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Abstract

Data mixing (e.g., Mixup, Cutmix, ResizeMix) is an es-
sential component for advancing recognition models. In
this paper, we focus on studying its effectiveness in the
self-supervised setting. By noticing the mixed images that
share the same source images are intrinsically related to
each other, we hereby propose SDMP, short for Simple Data
Mixing Prior, to capture this straightforward yet essential
prior, and position such mixed images as additional positive
pairs to facilitate self-supervised representation learning.

Our experiments verify that the proposed SDMP enables
data mixing to help a set of self-supervised learning frame-
works (e.g., MoCo) achieve better accuracy and out-of-
distribution robustness. More notably, our SDMP is the first
method that successfully leverages data mixing to improve
(rather than hurt) the performance of Vision Transformers
in the self-supervised setting. Code is publicly available
at https://github.com/OliverRensu/SDMP.

1. Introduction
Data mixing is one of the key ingredients for improving

recognition models. The concept of data mixing is firstly
introduced in Mixup [47], which trains models on convex
combinations of pairs of images and their labels. This idea
subsequently inspires several follow-ups, including mix-
ing images and cropped patches [45], mixing images and
thumbnails [44], and mixing among cropped patches [4,38].

However, interestingly, data mixing plays little role in
the recent surge of self-supervised learning. For instance,
while naı̈vely replacing original images with their mixed
counterparts substantially improves Vision Transformers
(ViTs) in the supervised setting [39], it cannot improve
ViTs under the self-supervised setting. Though many ef-
forts [27, 31, 42] have been made recently by developing
more sophisticated training strategies in data mixing, they

*Corresponding authors: Shengfeng He (hesfe@scut.edu.cn), Cihang
Xie (cixie@ucsc.edu)

Source Images Mixed Images

Data
Mixing

Positive
Pair

Figure 1. For the mixed images that share the same source (e.g., a
cat image and a dog image), they are semantically related and can
be treated as additional positive pairs in self-supervised learning.

are exclusively focusing on Convolutional Neural Networks
(CNNs). As shown in Table 1 in Section 4, all these meth-
ods still fail to help (or even hurt) ViTs [16].

In this paper, we aim to develop a generic training strat-
egy in data mixing that can improve the self-supervised rep-
resentation learning of both CNNs and ViTs. By taking
a closer look at the popular data mixing implementation
where an image is mixed with another image that sampled
from the same batch but with the flipped order1, we observe
such created mixed samples are inherently related in pairs
(e.g., an example is provided in Figure 1). This indicates
that, now for one mixed image, there exist three related sam-
ples (i.e., a pair of source images and a mixed image cre-
ated with a different mixing parameter) in the same training
batch. This intrinsic relationship qualifies the pair of mixed
images to be treated as additional positive samples in self-
supervised learning to facilitate representation learning.

1The traditional data mixing implementation randomly samples two
batches and then mixes them with each other; while this instantiation of
data mixing only samples one batch and then mixes pairs of images from
the same batch. It generally will not hurt performance, and is very popular
in many libraries (e.g., timm [43]), due to its faster computational speed.
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Motivated by the observation above, we hereby propose
to leverage this Simple Data Mixing Prior (dubbed SDMP)
to holistically model the relationship among samples for en-
hancing self-supervised learning. Different from previous
methods [27, 31, 32, 36, 42], SDMP not only considers the
relationships between source images and the mixed counter-
parts, but also encodes the connections between mixed sam-
ples in representation learning. We further enhance SDMP’s
representation learning by semantically weighting the loss
to accurately capture the relationships among samples.

Our empirical results verify that the proposed SDMP
successfully helps a set of self-supervised learning frame-
works gain better accuracy on different visual benchmarks
and robustness on out-of-distribution samples, using both
CNNs and ViTs. More essentially, we would like to high-
light that our SDMP is the first strategy that enables data
mixing to improve self-supervised ViTs. For example, by
building upon the latest MoCo v3 [11], while existing train-
ing strategies [27, 31, 42] all hurt the top-1 ImageNet accu-
racy of ViT-S by 0.2% - 1.6%, SDMP successfully improves
the top-1 ImageNet accuracy of ViT-S by 0.6%. We hope
the technical insights and results provided in this work will
be helpful for future works on studying data mixing in self-
supervised learning.

2. Related Work

Self-supervised learning. Self-supervised learning aims to
let models acquire semantically meaningful representations
without human annotations. Traditional pretext tasks in-
clude reconstruction by autoencoder [3], colorization [48],
rotation prediction [17] or combination of them [15, 34].

Contrastive learning, which aims to discriminate differ-
ent views and samples, is one of the most successful pre-
text tasks. Its basic idea is to maximize the similarity of
positive pairs and to minimize the similarity of negative
pairs. However, discrimination based methods generally re-
quire a large amount of negative pairs, e.g., SimCLR [8]
takes a large training batch, MoCo [9, 21] requires a mem-
ory bank, and others [1, 5, 46] take a grouping or cluster-
ing. Later works [7, 10, 19] successfully remove the need
for negative samples, enabling small batch training in self-
supervised learning. In this work, we focus on improving
self-supervised learning, using data mixing.

Data mixing. Mixup [47] is the first work on data mixing,
which convexly combines data pairs and their correspond-
ing labels to regularize network training, inspiring numer-
ous followups, including Cutout [14], CutMix [45], Salien-
cyMix [40] and PuzzleMix [28].

Recent works begin to introduce data mixing into self-
supervised learning. Verma et al. [42] utilize Mixup to cre-
ate similar and dissimilar examples by mixing data samples
differently, either at the input or hidden-state levels. [29,31]

explore the semi-contrastive encoding with mixup of nega-
tive and positive pairs. Unlike previous works which focus
on CNNs, we are the first to explore data mixing for improv-
ing ViTs under the self-supervised setting. We additionally
point out that properly modeling the relationships among
intra-batch mixed data (which was largely overlooked) is
essential for strengthening self-supervised learning.

Transformers. Transformer [13, 41] is the de-facto stan-
dard for natural language processing tasks. Recently, Doso-
vitskiy et al. [16] successfully introduce the pure Trans-
former architecture for computer vision, attaining competi-
tive visual recognition performance compared to CNNs on
a range of benchmarks. Nonetheless, the original ViT train-
ing framework strongly demands hundreds of millions of
external (in-house) images [37] in training. Touvron et
al. [39] relax this learning constraint by incorporating a set
of strong regularization techniques into ViT training frame-
work, where data mixing plays a vital role. In this work, we
are particularly interested in exploring whether data mixing
can improve ViT under the self-supervised setting.

3. Method
3.1. Which Images For Mixing?

Traditionally, data mixing generates mixed data by mix-
ing two randomly sampled images (usually drawn from two
different min-batches). While in this work, we follow the
strategy of the widely used Python Deep Learning Package
timm [43]—we mix the i-th image with another randomly
selected j-th image that comes from the same batch. We by
default set j to n-i where n is the number of images in this
batch, for facilitating implementation. We call this mixing
strategy as intra-batch mixing. Specifically, this intra-batch
mixing strategy enables the mixed images now are related
in pairs (as they share the same source images, see an ex-
ample in Figure 1), which will facilitate the virtual label
assignment introduced in Section 3.3.

3.2. How To Mix?

To mix images, we mainly consider an element-wise data
mixing method, Mixup [47], and two regional data mixing
methods, i.e., CutMix [45] and ResizeMix [35].

Mixup. Mixup element-wisely mix two sample while pre-
serving the whole source data. Specifically, Mixup takes
the weight λi following a Beta distribution Beta(α, α) and
mixes the data as the following:

xmix
i = λixi + (1− λi)xn−i,

x′mix
i = λix

′
i + (1− λi)x

′
n−i,

(1)

where xi and xn−i indicate the i-th and the (n−i)-th image.
x′
i and x′

n−i are another view of the source images xi and
xn−i, created by data augmentation (e.g., color jittering).
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Algorithm 1 Loss computation of our SDMP

a, b = aug(x), aug(x) # two different views of input x
lam = Beta(alpha, alpha).sample() # mixing coefficient
a = mix(a, a.flip(), lam)
a = normalize(model(a))
x_one_hot = one_hot(arange(len(x)))
logits1 = matmul(a, normalize(model(b)).T) / t
label1 = lam * x_one_hot + (1-lam) * x_one_hot.flip()
loss1 = CrossEntropyLoss(logits1, label1)
clam = min(lam, 1-lam.flip()) + min(1-lam, lam.flip())
logits2 = matmul(a, normalize(model(mix(b, b.flip(), lam))).T) / t
label2 = 1/(1+clam) * x_one_hot + clam/(1+clam) * x_one_hot.flip()
loss2 = CrossEntropyLoss(logits2, label2)
loss = loss1 + loss2

Figure 2. Left panel: The positive pairs considered in self-supervised learning, i.e., the pair of different views (denoted as naı̈ve), the pair
of the source image and the mixed image (denoted as source positive) and the pair of the mixed images (denoted as intra batch positive).
Right panel: the pseudo code of the SDMP in PyTorch.

CutMix. Different from Mixup, CutMix [45] mixes data
regionally by cropping and pasting a specific patch from one
image to another, i.e., the mixed data comes from one whole
image and a local region of another image. Note that both
Mixup and CutMix by default are included in Transformer’s
training recipe [39] under the supervised training setting.

ResizeMix. For CutMix, the cropped patch and the image
itself could be label-irrelevant, e.g., the background of the
source image is selected. To accurately match the semantics
of the patch and the source data, ResizeMix [35] proposes to
take the resized source image as the patch, as the following:

Pi = R(xi,H
p
i ,W

p
i ) P ′

i = R(x′
i, H

p
i ,W

p
i ),

xmix
i = Paste(Pn−i, xi),

x′mix
i = Paste(P ′

n−i, x
′
i),

λi = 1−
W p

n−i ∗H
p
n−i

Wi ∗Hi

(2)

where R(·, h, w) indicate the resize function applied with
the size of height h and width w. Paste(P, x) indicates
pasting the patch P onto a random region of the image x.
Hi,Wi indicate the height and the width of the i-th im-
age; Hp

i ,W
p
i are randomly sampled patch height and patch

width for the i-th image.

3.3. What is the label in self-supervised learning?

Given true labels are not available in self-supervised
learning, we next show how to assign virtual labels accord-
ingly. We provide two case studies of assigning virtual la-
bels in popular self-supervised learning frameworks.

Case 1: contrastive learning. Contrastive learning posi-
tions self-supervised learning as an instance classification

task, assigning only one positive label to the positive pair
and setting all the rest samples as negative. However, such
assumption will confuse models, especially when the train-
ing batch is large and contain multiple samples from the
same or the similar category.

Our SDMP explicitly relaxes this assumption by intro-
ducing extra positive pairs. Specifically, we propose to as-
sign the virtual positive labels to all the positive pairs, in-
cluding 1) the source data and the mixed counterparts; and
2) the pair of mixed data that comes from the same source
data. This label assignment enforces the model to learn to
minimize the distance between more than just one pair.

More concretely, firstly, to model the relationship be-
tween the source data and the mixed counterpart, the mix
data xm

i and the other view of the source images x′
i and

x′
n−i (obtained via augmentation) will be feed into the the

encoder f and the momentum encoder fk, respectively, as
the “query” and the “key”. Therefore, the first part of our
data mixing contrastive loss, learning from source data, is:

ymi =f(xm
i ) y′i = fk(x

′
i) y′n−i = fk(x

′
n−i)

Ls
MoCo =− λi log

exp(< ymi , y′i > /τ)
n∑

j=0

exp(< ymi , y′j > /τ)

− (1− λi) log
exp(< ymi , y′n−i > /τ)
n∑

j=0

exp(< ymi , y′j > /τ)
,

(3)

where τ is the temperature to normalize the output y.
As mentioned in Section 3.1, we follow the intra-batch

mixing strategy of timm [43] to mix one batch of data and its
reversed-order version accordingly. Therefore such mixed
images are related in pairs (e.g., xm

i and xm
n−i) as they share

the same source data. Moreover, by considering data aug-
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mentation, we now have xm
i , x′m

i and x′m
n−i, which share

the same source image xi and xn−i, as the positive sam-
ples. The second part of our data mixing MoCo loss, which
aims to from intra-batch mixing data, should be written as:

λc
i =min(λi, 1− λn−i) + min(1− λi, λn−i),

Lm
MoCo =− 1

1 + λc
i

log
exp(< ymi , y′mi > /τ)
n∑

j=0

exp(< ymi , y′mj > /τ)

− λc
i

1 + λc
i

log
exp(< ymi , y′mn−i > /τ)
n∑

j=0

exp(< ymi , y′mj > /τ)

(4)

where λc indicate the shared part between two mixed data.
To sum up, our mixing MoCo loss can be used as an extra

view, or replace one of the symmetric view in the MoCo.
We hereby take the replace version to describe the loss of
our mix MoCo loss:

L =

n∑
i=0

[
Ls

MoCo(xi, x
′
i)+Lm

MoCo(x
′m
i , xi, xn−i, x

m
i )

]
(5)

Case 2: knowledge distillation. Recent research focus
on removing the negative samples in self-supervised trans-
former. DINO [7] introduce knowledge distillation to self
supervised training transformer. The student and the teacher
network has parameters θs and θt and the output of stu-
dent network should be close to the output of teacher model.
There is a distillation loss:

H(Pt(x), Ps(x)) = −Pt(x) logPs(x) (6)

where Ps(x) and Pt(x) are respectively student and teacher
model output distribution (i.e.after a softmax function).

In our data mixing case, there are two teachers the stu-
dent needs to distill from. The first one is distilling from the
source teacher:

Ls
DINO = H(λiPt(x

′
i) + (1− λi)Pt(x

′
n−i), Ps(x

m
i )), (7)

Based on the loss, we can minimize the distance between
mixed data and two source data. Another teacher is the mix
teacher which take the mixed data as input:

Lm
DINO =

1

1 + λc
i

H(Pt(x
′m
i ), Ps(x

m
i )),

+
λc
i

1 + λc
i

H(Pt(x
′m
n−i), Ps(x

m
i ))

(8)

The student can learn the probability of the mixed data from
the mixed teacher output. The two teachers share the same
network parameter but different input data. In practice, the
teacher is not pretrained but the exponential moving average
update on the student weights.

To sum up, the total loss of SDMP + DINO is:

L = LDINO + Lm
DINO + Ls

DINO (9)

where LDINO is the original DINO [7] loss applied to the
teacher-student pairs without using any data mixing.

4. Experiment
Given no prior works successfully apply data mixing to

improve self-supervised ViTs, we take ViT [16] as the ma-
jor backbone in experiments. We set contrastive learning
and knowledge distillation as self-supervised learning pre-
text tasks, and measure the representation quality of the pre-
trained models by linear evaluation, end-to-end finetuning,
and semi-supervised learning. The ImageNet top-1 accu-
racy [12] is reported for performance comparisons. In ad-
dition, we evaluate model robustness on out-of-distribution
benchmarks [24–26].

4.1. Implementation Details

We take a small Transformer, ViT-S [39], as the default
architecture in our experiments. The input patch size of
ViT-S is 16 × 16. Therefore, the sequence length is 196
for the 224 × 224 input images. There are 12 transformer
blocks, and the dimension of each block is 384. For the data
augmentation, we follow the settings in BYOL [19], which
includes random resize crop, color jittering, Gaussian Blur-
ring, and solarization. We use Adam with weight decay as
the optimizer [33]. We set the learning rate lr following the
linear scaling rule [18]: lr = 0.0005 ∗ batchsize/256; the
default training batch size is 1024.

4.2. Classification on ImageNet-1K

4.2.1 Linear Evaluation

Linear Evaluation is the standard protocol [7, 22] in evalu-
ating the performance of self-supervised learning by freez-
ing the parameter in the backbone network and training a
linear classifier. Following the previous method [22], we
only take resize, crop and random flipping as data augmen-
tation. Due to the variance of feature space in different self-
supervised methods, we take a different learning rate for dif-
ferent pretraining methods. Note that most self-supervised
method only take the last class token for linear evaluation,
but DINO take the last four class tokens. We will follow
the default settings in their method. When we apply the
proposed SDMP on MoCo, we randomly replace one of the
symmetric views with our mixing data. When we apply
SDMP on DINO, we randomly replace some local crops
with our mixing data. Our data mixing strategy will not
bring extra computation costs in the student model.

The results are reported in Table 1, our method is com-
patible with MoCo and DINO and brings consistent im-
provements under the same training epochs and crops.
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Method Model Param. Epoch Top-1 (%)

SimCLR [8] Res50 23M 200 60.6
BYOL [19] Res50 23M 200 61.9
SwAV [6] Res50 23M 800 75.3
MoCo v1 [21] Res50 23M 200 60.6
MoCo v2 [9] Res50 23M 800 71.1
MoCo v3 [11] Res50 23M 300 72.8
+ i-mix [31] Res50 23M 300 72.8
+ SDMP (ours) Res50 23M 300 73.5

Supervised [39] ViT-S 21M 300 79.8
BYOL [19] ViT-S 21M 300 71.4
MoCo v2 [9] ViT-S 21M 300 72.7
SwAV [6] ViT-S 21M 300 73.5
MoCo v3 [11] ViT-S 21M 300 73.2
+ imix* [31] ViT-S 21M 300 71.6
+ DACL* [42] ViT-S 21M 300 72.3
+ MoChi* [27] ViT-S 21M 300 73.0
+ SDMP (ours) ViT-S 21M 300 73.8
DINO [7] ViT-S 21M 300 76.0
+ SDMP (ours) ViT-S 21M 300 76.4

MoCo v3 ViT-B 85M 300 76.7
+ SDMP (ours) ViT-B 85M 300 77.2

Table 1. Comparison with different pretraining methods in Lin-
ear evaluation on ImageNet-1K. Our method consistently brings
improvements without using extra crops or views. * indicate our
reproduced results with Transformer.

Specifically, we only replace the view or crops. Therefore,
without using extra crops or views, we achieve 0.6% accu-
racy improvement over the vanilla MoCo v3 baseline (i.e.,
73.2% vs. 73.8%) and 0.4% accuracy improvement over
DINO (i.e., 76.0% vs. 76.4%). In contrast, for all other
training strategies in data mixing, including i-mix, DACL
and MoChi, they cannot improve the performance of ViT-S
over the vanilla MoCo v3 baseline. Lastly, we verify that
SDMP scales well with large ViTs, i.e., it successfully help
ViT-B beat the vanilla MoCo v3 baseline by 0.5% accuracy.

4.2.2 End-to-End Fintuning

We follow the same training recipe in DeiT [39] for fine-
tuning models, including data augmentation and regulariza-
tion like mixup [47], cutmix [45], random flipping, random
cropping, and random erasing. The whole network will be
end-to-end finetuned for 100 epochs.

As shown in Table 2, we compare different self-
supervised methods and the supervised baseline. “Super-
vised” indicates random initialization, while the rest use
the pre-trained models as initialization. All self-supervised
methods are pretrained for 300 epochs. Compared with the
100-epoch supervised training from random initialization,
our method significantly outperforms it by a large margin.

Method Model Param. Epoch Top-1

Supervised ViT-S 21M 100 75.8
Supervised ViT-S 21M 300 79.8

MoCo v3 ViT-S 21M 100 78.7
+ SDMP ViT-S 21M 100 79.1

DINO ViT-S 21M 100 79.7
+ SDMP ViT-S 21M 100 80.0

Table 2. End-to-end fintuning on ImageNet-1K. All methods are
pretrained for 300 epochs. The “Epoch” in the table indicates the
number of fintuning epochs.

These finetuning results even closely match or outperform
the performance of the 300-epoch supervised training set-
ting (i.e., 79.1% or 80.0% vs. 79.8%). Compared with the
vanilla baseline, our proposed SDMP brings substantial and
consistent improvements over the self-supervised learning
methods (i.e., MoCo v3 and DINO) under the same pre-
training and finetuning setups.

4.2.3 Semi-Supervised Learning

In semi-supervised learning, we followed the same proce-
dures of self-supervised pretraining on the whole ImageNet
and supervised finetuning with 10% data and 1% data.
Compared with the end-to-end finetuning, semi-supervised
learning utilizes fewer labels. Therefore, stronger regular-
ization and data augmentation techniques are required for
obtaining a more generalized pretrained model.

The results are reported in Table 3, our model consis-
tently outperforms the method without applying data mix-
ing, and the performance gap is much larger than that in
the end-to-end finetuning. Additionally, we observe that the
performance gap increases when using less data for fintun-
ing. Therefore, the model trained with our proposed SDMP
can be regarded as a more generalized model. Specifically,
for MoCo with and without our proposed SDMP, the perfor-
mance gap increases by 0.4% with 100% data (end-to-end
fintuning settings), 0.7% (10% data semi-supervised learn-
ing) and 1.1% (1% data semi-supervised learning).

Method Model Param. 10% 1%

MoCo v3 ViT-S 21M 66.7 54.4
+ SDMP ViT-S 21M 67.4 55.5

DINO ViT-S 21M 67.2 55.6
+ SDMP ViT-S 21M 68.0 56.3

Table 3. Semi-supervised learning on ImageNet-1K with 10% and
1% labeled data. All methods are pretrained for 300 epochs.
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Method ImageNet A R C
(%) (%) (%) (mCE)

MoCo 78.7 18.1 42.1 52.9
+ SDMP 79.1 18.9 42.8 53.4

DINO 79.7 20.0 44.9 54.7
+ SDMP 79.9 21.1 45.3 55.0

Table 4. Performance on ImageNet and out-of-distribution
datasets. “A”, “R”, “C” refer to ImageNet-A [26], ImageNet-
R [24], and ImageNet-C [25], respectively. Note that when mea-
suring performance on ImageNet-C, we directly use top-1 accu-
racy rather than “mCE” [25] as the evaluation metric.

4.2.4 Robustness on Out-of-Distribution Datasets

To evaluate the robustness of our approach against out-
of-distribution data, we test the performance on perturbed
versions of ImageNet, i.e., natural adversarial examples
(ImageNet-A [26]), semantic shifts (ImageNet-R [24]),
common image corruption (ImageNet-C [25]).

As shown in Table 4, our method not only improves the
standard classification performance on ImageNet but also
consistently improves the performance on different Out-of-
Distribution datasets compared with the baseline methods,
i.e., MoCo and DINO. Notably, the robustness improve-
ment is even more significant than the standard ImageNet
classification performance boost. For instance, applying
our proposed SDMP to standard ImageNet classification
only yields a performance improvement of 0.2%. But for
ImageNet-A classification, our method outperforms DINO
by 1.1%. This suggests that SDMP can be an excellent addi-
tion to existing self-supervised learning frameworks to im-
prove model robustness.

4.3. ResNet Results

In addition to ImageNet, we also test our method on
CIFAR-10 and CIFAR-100 [30] to verify the generaliza-
tion of our proposed data mixing strategy. In this section,
we explore the effectiveness using CNN architectures, i.e.,
ResNet [23], to show that our method can be also compati-
ble with different architectures. CIFAR-10 and CIFAR-100
contain 32×32 small size images with 10 and 100 classes,
respectively. There are 50000 training images and 10000
testing images. Specifically, we pretrain ResNet-50 and
ResNet-101 on CIFAR-10 and CIFAR-100, and ResNet-
50 on ImageNet-1K respectively. If we apply ResNet on
CIFAR-10 and CIFAR-100, the first convolution and max-
pooling layer will be replaced by a convolution layer with
the kernel size of 3 × 3 and stride of 1. We re-implement
i-mix [31] on MoCo v3 for fair comparison.

ResNet on CIFAR-10. As shown in Table 5, we compare
ResNet-50 and ResNet-101 pre-trained models based on

Method Model Epoch CIFAR10 CIFAR100

MoCo v3 Res50 200 86.5 63.2
+ i-mix Res50 200 88.6 66.1
+ SDMP Res50 200 89.5 68.2

MoCo v3 Res50 2000 93.7 69.0
+ i-mix Res50 2000 95.4 77.3
+ SDMP Res50 2000 95.8 78.7

MoCo v3 Res101 200 86.4 63.3
+ i-mix Res101 200 89.4 67.7
+ SDMP Res101 200 90.0 69.7

MoCo v3 Res101 2000 93.8 68.5
+ i-mix Res101 2000 95.8 78.4
+ SDMP Res101 2000 95.8 80.0

Table 5. Linear evaluation on CIFAR-10 and CIFAR-100.

MoCo with and without applying data mixing. Though both
improve the baseline method, we note that our method con-
sistently yields more significant performance improvements
than i-mix. Specifically, with ResNet-50 and 200 epoch
pretraining, i-mix yields performance improvement of 1.9%
while our proposed SDMP substantially produces 2.9% per-
formance improvement.

ResNet on CIFAR-100. Similar to the results in CIFAR-
10, our method also consistently yields more significant per-
formance improvement compared to i-mix for CIFAR-100,
as shown in Table 5. However, because CIFAR-100 is a
relatively smaller dataset (5000 training sample per class in
CIFAR-10 and 500 training sample per class in CIFAR100)
and ResNet-101 is the larger model, the performance of
ResNet-101 slightly drops compared with ResNet-50 (pre-
training for 2000 epochs). Therefore, stronger data augmen-
tation like SDMP is required to help larger models perform
better, and with the proposed SDMP, ResNet-101 outper-
forms ResNet-50 when pretraining for 2000 epochs. Be-
sides, when training is longer, the improvement is more sig-
nificant. Specifically, compared with baseline MoCo, the
proposed SDMP improves 6.4% in pretraining 200 epoch
but improve 11.5% in pretraining 2000 epochs, which also
shows the regularization power of our method.

ResNet on ImageNet. Compared with CIFAR-10 and
CIFAR-100, ImageNet is a much larger dataset. Therefore
data augmentation plays a less important role in pretraining.
As shown in Table 1, i-mix hardly improves ResNet result
on the MoCo v3 baseline. In contrast, our SDMP encodes
more accurate relationship cross data and successfully boost
accuracy by 0.7%.
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Method λi λc
i Linear Finetuning

MoCo None None 73.2 78.7

+ SDMP Static Rand. 71.5 78.0
+ SDMP Rand. Static 72.5 78.4
+ SDMP Rand. Rand. 73.7 79.1

DINO None None 76.0 79.7

+ SDMP Static Rand. 75.5 79.4
+ SDMP Rand. Static 76.1 79.9
+ SDMP Rand. Rand. 76.4 79.9

Table 6. Ablation on the mixing weight in the loss. “None” in-
dicate that data mixing is not applied. “Rand.” indicate that λ
is randomly sampled, where both the data mixing and the mixing
loss take the same weight λ. “Static” indicate the λ in loss is static,
predefined and irrelevant with the weight in data mixing.

4.4. Ablation Study

4.4.1 On the importance of λ

When mixing two images, we sample λ from Beta distri-
butions as the weight. In pretraining, we regard such λ as
the prior in our mixing loss. In this part, we ablate how this
prior λ setup affects model performance.

Static weight. There are two parts in the loss related to the
data mixing and the λ: source loss and mixing loss. To ver-
ify λ as a useful prior, we manually opt out the prior when
computing the mixing loss (referred to as “static weight”).
Specifically, we only keep the randomly sampled λ in data
mixing for training. But for the loss computation, we set
λi, 1−λi equals to 0.5 in the source loss and λc

i equals to 0
in the mix loss separately. all λi, 1− λi and λc

i equal to 1.
As shown in Table 6, for the weight of source loss (see

in Eq. (7) and Eq. (3)), the performance of both DINO and
MoCo significantly drops under the linear evaluation proto-
col when setting a fixed weight for computing the mix loss.
But DINO is relatively more stable (with much less per-
formance degradation). On the other hand, for end-to-end
finetuning, the performance drop for both MoCo and DINO
decreases. This suggests that for the mixing loss, the impor-
tance of the loss prior has declined compared to that in lin-
ear evaluation. As a comparison, we also randomly sample
λ and apply it both for reweighting the mixing data and the
mixing loss (referred to as “random weight”). Specifically,
we find that applying either a static weight or a random
weight for the mixing loss have no difference in DINO with
end-to-end finetuning. We think this might be attributed
to the intra batch similarity, because the intra batch sam-
ple pair (the second term in Eq. (3) or Eq. (7)) we build
share the same source data but only with the different mix-
ing weight. Comparing MoCo and DINO, our proposed
data mixing strategy SDMP is more stable in DINO if we

Method λi λc
i Linear Finetuning

MoCo None None 73.2 78.7
+ SDMP Shared Shared 72.3 78.2
+ SDMP Ind. Ind. 73.7 79.1

DINO None None 76.0 79.7
+ SDMP Shared Shared 74.5 79.0
+ SDMP Ind. Ind. 76.4 79.9

Table 7. “Ind.” and “Shared” indicate using independent (per-
sample) and shared (per-batch) λ in a training batch.

adjust the weight of the mixing and the source loss.

Per-sample weight vs. per-batch weight assignment. In
our current method, we assign each sample a mixup weight
λ which provides more diversity in a batch and enlarges the
training difficulty. In contrast, if we assign a shared mixup
weight for a batch, namely, λ1 = λ2 = ... = λn in a batch,
the training difficulty will be reduced since the same mixing
pattern is applied to the entire training batch. The results are
reported in Table 7, taking a shared weight of mixing in a
batch reduce the training difficulty but lead to 0.9% perfor-
mance drop in the linear evaluation and 0.5% performance
drop in end-to-end finetuning. This indicates assigning the
per-sample weight is more effective than assigning the per-
batch weight for mixing the data in our method.

4.4.2 Data Mixing Strategies

our default setup is to select a data mixing strategy from
the set {Mixup, Cutmix and ResizeMix} uniformly at ran-
dom. To ablate the effects of applying different data mixing
strategies, we then compare our default setup with two ad-
ditional settings: 1) applying exclusively with the element-
wise data mixing Mixup; and 2) applying exclusively with
the regional data mixing Resizemix. We report the results
in Table 8. We note that: 1) our SDMP consistently outper-
forms the MoCo or DINO baseline, even if only one data
mixing strategy is applied; 2) our SDMP achieves the best
results when {Mixup, Cutmix and ResizeMix} are all used.

Method Model Mixing Epoch Top-1 (%)

MoCo v3 ViT-S None 100 64.7
+ SDMP ViT-S Mixup 100 65.1
+ SDMP ViT-S Resizemix 100 65.4
+ SDMP ViT-S Both 100 65.5

DINO ViT-S None 100 73.8
+ SDMP ViT-S Mixup 100 74.3
+ SDMP ViT-S Resizemix 100 74.4
+ SDMP ViT-S Both 100 74.4

Table 8. Ablations of different data mixing strategies.
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4.4.3 Extra Version and Replace Version

The original MoCo by default see two different augmented
views of the same input. Our proposed SDMP generates the
mixed data, which can be then used to replace one of the ex-
isting views in MoCo or form an extra view. Therefore for
a fair comparison, the number of training epochs should be
the same as MoCo for the replace version but reduced to 2/3
for the extra version, given there remains 2 views for origi-
nal MoCo and the replace version, but increases to 3 views
for the extra version. Table 9 reports the performance com-
parison between the replace version and the extra version.
We can see under this fair comparison, both the replace and
the extra version outperform the MoCo baseline.

Method Model Epoch Top-1 (%)

MoCo v3 ViT-S 150 66.7
+ SDMP (Replace) ViT-S 150 67.4
+ SDMP (Extra) ViT-S 100 67.5
Table 9. Comparison of extra version and replace version.

4.4.4 Local Crops in Training

The most important contribution of DINO is the local crop
in training. We explore the function of local crops in SDMP.
When we apply SDMP on DINO with local crops, we re-
place the local crops by our mixed data. In contrast, for
the non local crops version, we replace one of the global
crops with our mixed data. The results are shown in Table
10, without local crops, the performance of our proposed
SDMP significantly drops and is even lower than the origi-
nal version of DINO in linear evaluation. With the number
of local crops growing, SDMP narrows down the gap and

Method Global Global Local Local Top-1
Clean Mixed Clean Mixed (%)

DINO 2 % % % 67.8
DINO 1 1 % % 64.1

DINO 2 % 2 % 71.5
DINO 2 % 1 1 70.9

DINO 2 % 6 % 73.8
DINO 2 % 3 3 74.0

DINO 2 % 8 % 74.0
DINO 2 % 4 4 74.4

Table 10. Top-1 accuracy of different variants of multi-crop. We
pretrain all models with 100 epochs. Global clean and Local clean
indicate the global crops and local crops without data mixing.
Global mixed and local mixed indicate the global crops and lo-
cal crops with data mixing.

Method Model Param. Epoch Linear

Supervised ViT-S 21M 300 88.0

MoCo v3 ViT-S 21M 300 79.1
+ SDMP ViT-S 21M 300 81.8

DINO ViT-S 21M 300 82.0
+ SDMP ViT-S 21M 300 83.2

Table 11. Linear evaluation on ImageNet-100. Different from
previous transfer learning methods which pretrain on large-scale
datasets and finetune on small-scale datasets, we pretrain our
model and perform linear evaluation on ImageNet-100.

finally outperforms the original DINO when the number of
local crops reaches 6, which demonstrates the superiority of
our proposed SDMP. Therefore, the local crops help stabi-
lize the training when introducing the mixing data.

4.4.5 Generalization on Small-Scale Datasets

Compared with ResNet, it is known that ViTs require much
more data to train. In this part, we explore whether our
method can still help self-supervised ViT on the relatively
small dataset, i.e., ImageNet-100. As shown in Table 11,
we can observe that the proposed SDMP can consistently
improve MoCo (from 79.1% to 81.8%) and DINO (from
82.0% to 83.2%), demonstrating its effectiveness at differ-
ent data scale regime.

5. Conclusion
In this paper, we develop a generic training strategy in

data mixing for helping self-supervised training, especially
for Vision Transformers. By following the intra-batch data
mixing strategy in timm [43], we propose SDMP to capture
the intrinsic relationships between mixed data in a precise
manner. Experiments show that our method brings consis-
tent improvements, and is compatible with kinds of self-
supervised learning methods, architectures, and datasets.

Discussion & Limitation This work introduces an extra
intra-batch relationship between mixed samples for differ-
ent self-supervised learning frameworks, i.e., MoCo and
DINO. Future work should examine how to integrate our
method to other recent self-supervised masked image mod-
eling methods, especially for the masked image modeling
based methods [2,20,49]. In addition, due to computational
limitation, our experiments are mostly built upon the small-
sized ViT (i.e., ViT-S); it deserves to further validate our
method at a larger scale.
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