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Abstract

Evaluating and improving planning for autonomous ve-
hicles requires scalable generation of long-tail traffic sce-
narios. To be useful, these scenarios must be realistic and
challenging, but not impossible to drive through safely. In
this work, we introduce STRIVE, a method to automatically
generate challenging scenarios that cause a given plan-
ner to produce undesirable behavior, like collisions. To
maintain scenario plausibility, the key idea is to leverage a
learned model of traffic motion in the form of a graph-based
conditional VAE. Scenario generation is formulated as an
optimization in the latent space of this traffic model, per-
turbing an initial real-world scene to produce trajectories
that collide with a given planner. A subsequent optimization
is used to find a “solution” to the scenario, ensuring it is
useful to improve the given planner. Further analysis clus-
ters generated scenarios based on collision type. We attack
two planners and show that STRIVE successfully generates
realistic, challenging scenarios in both cases. We addition-
ally “close the loop” and use these scenarios to optimize
hyperparameters of a rule-based planner.

1. Introduction

The safety of contemporary autonomous vehicles (AVs)
is defined by their ability to safely handle complicated near-
collision scenarios. However, these kinds of scenarios are
rare in real-world driving, posing a data-scarcity problem
that is detrimental to both the development and testing of
data-driven models for perception, prediction, and planning.
Moreover, the better models become, the more rare these
events will be, making the models even harder to train.

A natural solution is to synthesize difficult scenarios in
simulation, rather than relying on real-world data, making it
easier and safer to evaluate and train AV systems. This ap-
proach is especially appealing for planning, where the ap-
pearance domain gap is not a concern. For example, one
can manually design scenarios where the AV may fail by
inserting adversarial actors or modifying trajectories, either
from scratch or by perturbing a small set of real scenarios.
Unfortunately, the manual nature of this approach quickly

Figure 1. STRIVE generates challenging scenarios for a given planner.
An adversarial optimization perturbs a real-world scene in the latent space
of a learned traffic model, causing an adversary (red) to collide with the
planner (green). A subsequent solution optimization finds a planner tra-
jectory to avoid collisions, verifying a scenario is useful for identifying
planner improvements.

becomes prohibitively expensive when a large set of scenar-
ios is necessary for training or comprehensive evaluation.

Recent work looks to automatically generate challeng-
ing scenarios [1, 11, 12, 26, 36, 50, 53]. Generally, these ap-
proaches control a single or small group of “adversaries” in
a scene, define an objective (e.g. cause a collision with the
AV), and then optimize the adversaries’ behavior or trajec-
tories to meet the objective. While most methods demon-
strate generation of only 1 or 2 scenarios [1, 8, 26, 36], re-
cent work [53] has improved scalability by starting from
real-world traffic scenes and perturbing a limited set of pre-
chosen adversaries. However, these approaches lack expres-
sive priors over plausible traffic motion, which limits the
realism and diversity of scenarios. In particular, adversarial
entities in a scenario are a small set of agents heuristically
chosen ahead of time; surrounding traffic will not be re-
active and therefore perturbations must be careful to avoid
implausible situations (e.g. collisions with auxiliary agents).
Furthermore, less attention has been given to determining if
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a scenario is “unsolvable” [18], i.e., if even an oracle AV is
incapable of avoiding a collision. In this degenerate case,
the scenario is not useful for evaluating/training a planner.

In this work, we introduce STRIVE – a method for gen-
erating challenging scenarios to Stress-Test dRIVE a given
AV system. STRIVE attacks the prediction, planning, and
control subset of the AV stack, which we collectively re-
fer to as the planner. As shown in Fig. 1, our approach
perturbs an initial real-world scene through an optimization
procedure to cause a collision between an arbitrary adver-
sary and a given planner. Our core idea is to measure the
plausibility of a scenario during optimization by its likeli-
hood under a learned generative model of traffic motion,
which encourages scenarios to be challenging, yet realistic.
As a result, STRIVE does not choose specific adversaries
ahead of time, rather it jointly optimizes all scene agents,
enabling a diverse set of scenarios to arise. Moreover, in or-
der to accommodate for non-differentiable (or inaccessible)
planners, which are widely used in practice, the proposed
optimization uses a differentiable proxy representation of
the planner within the learned motion model, thus allowing
standard gradient-based optimization to be used.

We propose to identify and characterize generated sce-
narios that are useful for improving a given planner. We first
search for a “solution” to generated scenarios to determine
if they are degenerate, and then cluster solvable scenarios
based on collision properties. We test STRIVE on two AV
planners, including a new rule-based planner, and show that
it generates plausible and diverse collision scenarios in both
cases. We additionally use generated scenarios to improve
the rule-based planner by identifying fundamental limita-
tions of its design and tuning hyperparameters.

In short, our contributions are: (i) a method to automat-
ically generate plausible challenging scenarios for a given
planner, (ii) a solution optimization to ensure scenario util-
ity, and (iii) an analysis method to cluster scenarios by colli-
sion type. Supplementary videos and material for this work
are available on the project webpage.

2. Related Work
Traffic Motion Modeling. Scenario replay is insufficient
for testing and developing AV planners as the motion of
non-ego vehicles is strongly coupled to the actions chosen
by the ego planner. Advances in deep learning have al-
lowed us to replace traditional dynamic and kinematic mod-
els [27,29,52] or rule-based simulators [14,33] with neural
counterparts that better capture traffic complexity [2, 37].
Efforts to predict future trajectories from a short state his-
tory and an HD map can generally be categorized accord-
ing to the encoding technique, modeling of multi-modality,
multi-agent interaction, and whether the trajectory is es-
timated in a single step or progressively. The encoding
of surrounding context of each agent is often done via a

bird’s-eye view (BEV) raster image [7, 9, 16], though some
work [17, 31] replaces the rasterization-based map encod-
ing with a lane-graph representation. SimNet [3] increased
the diversity of generated simulations by initializing the
state using a generative model conditioned on the seman-
tic map. To account for multi-modality, multiple futures
have been estimated either directly [9] or through trajec-
tory proposals [7, 16, 32, 39]. Modeling multi-actor inter-
actions explicitly using dense graphs has proven effective
for vehicles [5, 47], lanes [31], and pedestrians [20, 28, 45].
Finally, step-by-step prediction has performed favorably to
one-shot prediction of the whole trajectory [13]. We follow
these works and design a traffic model that uses an inter-
agent graph network [21] to represent agent interaction and
is variational, allowing us to sample multiple futures.

Our model builds on VAE-based approaches [5, 47] that
provide a learned prior over a controllable latent space [41].
Among other design differences, we incorporate a penalty
for environment collisions and structure predictions through
a bicycle model to ensure physical plausibility.
Challenging Scenario Generation. Generating scenarios
has the potential to exponentially increase scene coverage
compared to relying exclusively on recorded drives. Ad-
vances in photo-realistic simulators like CARLA [14] and
NVIDIA’s DRIVE Sim, along with the availability of large-
scale datasets [4, 15, 19, 23, 46], have been instrumental to
methods that generate plausible scene graphs to improve
perception [10,22,42] and planning [3,5,24,47]. Our work
focuses on generating challenging – or “adversarial”1 – sce-
narios, which are even more crucial since they are so rare in
recorded data. While most works assume perfect perception
and attack the planning module [8,11,12,18,26,50], recent
efforts exploit the full stack, including image or point-cloud
perception [1, 30, 36, 48, 53]. Our work focuses on attack-
ing the planner only, though our scene parameterization as a
learned traffic model could be incorporated into end-to-end
methods. Unlike our approach, which uses gradient-based
optimization enabled by the learned motion model, most ad-
versarial generation works rely heavily on black-box opti-
mization which may be slow and unreliable.

Our scenario generation approach is most similar to Ad-
vSim [53], however instead of optimizing acceleration pro-
files of a simplistic bicycle model we use a more expres-
sive data-driven motion prior. This remedies the previous
difficulty of controlling many adversarial agents simultane-
ously in a plausible manner. Moreover, we avoid constrain-
ing the attack trajectory to not collide with the playback AV
by proposing a “solution” optimization stage to filter worth-
while scenarios. Prior work [8] clusters lane-change scenar-
ios based on trajectories of agents, while we cluster based
on collision properties between the adversary and planner.

1we use “challenging” to denote generation procedures that do not ex-
plicitly attack a specific module in the perception or planning stack
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AV Planners. Despite the recent academic interest in end-
to-end learning-based planners and AVs [2, 6, 43, 44, 54],
rule-based planners remain the norm in practical AV sys-
tems [51]. Therefore, we evaluate our approach on a
rule-based planner similar to the lane-graph-based planners
used by successful teams in the 2007 DARPA Urban Chal-
lenge [34, 49] detailed in Sec. 4.2.

3. Challenging Scenario Generation

STRIVE aims to generate high-risk traffic situations for
a given planner, which can subsequently be used to improve
that planner (Fig. 1). For our purpose, the planner encapsu-
lates prediction, planning, and control, i.e. we’re interested
in scenarios where the system misbehaves even with per-
fect perception. The planner takes as input past trajectories
of other agents in a scene and outputs the future trajectory
of the vehicle it controls (termed the ego vehicle). It is as-
sumed to be black-box: STRIVE has no knowledge of the
planner’s internals and cannot compute gradients through it.
Undesirable behavior includes collisions with other vehicles
and non-drivable terrain, uncomfortable driving (e.g. high
accelerations), and breaking traffic laws. We focus on gen-
erating accident-prone scenarios involving vehicle-vehicle
collisions with the planner, though our formulation is gen-
eral and in principle can handle alternative objectives.

Similar to prior work [53], scenario generation is formu-
lated as an optimization problem that perturbs agent trajec-
tories in an initial scenario from real-world data. The input
is a planner f , map M containing semantic layers for driv-
able area and lanes, and a sequence from a pre-recorded
real-world scene that serves as initialization for optimiza-
tion. This initial scenario contains N agents with trajec-
tories represented in 2D BEV as Y = {Yi}Ni=1, where
Yi = [yi

1,y
i
2, . . . ,y

i
T ] is the sequence of states for agent

i. We let Yt = [y1
t ,y

2
t , . . . ,y

N
t ] be the state of all agents at

a single timestep. An agent state yi
t = [xt, yt, θt, vt, θ̇t]

at time t contains the 2D position (xt, yt), heading θt,
speed vt, and yaw rate θ̇t. When rolled out within a sce-
nario, at each timestep the planner outputs the next ego
state yplan

t = f(yplan
<t ,Y<t,M) based on the past motion

of itself and other agents. For simplicity, we will write the
rolled out planner trajectory as Yplan = f(Y,M) where
Yplan = [yplan

1 ,yplan
2 , . . . ,yplan

T ] for the remainder of this pa-
per. Scenario generation perturbs trajectories for all non-
ego agents to best meet an adversarial objective Ladv (e.g.
cause a collision with the planner):

min
Y

Ladv(Y,Y
plan), Yplan = f(Y,M). (1)

One may optimize a single or small set of “adversaries”
in Y explicitly, e.g. through the kinematic bicycle model
parameterization [27, 40, 53]. While this enforces plausible
single-agent dynamics, interactions must be constrained to
avoid collisions between non-ego agents and, even then, the

resulting traffic patterns may be unrealistic. We propose to
instead learn to model traffic motion using a neural network
and then use it at optimization time (i) to parameterize all
trajectories in a scenario as vectors in the latent space, and
(ii) as a prior over scenario plausibility. Next, we describe
this traffic model, followed by the “adversarial” optimiza-
tion that produces collision scenarios.

3.1. Modeling “Realism”: Learned Traffic Model

We wish to generate accident-prone scenarios that are
assumed to develop over short time periods (<10 sec) [35].
Therefore, traffic modeling is formulated as future forecast-
ing, which predicts future trajectories for all agents in a
scene based on their past motion. We learn pθ(Y |X,M)
to enable sampling a future scenario Y conditioned on the
fixed past X = {Xi}Ni=1 (defined similar to Y ) and the map
M. Two properties of the traffic model make it particularly
amenable to downstream optimization: a low-dimensional
latent space for efficient optimization, and a prior distribu-
tion over this latent space to determine the plausibility of
a given scenario. Inspired by recent work [5, 47], we de-
sign a conditional variational autoencoder (CVAE), shown
in Fig. 2, that meets these criteria while learning accurate
and scene-consistent joint future predictions. We briefly in-
troduce the architecture and training procedure here, and
refer to the supplement for specific details.

Architecture. To sample future motions at test time, the
conditional prior and decoder are used; both are graph neu-
ral networks (GNN) operating on a fully-connected scene
graph of all agents. The prior models pθ(Z|X,M) where
Z = {zi}Ni=1 is a set of agent latent vectors. Each node
in the input scene graph contains a context feature hi ex-
tracted from that agent’s past trajectory, local rasterized
map, bounding-box size, and semantic class. After mes-
sage passing, the prior outputs parameters of a Gaussian
pθ(z

i|X,M) = N (µi
θ(X,M), σi

θ(X,M)) for each agent
in the scene, forming a “distributed” latent representation
that captures the variation in possible futures.

The deterministic decoder Y = dθ(Z,X,M) operates
on the scene graph with both a sampled latent zi and past
context hi at each node. Decoding is performed autoregres-
sively: at timestep t, one round of message passing resolves
interactions before predicting accelerations v̇t, θ̈t for each
agent. Accelerations immediately go through the kinematic
bicycle model [27, 40] to obtain the next state yi

t+1, which
updates hi before continuing rollout. The determinism and
graph structure of the decoder encourages scene-consistent
future predictions even when agent z’s are independently
sampled. Importantly for latent optimization, the decoder
ensures plausible vehicle dynamics by using the kinematic
bicycle model, even if the input Z is unlikely.

Training. Training is performed on pairs of (X,Ygt) using
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Figure 2. Test-time architecture of the learned traffic model. To jointly sample future trajectories for all agents in a scene, past motion and
local map context is first processed individually for each agent. The conditional prior, then outputs a latent distribution at each node that
can be sampled and fed through the autoregressive decoder to predict future agent trajectories.

a modified CVAE objective:

Lcvae = Lrecon + wKLLKL + wcollLcoll. (2)

To optimize this loss, a posterior network qϕ(Z|Ygt, X,M)
is introduced similar to the prior, but operating jointly on
past and future motion. Future trajectory features are ex-
tracted separately, while past features are the same as used
in the prior. The full training loss uses trajectory samples
from both the posterior Ypost and prior Yprior:

Lrecon =

N∑
i=1

||Yi
post −Yi

gt||2 (3)

LKL = DKL(qϕ(Z|Ygt, X,M)||pθ(Z|X,M)) (4)
Lcoll = Lagent + Lenv (5)

where Yi
post ∈ Ypost, Yi

gt ∈ Ygt, and DKL is the KL di-
vergence. Collision penalties Lagent and Lenv use a differen-
tiable approximation of collision detection as in [47], which
represents vehicles by sets of discs to penalize Yprior for col-
lisions between agents or with the non-drivable map area.

3.2. Adversarial Optimization

To leverage the learned traffic model, the real-world sce-
nario used to initialize optimization is split into the past X
and future Yinit. Throughout optimization, past trajectories
in X (including that of the planner) are fixed while the fu-
ture is perturbed to cause a collision with the given planner
f . This perturbation is done in the learned latent space of
the traffic model – as described below, we optimize the set
of latents for all N non-ego agents Z = {zi}Ni=1 along with
a latent representation of the planner zplan.

Latent scenario parameterization encourages plausibility
in two ways. First, since the decoder is trained on real-world
data, it will output realistic traffic patterns if Z stays near
the learned manifold. Second, the learned prior network
gives a distribution over latents, which is used to penalize
unlikely Z. This strong prior on behavioral plausibility en-
ables jointly optimizing all agents in the scene rather than
choosing a small set of specific adversaries in advance.

At each step of optimization (Fig. 3), the perturbed sce-

Figure 3. At each step of adversarial optimization, latent represen-
tations of both the planner and non-ego agents are decoded with
the learned decoder and non-ego trajectories are given to the plan-
ner for rollout within the scenario. Finally, losses are computed.

nario is decoded with dθ(Z, z
plan, X,M) and non-ego tra-

jectories Y are passed to the (black-box) planner, which
rolls out the ego motion before losses can be computed. Ad-
versarial optimization seeks two simultaneous objectives:

1. Match Planner. Although optimization has no direct
control over the planner’s behavior – an external function
that is queried only when required – it is still necessary to
represent the planner within the traffic model (i.e. include
it in the scene graph with an associated latent zplan) so that
interactions with other agents are realistic. In doing this,
future predictions from the decoder include an estimate of
the planner trajectory Ŷplan that, ideally, is close to the true
planner trajectory Yplan = f(Y,M). Note that this gives
a differentiable approximation of the planner, enabling typ-
ical gradient-based optimization to be used for the second
objective described below. To encourage matching the real
planner output with this “internal” approximation, we use

min
zplan

||Ŷplan −Yplan||2 − α log pθ(z
plan|X,M) (6)

where the right term lightly regularizes zplan to stay likely
under the learned prior and α balances the two terms.

2. Collide with Planner. The goal for non-ego agents is to
cause the planner to collide with another vehicle:

min
Z

Ladv + Lprior + Linit + Lcoll. (7)
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The adversarial term encourages a collision by minimizing
the positional distance between controlled agents and the
current traffic model approximation of the planner:

Ladv =

N∑
i=1

T∑
t=1

δit · ||yi
t − ŷplan

t ||2 (8)

δit =
exp(−||yi

t − ŷplan
t ||)∑

j

∑
t exp(−||yj

t − ŷplan
t ||)

(9)

where yt here only includes the 2D position. Intuitively, the
δit coefficients defined by the softmin in Eq. (9) are finding
a candidate agent and timestep to collide with the planner.
The agent with the largest δit is the most likely “adversary”
based on distance, and Eq. (8) prioritizes causing a collision
between this adversary and the planner while still allowing
gradients to reach other agents. This weighting helps Lprior
to avoid all agents unrealistically colliding with the planner.

The prior term encourages latents to stay likely under
the learned prior network:

Lprior = − 1

N

N∑
i=1

γi · log pθ(zi|X,M) (10)

γi = 1−
∑
t

δit. (11)

The γi coefficient will weight likely adversaries near zero,
i.e. agents close to colliding with the planner are allowed
to deviate from the learned traffic manifold to exhibit rare
and challenging behavior. Because the traffic model train-
ing data does not contain collisions, we found it difficult for
an agent to collide with the planner using a large prior loss,
thus motivating the weighting in Eq. (11). Note that even
when γi is small, agents will maintain physical plausibility
since the decoder uses the kinematic bicycle model.

Linit encourages staying close to the initialization in la-
tent space, since it is already known to be realistic:

Linit =
1

N

N∑
i=1

γi · ||zi − ziinit||2 (12)

where ziinit ∈ Zinit are the latents that initialize optimization.
Finally, similar to CVAE training, Lcoll discourages non-ego
agents from colliding with each other and the non-drivable
area. In practice, all loss terms are balanced by manual in-
spection of a small set of generated scenarios.

Initialization and Optimization. Given a real-world
scene, Zinit is obtained through the posterior network qϕ,
then further refined with an initialization optimization that
fits to the input future trajectories of all agents (similar to
Eq. (6)), including the initial planner rollout. Optimization
is implemented in PyTorch [38] using ADAM [25] with a
learning rate of 0.05. Runtime depends on the planner and
number of agents; for our rule-based planner (see Sec. 4.2),
a 10-agent scenario takes 6-7 minutes.

4. Analyzing and Using Generated Scenarios

4.1. Filtering and Collision Classification

Solution Optimization. Adversarial optimization produces
plausible scenarios, but it cannot guarantee they are solv-
able and useful: e.g. a scenario in which the ego is squeezed
by multiple cars produces an unavoidable collision and is
therefore uninformative for evaluating or improving a plan-
ner. Therefore, we perform an additional optimization to
identify an ego trajectory that avoids collision; if this op-
timization fails, the scenario is discarded for downstream
tasks. This solution optimization is initialized from the out-
put of the adversarial optimization and essentially inverts
the objectives described in Sec. 3.2: non-ego latent Z are
tuned to maintain the adversarial trajectories while zplan is
optimized to avoid collisions and stay likely under the prior.

Clustering and Labeling. To gain insight into the distribu-
tion of collision scenarios and inform their downstream use,
we propose a simple approach to cluster and label them.
Specifically, scenarios are characterized by the explicit re-
lationship between the planner and adversary at the time of
collision: the relative direction and heading of the adversary
are computed in the frame of the planner and concatenated
to form a collision feature for each scenario. These fea-
tures are clustered with k-means to form semantically simi-
lar groups of accidents that are labeled by visual inspection.
Their distribution can then be visualized as in Fig. 6.

4.2. Improving the Planner

With a large set of labeled collision scenarios, the plan-
ner can be improved in two main ways. First, discrete im-
provements to functionality may be needed if many scenar-
ios of the same type are generated. For example, a planner
that strictly follows lanes is subject to collisions from head
on or behind as it fails to swerve, indicating necessary new
functionality to leave the lane graph. Second, scenarios pro-
vide data for tuning hyperparameters or learned parameters.

Rule-based Planner. To demonstrate how STRIVE scenar-
ios are used for these kinds of improvements, we introduce
a simple, yet competent, rule-based planner that we use as
a proxy for a real-world planner. Our planner is ideal for
evaluating STRIVE as it is easily interpretable, uses a small
set of hyperparameters, and has known failure modes. In
short, it relies entirely on the lane graph to both predict fu-
ture trajectories of non-ego vehicles and generate candidate
trajectories for the ego vehicle. Among these candidates,
it chooses that which covers the most distance with a low
“probability of collision.” Planner behavior is affected by
hyperparameters such as maximum speed/acceleration and
how collision probability is computed. This planner has the
additional limitation that it cannot change lanes, which sce-
narios generated by STRIVE exposes in Sec. 5.3. Full de-
tails of this planner are included in the supplementary.
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5. Experiments
We next highlight the new capabilities that STRIVE en-

ables. Sec. 5.1 demonstrates the ability to generate chal-
lenging and useful scenarios on two different planners;
these scenarios contain a diverse set of collisions, as shown
through analysis in Sec. 5.2. Generated scenarios are used
to improve our rule-based planner in Sec. 5.3.

Dataset. The nuScenes dataset [4] is used both to train the
traffic model and to initialize adversarial optimization. It
contains 20s traffic clips annotated at 2 Hz, which we split
into 8s scenarios. Only car and truck vehicles are used and
the traffic model operates on the rasterized drivable area,
carpark area, road divider, and lane divider map layers.
We use the splits and settings of the nuScenes prediction
challenge which is 2s (4 steps) of past motion to predict
6s (12 steps) of future, meaning collision scenarios are 8s
long, but only the future 6s trajectories are optimized.

Planners. Scenario generation is evaluated on two different
planners. The Replay planner simply plays back the ground
truth ego trajectory from nuScenes data. This is an open-
loop setting where the planner’s 6s future is fully rolled out
without re-planning. The Rule-based planner, described in
Sec. 4.2, allows a more realistic closed-loop setting where
the planner reacts to the surrounding agents during future
rollout by re-planning at 5 Hz.

Metrics. The collision rate is the fraction of optimized
initial scenarios from nuScenes that succeed in causing a
planner collision, which indicates the sample efficiency of
scenario generation. Solution rate is the fraction of these
colliding scenarios for which a solution was found, which
measures how often scenarios are useful. Acceleration in-
dicates how comfortable a driven trajectory is; challeng-
ing scenarios should generally increase acceleration for the
planner, while the adversary’s acceleration should be rea-
sonably low to maintain plausibility. If a scenario contains a
collision, acceleration (and other trajectory metrics) is only
calculated up to the time of collision. Collision velocity is
the relative speed between the planner and adversary at the
time of collision; it points to the severity of a collision.

5.1. Scenario Generation Evaluation
First, we demonstrate that STRIVE generates challeng-

ing, yet solvable, scenarios causing planners to collide and
drive uncomfortably. Moreover, compared to an alterna-
tive generation approach that does not leverage the learned
traffic prior, STRIVE scenarios are more plausible. Sce-
nario generation is initialized from 1200 8s sequences from
nuScenes. Before adversarial optimization, scenes are pre-
filtered heuristically by how likely they are to produce a use-
ful collision, leaving <500 scenarios to optimize.

Planner-Specific Scenarios. Tab. 1 shows that compared
to rolling out a given planner on “regular” (unmodified)

Figure 4. Qualitative results on the Rule-based planner. Adversar-
ial and solution optimization results are shown. STRIVE produces
diverse collision scenarios including lane changes, (u-)turning in
front of the planner, and pulling into oncoming traffic.

nuScenes scenarios, challenging scenarios from STRIVE
produce more collisions and less comfortable driving. For
the Rule-based planner, metrics on challenging scenarios
are compared to the corresponding set of regular scenarios
from which they originated (regular scenarios for Replay
are omitted since nuScenes data contains no collisions and,
by definition, planner behavior does not change).

Collision and solution rates indicate that generated sce-
narios are accident-prone and useful (solvable). For the
Rule-based planner, adversarial optimization causes colli-
sions in 27.4% of scenarios compared to only 1.2% in the
regular scenarios. Generated scenarios also contain more
severe collisions in terms of velocity, and elicit larger ac-
celerations, i.e. less comfortable driving. The position and
angle errors between approximate (Ŷplan) and true (Yplan)
planner trajectories at the end of adversarial optimization
are shown on the right (see Sec. 3.2). The largest position
error of 1.23m is reasonable relative to the 4.084m length
of the planner vehicle. Qualitative results for the Rule-based
planner visualize 2D waypoint trajectories (Fig. 4); though
not shown, STRIVE also generates speed and heading.

Baseline Comparison. STRIVE is next compared to a
baseline approach to demonstrate that leveraging a learned
traffic model is key to realistic and useful scenarios. Pre-
vious works are not directly comparable as they focus on
small-scale scenario generation (e.g. [1,8]) and/or attack the
full AV stack rather than just the planner [36, 53]. There-
fore, in the spirit of AdvSim [53] we implement the Bicy-
cle baseline, which explicitly optimizes the kinematic bicy-
cle model parameters (acceleration profile) of a single pre-
chosen adversary in the scenario to cause a collision. Rather
than using the learned traffic model, it relies on the bicycle
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Planner Trajectory Match Planner Err
Planner Scenarios Collision (%) Solution (%) Accel (m/s2) Coll Vel (m/s) Pos (m) Ang (deg)

Replay Challenging 43.7 (+43.7) 82.4 0.85 7.82 0.28 1.32

Rule-based Regular 1.2 – 1.63 8.48 – –
Rule-based Challenging 27.4 (+26.2) 86.8 1.91 (+0.28) 9.65 (+1.17) 1.23 3.79

Table 1. Evaluation of generated challenging scenarios. Generated scenarios contain far more collisions compared to the corresponding
regular (unmodified) scenes, as well as higher acceleration and collision speeds. Acceleration is measured in the forward direction (i.e.
change in speed), since the Rule-based planner cannot change lanes. Rightmost columns show small errors between Ŷplan and Yplan.

Plausibility of Adversary Trajectory ↓ Usefulness ↑
Scenarios Accel (m/s2) Env Coll (%) NN Dist (m) NLL Solution (%)

Bicycle 2.00 16.5 0.97 962.9 73.4
STRIVE 0.98 10.8 0.72 323.4 83.5

Table 2. Scenario generation for Replay planner compared to the
Bicycle baseline, which does not leverage a learned traffic model.

model, collision penalties, and acceleration regularization
to maintain plausibility. This precludes using the differen-
tiable planner approximation from the traffic model, thus
requiring gradient estimation (e.g. finite differences) for the
closed-loop setting, which we found is ≈ 40× slower and
requires several hours to generate a single scenario. There-
fore, comparison is done only on the Replay planner.

Tab. 2 shows that scenarios generated by Bicycle exhibit
more unrealistic adversarial driving, and are more difficult
to find a solution for. All metrics are reported only for sce-
narios where both methods successfully caused a collision.
In addition to higher accelerations, the Bicycle adversary
collides with the non-drivable area more often (Env Coll),
and exhibits less typical trajectories as measured by the dis-
tance to the nearest-neighbor ego trajectory in the nuScenes
training split (NN Dist). After fitting the Bicycle-generated
scenarios with our traffic model, we see the adversary’s
behavior is also less realistic as measured by the negative
log-likelihood (NLL) of its latent z under the learned prior.
These observations are supported qualitatively in Fig. 5.

5.2. Analyzing Generated Scenarios
Before improving a given planner, the analysis from

Sec. 4.1 is used to identify useful scenarios by filtering out
unsolvable scenarios and classifying collision types. For
classification, collision features are clustered with k = 10
and clusters are visualized to manually assign the seman-
tic labels shown in Fig. 6. The distribution of generated
collision scenarios for both planners in Sec. 5.1 is shown
in Fig. 6(a) (see supplement for visualized examples from
clusters). STRIVE generates a diverse set of scenarios with
solvable scenes found in all clusters. “Head On” is the most
frequently generated scenario type, likely because Replay
is non-reactive and Rule-based cannot change lanes. “Be-
hind” exhibits the highest rate of unsolvable scenarios since
being hit from behind is often the result of a negligent fol-
lowing vehicle, rather than undesirable planner behavior.

Figure 5. Qualitative comparison of generated scenarios for the
Replay planner. Bicycle often produces semantically unrealistic
trajectories as no learned traffic model is leveraged.

Replay is much more susceptible to being cut off since it is
open-loop, while the closed-loop Rule-based can success-
fully react to avoid such collisions.

5.3. Improving Rule-Based Planner
Now that we have a large set of labeled collision sce-

narios, in addition to the original nuScenes data containing
“regular” scenarios (with few collisions), we can improve
the Rule-based planner to be better prepared for challeng-
ing situations. Besides uncovering fundamental flaws that
lead us to add new functionality, improvement is based on
hyperparameter tuning via a grid search over possible set-
tings. For each set of hyperparameters, the planner is rolled
out within all scenarios of a dataset, and the optimal tuning
is chosen based on the minimum collision rate.

The planner is first tuned on regular scenarios before ad-
versarial optimization is performed to create a set of chal-
lenging scenarios to guide further improvements. Perfor-
mance of this initial regular-tuned planner on held out reg-
ular (Reg) and collision (Coll) scenarios is shown in the top
row of Tab. 3. Before any improvements, the planner col-
lides in 68.6% of challenging and 4.6% of regular scenarios.
Note that avoiding collisions altogether on regular scenarios
is not possible: even if we choose optimal hyperparameters
for each scenario separately, the collision rate is still 3.2%.
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Figure 6. (Bottom) Collision types are depicted; the arrow indicates the position/direction of the adversary. (a) Distribution of generated
scenarios for both planners. (b) Scenarios used to tune the multi-mode oracle planner. Scenarios where all parameter settings cause a
collision are in red. A majority of Head On, Front from Right, and Behind scenarios always fail due to the inability to change lanes.

Collision (%) Coll Vel (m/s) Accel (m/s2)
Improvement Reg / Coll Reg / Coll Reg / Coll

None (regular-tuned) 4.6 / 68.6 4.59 / 10.48 1.96 / 2.26
+ Challenging data 6.0 / 51.4 5.48 / 13.88 2.29 / 2.50
+ Extra learned mode 4.6 / 54.3 4.60 / 10.86 2.02 / 2.55

+ Extra oracle mode 4.6 / 54.3 4.59 / 10.40 1.96 / 2.39

Table 3. Improving Rule-Based planner. Including challenging
tuning data and adding an extra “mode” improves performance on
collision scenarios (Coll) while maintaining performance in regu-
lar scenarios (Reg). Acceleration is in the forward direction.

Tuning on Challenging Scenes. The first improvement,
shown in the second row of Tab. 3, is to naı̈vely combine
regular and challenging scenarios for tuning. Combined
tuning greatly reduces the collision rate on challenging sce-
narios, but negatively impacts performance on regular driv-
ing. This points to a first fundamental issue: the planner
uses a single set of hyperparameters for all driving situa-
tions, causing it to drive too aggressively in regular scenar-
ios when tuned on challenging ones.

Multi-Mode Operation. To address this, we add a second
set of parameters such that the planner has one for regu-
lar and one for accident-prone situations. Using this sec-
ond “accident mode” of operation requires a binary clas-
sification of the current scene during rollout. For this, we
augment the planner with a learned component that decides
which parameter set to use based on a moving window of
the past 2s of traffic; it is trained on scenarios generated
by STRIVE. The extra parameter set is tuned on collision
scenarios only. As shown in the third row of Tab. 3, this
learned extra mode reduces the collision rate on challenging
scenarios by 14.3% compared to the vanilla planner without
hindering performance on regular scenes. We compare it to
an oracle version (bottom row) that automatically switches
into accident mode 2s before a collision is supposed to hap-

pen on generated scenarios, showing the learned version is
achieving near-optimal performance.

Lane Change Limitation. The inability of the planner to
switch lanes is another fundamental issue exposed by col-
lision scenarios. Fig. 6(b) shows the distribution of tuning
scenarios for the oracle multi-mode version; red bars indi-
cate “impossible” scenarios where all sets of evaluated hy-
perparameters collide. A majority of “Head On” and “Be-
hind” scenarios are impossible, pointing out the lane change
limitation. Adversarial optimization has indeed exploited
the flaw and the proposed analysis made it visible.

6. Discussion
STRIVE enables automatic and scalable generation of

plausible, accident-prone scenarios to improve a given plan-
ner. However, remaining limitations offer potential future
directions. Our method assumes perfect perception and
only attacks the planner, but using our traffic model to ad-
ditionally attack detection and tracking is of great interest.
STRIVE generates scenarios from existing data and only
considers collisions between vehicles, but other incidents
involving pedestrians and cyclists are also important, and
other kinds of adversaries like adding/removing assets and
changing map topology will uncover additional AV weak-
nesses. Our method is intended to make AVs safer by ex-
posing them to challenging and rare scenarios similar to the
real world. However, our experiments expose the difficulty
of properly balancing regular and challenging data when
tuning a planner. Care must be taken to integrate generated
scenarios into AV testing and to design unified planners that
robustly address highly variable driving conditions.
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