translate the AoA into an effective angle, one needs
to calibrate the sensor. An alternative to the third FFT is
to correlate in the complex domain the RD spectrum with a
calibration matrix, to estimate the angles (azimuth and ele-
vation). The complexity of this operation for a single point
of the RD tensor is O(NTxNRxBABE), where BA and BE
are the numbers of discretization bins for azimuth and ele-
vation angles respectively in the calibration matrix. For a
4D representation in range-azimuth-elevation-Doppler, this
operation would need to be performed for each point of the
RD tensor.1

As a conclusion, for an embedded HD radar, tradi-
tional signal processing can not be applied as it is too re-
source greedy in terms of both computation requirements
and memory footprint. For driving assistance systems, there
is therefore the challenge of increasing radar’s angular res-
olution while keeping the processing costs under control.

3. Related work
Radar datasets. Traditional radars offer a good trade-off
between cost and performance. While they provide accurate
range and velocity, they suffer from a low azimuth resolu-
tion leading to ambiguity in separating close objects. Re-
cent datasets include processed radar representations such
as the entire range-azimuth-Doppler (RAD) tensor [31, 43]
or single views of this tensor –either range-azimuth (RA)
[1, 17, 27, 38, 41] or range-Doppler (RD) [27]. These repre-
sentations require large bandwidth to be transmitted as well
as large memory storage. For this reason, datasets that in-
clude several modalities with numerous samples, such as
nuScenes [4], provide only radar point clouds, a lighter rep-
resentation. However, it is a limited processed representa-
tion and it is biased to the signal processing pipeline. Sev-
eral other datasets use a 360◦ scanning radar [1, 17, 38].
However, its angular resolution is limited as with traditional
radars and it does not provide Doppler information.

As discussed earlier, recent HD radars successfully reach
an azimuth angular resolution below the degree using large
arrays of virtual antennas. The Zendar dataset [27] provides
range-Doppler and range-azimuth views for such a radar.
Both Astyx [24] and RadarScenes [36] datasets contain HD
radar data processed as point clouds.

To the best of our knowledge, there is no open-source
HD radar dataset that provides raw data together with cam-

1Considering a HD radar with 0.2◦ of azimuth resolution over 180◦

of horizontal field of view (FoV) and 11 elevations, it would require 498
GFLOPS to be computed.

era and LiDAR in various driving environments, a gap that
our dataset is filling. Table 1 summarizes the characteristics
of the publicly-available driving datasets with radar.

Radar object detection. Low-definition (LD) radar has
been used for many applications such as hand gesture recog-
nition [10], object or person detection at gates [15] and
aerial monitoring [26]. For automotive applications, sin-
gle views of the RAD tensor are chosen as input of specific
neural network architectures to detect objects’ signatures in
the considered view, either RA [8, 40] or RD [28]. Differ-
ently, [44] uses a radar view to localise objects in the camera
image and [2] proposes a two-stage approach to estimate the
azimuth of a detected object using only RD views.

Specific architectures have been designed to ingest ag-
gregated views of the RAD tensor to detect objects in the
RA view [11, 23]. The entire tensor has also been consid-
ered, either for object detection in both RA and RD views
[43] or for object localisation in the camera image [32].

A radar point cloud contains less information than RAD
views due to the pre-processing that has been applied. How-
ever, [7, 35] explore this representation for 2D object de-
tection with LR radar and [25] shows that HD radar point
clouds can outperform LiDAR for this task.

None of these works mentions the pre-processing cost
to generate the RAD tensor or the point cloud, which are
taken as granted. In fact, a HD radar can not be used by
previously-mentioned approaches as it would not fit on even
the largest automotive embedded device. With [11] for in-
stance applied to HD radar, the input data at each times-
tamp would occupy 450MB and require 4.5·1010 FLOPS2

for only one elevation (out of 11). To the best of our knowl-
edge, there is no previous work on end-to-end object detec-
tion that is capable to scale with raw HD radar data.

Radar semantic segmentation. Semantic segmentation on
radar representation has been less explored due to the lack
of annotated datasets. The RA view has been a research
topic for multi-class [16] and free-space [29] segmentation.
The entire RAD tensor is considered for multi-view seg-
mentation in [30]. Radar point cloud segmentation has also
been explored to estimate bird-eye-view occupancy grids,
either for LD [22, 39] or HD [33, 34, 37] radars.

Once again, none of these methods can scale to raw HD
radar data to perform free-space segmentation for instance.
Moreover, there is no previous work either on free-driving-
space segmentation or semantic segmentation using only
RD views of HD radar signals. In addition, there is no
existing multi-task model that performs both radar object
detection and semantic segmentation simultaneously. Next,
we detail our approach toward reducing both memory and
complexity to perform vehicle detection and free-driving-
space segmentation with raw HD radar signals.

2For comparison, ResNet50 on a 256px image requires 4·109 FLOPS.
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Figure 2. Trainable MIMO pre-encoder. Considering three
transmitters (NTx =3) and two receivers (NRx =2), an object’s
signature is visible NTx times in the RD spectrum. The pre-
encoder uses Atrous convolutions to organise and compress sig-
natures in fewer than NTx·NRx output channels.

4. FFT-RadNet architecture
Our approach is motivated by automotive constraints:

Automotive-grade sensors must be used and only limited
processing/memory resources are available on the embed-
ded hardware. In this context, the RD spectrum is the only
representation that is practical for HD radar. Based on it, we
propose a multi-task architecture, compatible with above re-
quirements, which is composed of five blocks (see Fig.3):

• A pre-encoder reorganizing and compressing the RD ten-
sor into a meaningful and compact representation;

• A shared Feature Pyramidal Network (FPN) encoder com-
bining low-resolution semantic information with high-
resolution details;

• A range-angle decoder building a range-azimuth latent
representation from the feature pyramid;

• A detection head localizing vehicles in range-azimuth co-
ordinates;

• A segmentation head predicting the free driving space.

4.1. MIMO pre-encoder

As explained in Section 2, the MIMO configuration im-
plies one complex RD spectrum per receiver. This re-
sults in a complex 3D tensor of dimension (BR, BD, NRx),
where BR and BD are the numbers of discretization bins
for range and Doppler respectively. It is important to un-

derstand how a given reflecting object, say a car in front,
appears in this data. Denote R the actual radial distance
of this object to the radar and D its relative radial velocity
expressed in Doppler effect. For each receiver, its signa-
ture will be visible NTx times, one per transmitter. More
specifically, it will be measured at range-Doppler positions
(R, (D+k∆)[Dmax])k=1···NTx , where ∆ is the Doppler shift
(induced by the phase shift ∆ϕ in the transmitted signal)
and Dmax is the largest Doppler that can be measured. The
measured Doppler values are modulo this maximum.

This signal intricacy calls for a rearrangement of the RD
tensor that will facilitate a subsequent exploitation of the
MIMO information (to recover angles) while keeping data
volume under control. To this end, we propose a new train-
able pre-encoder that performs such a compact reorgani-
zation of the input tensor (Fig. 2). In order to handle at
best its specific structure along the Doppler axis, we use
first a suitably-defined Atrous convolution layer that gath-
ers Tx and Rx information at the right positions. The size
of its kernel for one input channel is 1×NTx, hence defined
by the number of Tx antennas, and its dilation amounts to
δ = ∆BD

Dmax
, the number of Doppler bins corresponding to

Doppler shift ∆. The number of input channels is the num-
ber NRx of Rx antennas. A second convolution layer, with
a 3×3 kernel, learns how to combine these channels and
compresses the signal. The two-layer pre-encoder is trained
end-to-end with the rest of the proposed architecture.

4.2. FPN encoder

Using a pyramidal structure to learn multi-scale features
is a common practice in object detection [20] and seman-
tic segmentation [45]. Our FPN architecture uses 4 blocks
composed of 3, 6, 6 and 3 residual layers [14] respectively.
The feature maps of these residual blocks form the feature
pyramid. This classic encoder has been optimized consid-
ering the nature of the data while controlling its complexity.
The channel dimensions are in fact chosen to encode at best
the azimuth angle over the entire distance range (i.e., high
resolution and narrow field of view at far range, low reso-
lution and wider field of view at near range). To prevent
losing the signature of small objects (typically few pixels in
the RD spectrum), the FPN encoder performs a 2×2 down-
sampling per block, leading to a total reduction of the tensor
size by a factor of 16 in height and width. For similar rea-
sons and to avoid overlaps between adjacent Tx’s, it uses
3×3 convolution kernels.

4.3. Range-angle decoder

The range-angle decoder aims to expand the input fea-
ture maps to higher resolution representations. This upscal-
ing is usually achieved through multiple deconvolution lay-
ers whose output is combined with previous feature maps
to preserve spatial details. In our case, the representation is
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Figure 3. Overview of FFT-RadNet. FFT-RadNet is a lightweight multi-task architecture. It does not use any RA maps or RAD tensor
which would require costly pre-processing. Instead, it leverages complex range-Doppler spectrums containing all the range, azimuth and
elevation information. This data is de-interleaved and compressed by the MIMO pre-encoder. An FPN encoder extracts a pyramid of
features which the range-angle decoder converts into a latent range-azimuth representation. Based on this representation, multi-task heads
finally detect vehicles and predict the free driving space.

unusual due to the physical nature of the axes: The dimen-
sions of the input tensor correspond respectively to range,
Doppler and azimuth angle, whereas the feature maps that
will be sent to subsequent task heads should correspond to
a range-azimuth representation. Consequently, we swap the
Doppler and azimuth axes to match the final axis ordering
and then upscale the feature maps. However, the range axis
has a lower size compared to the azimuth one, since it was
decimated by a factor of 2 after each residual block, while
the azimuth axis (formerly the channel axis) was increasing.
Prior to these operations, we apply a 1×1 convolution to the
feature maps from the encoder to the decoder. It adjusts the
dimension of the azimuth channel to its final size, right be-
fore swapping the axes. The deconvolution layers upscale
only the range axis, producing feature maps that are con-
catenated with those from the previous pyramid level. A fi-
nal block of two Conv-BatchNorm-ReLU layers is applied,
generating the final range-azimuth latent representation.

4.4. Multi-task learning

Detection task. The detection head is inspired from Pixor
[42], an efficient and scalable single-stage model. It takes
the RA latent representation as input and processes it using
a first common sequence of four Conv-BatchNorm layers
with 144, 96, 96 and 96 filters respectively. The branch is
then divided in a classification and a regression pathways.
The classification part is a convolution layer with sigmoid
activation that predicts a probability map. This output cor-
responds to binary classification of each “pixel” as occupied
or not by a vehicle. In order to reduce computational com-
plexity, it predicts a coarse RA map, where each cell has a

resolution of 0.8m in range and 0.8◦ in azimuth (i.e., 1/4 and
1/8 of native resolutions resp. in range and azimuth). This
cell size is enough to dissociate two close objects. Then,
the regression part finely predicts the range and azimuth
values corresponding to the detected object. To do so, a
unique 3×3 convolution layer outputs two feature maps cor-
responding to the final range and azimuth values.

This two-fold detection head is trained with a multi-
task loss composed of a focal loss applied to all the loca-
tions for the classification and of a “smooth L1” loss for
the regression applied only on positive detections (see [42]
for details of these losses). Let x be a training exam-
ple, yclas ∈ {0, 1}BR/4×BA/8 its classification ground truth
and yreg ∈ R2×BR/4×BA/8 the associated regression ground
truth. The detection head of FFT-RadNet predicts a detec-
tion map ŷclas ∈ [0, 1]

BR/4×BA/8 and associated regression
map ŷreg ∈ R2×BR/4×BA/8. Its training loss reads:

Ldet(x,yclas,yreg) = focal(yclas, ŷclas)+

β smooth-L1(yreg − ŷreg),
(1)

where β > 0 is a balancing hyper-parameter.

Segmentation task. The free-driving-space segmentation
task is formulated as a pixel-level binary classification. The
segmentation mask has a resolution of 0.4m in range and
0.2◦ in azimuth. It corresponds to half of the native range
and azimuth resolutions while considering only half of the
entire azimuth FoV (within [−45◦, 45◦]). The RA latent
representation is processed by two consecutive groups of
two Conv-BatchNorm-ReLu blocks, producing respectively
128 and 64 feature maps. A final 1×1 convolution outputs a
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2D feature map followed by a sigmoid activation to estimate
the probability of each location to be drivable. Let x be a
training example, yseg ∈ {0, 1}BR/2×BA/4 its one-hot ground
truth and ŷseg ∈ [0, 1]

BR/2×BA/4 the predicted soft detection
map. The segmentation task is learnt using a Binary Cross
Entropy loss:

Lfree(x,yseg) =
∑

(r,a)∈Ω

BCE(yseg(r, a), ŷseg(r, a)), (2)

where Ω = J1, BR
2 K × J1, BA

4 K.

End-to-end multi-task training. The whole FFT-
RadNet model is trained by minimizing a combination of
the previous detection and segmentation losses:

LMTL =
∑
x

Ldet(x,yclas,yreg) + λLfree(x,yseg), (3)

w.r.t. the parameters of the MIMO pre-encoder, of the FPN
encoder, of the RA decoder and of the two heads; λ is a
positive hyper-parameter that balances the two tasks.

5. RADIal dataset
As depicted in Table 1, publicly-available datasets do not

provide raw radar signal, neither for LD radar nor for HD
radar. Therefore, we built RADIal, a new dataset to al-
low research on automotive HD radar. As RADIal includes
3 sensor modalities –camera, radar and laser scanner–, it
should also permit one to investigate the fusion of HD radar
with other more classic sensors. The specifications of the
used sensor suite are detailed in the Supplement. Except
for the camera, all sensors are automotive-grade qualified.
On top of that, the GPS position and full CAN bus of the
vehicle (including odometry) are also provided. Sensor sig-
nals were recorded simultaneously in a raw format, with-
out any signal pre-processing. In the case of the HD radar,
the raw signal is the ADC. From this ADC data, all con-
ventional radar representations can be generated: range-
azimuth-Doppler tensor, range-azimuth and range-Doppler
views or point cloud.

RADIal contains 91 sequences of about 1-4 minutes, for
a total of 2 hours. This amounts to approximately 25k syn-
chronized frames in total, out of which 8,252 are labelled
with 9,550 vehicles (see details in the Supplement). Ve-
hicles’ annotation is composed of 2D boxes in the image
plane along with the real-world distance to the sensor and
the Doppler value (relative radial speed). The annotation
of the radar signal is hard to achieve as the RD spectrum
representation is not meaningful for the human eye.

Vehicle detection labels were first generated automati-
cally using supervision from the camera and laser scanner.
A RetinaNet model [21] was used to extract object propos-
als from the camera. Then, these proposals were validated

when both radar and LiDAR agree on the object position
from their respective point cloud. Finally, manual verifica-
tion was conducted to reject or validate the labels. The free-
space annotation was done fully automatically on the cam-
era images. A DeepLabV3+ [5], pre-trained on Cityscape,
has been fine-tuned with 2 classes (free space and occu-
pied) on a small manually-annotated part of our dataset.
This model segmented each video frame and the obtained
segmentation mask was projected from the camera’s coor-
dinate system to the radar’s one thanks to known calibration.
Finally, already available vehicle bounding boxes were sub-
tracted from the free-space mask. The quality of the seg-
mentation mask is limited due to the automatic method we
employed and to the projection inaccuracy from camera to
real world.

6. Experiments
6.1. Training details

The proposed architecture has been trained on the RA-
DIal dataset using exclusively the RD spectrums as input.
The RD spectrum being composed of complex numbers, we
stack its real and imaginary parts along the channel axis be-
fore passing it to the MIMO pre-encoder. The dataset has
been split into Training, Validation and Test sets (approx.
70%, 15% and 15% of the dataset, respectively) in such a
way that frames from a same sequence can not appear in
different sets. We manually split the Test dataset in ‘hard’
and ‘easy’ cases. Hard cases are mostly situations where
the radar signal is perturbed, e.g., by interference with other
radars, important side-lobes effects or significant reflections
on metallic surfaces.

The FFT-RadNet architecture is trained using the multi-
task loss detailed in Section 4.4 with the following hyper-
parameters set-up empirically: λ = 100, β = 100 and
γ = 2. The training process uses the Adam optimizer [18]
during 100 epochs, with an initial learning rate of 10−4 and
a decay of 0.9 every 10 epochs.

6.2. Baselines

The proposed architecture has been compared to recent
contributions in the radar community. Most of the com-
peting methods presented in Section 3 have been designed
for LD radar and can not scale with HD radar data due to
memory limitation. Instead, baselines with similar com-
plexity have been selected regarding their input represen-
tation (range-azimuth or point cloud) for a fair comparison.
Input representations (RD, RA or point cloud) are gener-
ated for the entire Training, Validation and Test sets using a
conventional signal-processing pipeline.

Object detection with point cloud. The Pixor [42]
method has been used to detect vehicles after voxeliza-
tion of the radar point cloud into a 3D volume of
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Model Radar Overall Easy Hard
Input AP(%) ↑ AR(%) ↑ R(m) ↓ A(◦) ↓ AP(%) ↑ AR(%) ↑ R(m) ↓ A(◦) ↓ AP(%) ↑ AR(%) ↑ R(m) ↓ A(◦) ↓

Pixor [42] PC 96.46 32.32 0.17 0.25 99.02 28.83 0.15 0.19 93.28 38.69 0.19 0.33
Pixor [42] RA 96.56 81.68 0.10 0.20 96.86 88.02 0.09 0.16 95.88 70.10 0.12 0.27
FFT-RadNet (ours) RD 96.84 82.18 0.11 0.17 98.49 91.69 0.10 0.13 92.93 64.82 0.13 0.26

Table 2. Object detection performances on RADIal Test split. Comparison between Pixor trained with point cloud (‘PC’) or range-
azimuth (‘RA’) representations, and the proposed FFT-RadNet requiring only range-Doppler (‘RD’) as input. Our method obtains similar
or better overall performances than baselines in both average precision (‘AP’) and average recall (‘AR’) for a 50% IoU threshold. It also
reaches similar or better range (‘R’) and angle (‘A’) accuracy, showing that it successfully learns a signal processing pipeline that estimates
the AoA with significantly fewer operations, as detailed in Table 4.
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Figure 4. Qualitative results for object detection and free-space segmentation on Easy and Hard samples. Camera views (1st row)
are displayed for visual reference only; RD spectrums (2nd row) are the only inputs to the model; Ground truths (3rd row) and predictions
(4th row) are shown for both tasks. Note that there could be a projection error of the free driving space from camera to real world due to
vehicle pitch variations.

[0m, 103m]×[−40m, 40m]×[−2.5m, 2.0m] around the
radar (longitudinal, lateral and vertical ranges), sampled at
0.1m in each direction. The size for this input 3D grid is
thus 1030×800×45. Pixor is a lightweight architecture in-
tended to be real-time. However, its input representation
generates 96MB of data, which becomes a challenge for
embedded devices.

Object detection with RA tensor. As detailed in Section
3, several methods [11, 23] used views of the RAD tensor
as input. However, the memory usage would be too exten-
sive for HD radar data. As [23] showed that using only the
RA view leads to better performance for object detection,

we compared our method to a Pixor architecture without
the voxelization module. It takes as input the RA repre-
sentation in RADIal, of size 512×896 with range values in
[0m, 103m] and azimuth in [−90◦, 90◦].

Free-space segmentation. We selected PolarNet [29] to
evaluate against our approach. It is a lightweight architec-
ture designed to process RA maps and predict free space.
We re-implemented it to the best of our comprehension.

6.3. Evaluation metric

For object detection, the Average Precision (AP) and
Average Recall (AR) are used considering an Intersection-
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Over-Union (IoU) threshold of 50%. For semantic segmen-
tation, the mean IoU (mIoU) metric is used on a binary clas-
sification task (free or occupied). The metric is computed
on a reduced [0m, 50m] range as the boundaries of the road
surface are hardly visible beyond this distance.

6.4. Performance analysis

Object detection. Performances for object detection are
reported in Table 2. We observe that FFT-RadNet using
range-Doppler as input outperforms the Pixor baseline us-
ing PC as input (Pixor-PC) and reaches slightly better per-
formances than the costly Pixor-RA baseline. The position
accuracy, both in range and azimuth angle, is similar, and
even better in angle, compared to Pixor-RA. These results
show that our approach successfully learns the azimuth an-
gle from the data. From a manufacturing viewpoint, note
that this opens cost saving opportunities as the end-of-line
calibration of the sensor is no longer required in the pro-
posed framework. In the Easy Test set, FFT-RadNet de-
livers +1.6% AP and +3.6% AR compared to Pixor-RA.
However, on the Hard test set, Pixor-RA performs the best.
The RA approach does not struggle that much with the hard
samples because the data is pre-processed by a signal pro-
cessing pipeline that already solves some of these cases. In
contrast, the performance with point-cloud input is much
lower than all others. Indeed, the recall is low due to the
limited number of points at far range.

Free-driving-space segmentation. The performance for
the free-driving-space segmentation is provided in Table 3.
We observe that FFT-RadNet significantly outperforms Po-
larNet by 13.4% IoU on average. This is partly explained
by the lack of elevation information in the RA map, an in-
formation that is present in the RD spectrums.

6.5. Complexity analysis

FFT-RadNet has been designed first to get rid of the
signal processing chains that transform the ADC data into
either a sparse point cloud or denser representations (RA
or RAD), without compromising the richness of the sig-
nal. Because the input data remains quite large, we de-
signed a compact model to bound the complexity in terms of
number of operations, as a trade-off between performance
and range/angle accuracy. Moreover, the pre-encoder layer
compresses significantly the input data. An ablation study
has been performed to define the best trade-off between the
size of the feature maps and the model’s performance (de-
tails in the Supplement).

As shown in Tab. 4, FFT-RadNet is the only method not
requiring the AoA estimation. As explained in Sec. 2, the
pre-encoder layer compresses the MIMO signal containing
all the information to recover both the azimuth and elevation
angles. The AoA for the point-cloud approach generates 3D
coordinates for a sparse cloud of around 1000 points on av-

Model Radar input mIoU (%) ↑
Overall Easy Hard

PolarNet [29] RA 60.6 61.9 57.4
FFT-RadNet RD 74.0 74.6 72.3

Table 3. Free-driving-space segmentation performances. FFT-
RadNet successfully approximates the angle information in the
radar data while reaching better performance than PolarNet. Note
that this performance is achieved by FFT-RadNet while simulta-
neously performing object detection, as our model is multi-task.

Method Input size
(MB) ↓

# Params.
(106) ↓

Complexity (GFLOPS) ↓
AoA proc. Model

PCL Pixor 98.30 6.93 8 741
RA Pixor 1.75 6.92 45* 761
FFT-RadNet 16.00 3.79 0 584

Table 4. Complexity analysis. The proposed method reaches the
best trade-off between the size of the input, the number of param-
eters of the model and the computational complexity. Note that
the AoA processing of the RA Pixor method (*) considers only a
single elevation, otherwise it is up to 496 GFLOPS for the whole
set of BE =11 elevations.

erage, leading to 8 GFLOPS-worth of computing, prior to
applying Pixor for object detection. To produce the RA or
RAD tensor, AoA runs for each single bin of the RD map,
but only considering one elevation. Such a model is thus un-
able to estimate the elevation of objects such as bridges or
lost cargo (low object). For one elevation, the complexity is
about 45 GFLOPS, but would increase up to 495 GLPOPS
for all the 11 elevations. We have demonstrated that FFT-
RadNet can cut these processing costs without compromis-
ing the quality of the estimation.

7. Conclusion

We introduced FFT-RadNet, a novel trainable architec-
ture to process and analyse HD radar signals. We demon-
strated that it effectively alleviates the need for costly pre-
processing to estimate RA or RAD representations. Instead,
it detects and estimates objects position while segmenting
free driving space from the RD spectrum directly. FFT-
RadNet slightly outperforms RA-based approaches while
reducing processing requirements. The experiments are
conducted on RADIal, a new dataset which is part of the
work and contains sequences of automotive-grade sensor
signals (HD radar, camera and laser scanner). Synchronized
sensor data are available in a raw format so that various rep-
resentations can be evaluated and further research can be
conducted, possibly with fusion-based approaches.
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