Co-advise: Cross Inductive Bias Distillation

Sucheng Ren1,5 Zhengqi Gao2 Tianyu Hua3,5 Zihui Xue4 Yonglong Tian2 Shengfeng He1* Hang Zhao3,5*

1South China University of Technology 2Massachusetts Institute of Technology
3Tsinghua University 4The University of Texas at Austin 5Shanghai Qi Zhi Institute

Abstract

The inductive bias of vision transformers is more relaxed than that of traditional CNNs. Knowledge distillation is thus introduced to assist the training of transformers. Unlike previous works, where merely heavy convolution-based teachers are provided, in this paper, we delve into the influence of models inductive biases in knowledge distillation (e.g., convolution and involution). Our key observation is that the teacher accuracy is not the dominant reason for the student accuracy, but the teacher inductive bias is more important. We demonstrate that lightweight teachers with different architectural inductive biases can be used to co-advise the student transformer with outstanding performances. The rationale behind is that models designed with different inductive biases tend to focus on diverse patterns, and teachers with different inductive biases attain various knowledge despite being trained on the same dataset. The diverse knowledge provides a more precise and comprehensive description of the data and compounds and boosts the performance of the student during distillation. Furthermore, we propose a token inductive bias alignment to align the inductive bias of the token with its target teacher model. With only lightweight teachers provided and using cross inductive bias distillation method, our vision transformers (termed as CiT) outperform all previous vision transformers (ViT) of the same architecture on ImageNet. Moreover, our small model CiT-SAK further achieves 82.7\% Top-1 accuracy on ImageNet without modifying the attention module of the ViT. Code is available at https://github.com/OliverRensu/co-advise.

1. Introduction

Although convolutional neural network (CNN) has revolutionized the field of computer vision, it possesses certain limitations. Recent research interests have been intrigued in replacing convolution layers with novel self-attention-based architectures. For instance, ViT [6] is a pure transformer without convolutional layers. Nevertheless, transformers have fewer inductive biases than CNNs (e.g., translation equivariance and locality) and thus suffer when the given amounts of training data are insufficient [6]. In this context, knowledge distillation technique [7, 16] is applied by DeiT [30] to assist the training of vision transformers. When the CNN teacher is powerful enough, transformers with such distillation [30] (i.e., DeiT) can achieve competitive results as SOTA CNNs on ImageNet. However, DeiT has its own limitations: 1) The trained transformer is over-influenced by the inductive bias of the teacher CNN and mirrors its classification error; 2) DeiT requires the teacher CNN to be very large (e.g., RegNetY-16GF), which disturbingly brings about heavy computational overhead (e.g., training a RegNetY-16GF on ImageNet takes four times longer training time under the same training protocols than DeiT-S); 3) Class
token and the Distillation token have different targets but share the same random initialization protocol.

In this paper, we argue that a heavy and highly-accurate teacher is not necessarily effective in teaching a “good” student transformer. Instead, the involved inductive bias plays a leading role. Our key observation is that models with different inductive biases tend to focus on diverse patterns despite that they are trained on the same dataset (see Figure 2). Namely, compared with naive teacher assembling, teachers of different inductive biases inherently make complementary assumptions of the data they see and focus on the data from various perspectives to attain diverse knowledge. They provide more precise and comprehensive descriptions of the data, which further compounds and boosts the performance of student during distillation. In contrast, teachers with similar inductive biases but different performance (e.g., ResNet-18 and ResNet-50) have little differences in data descriptions, and the student distilling from them have limited performance gain.

To compare the influence of directly introducing inductive bias to the model and knowledge distillation, we propose a token alignment technique. Specifically, two tokens are used in DeiT, learning from a CNN teacher and golden labels, respectively. However, these two tokens share the same random initialization protocol, which we believe, actually limits the power of them to learn different targets. To make the representation power of tokens close to their corresponding teachers so that they could truly move towards their corresponding teachers, we propose token inductive bias alignment by further introducing inductive bias into tokens. In our experiments, we show that introducing the inductive bias to student model by our inductive bias alignment truly brings improvements on ImageNet. However, we also find that comparing with directly introducing the same inductive bias with the teacher model into the model by our inductive bias alignment, knowledge distillation helps the student to perform more similar to the teacher. Therefore, we find that although knowledge distillation cannot “transfer” inductive bias to the student, it helps the student to “inherit” more characteristics of the teacher.

Thanks to complementary inductive biases of convolution (spatial-agnostic and channel-specific) and involution (spatial-specific and channel-agnostic), our method only requires two super lightweight teachers (a CNN and an INN). In the distillation stage, the knowledge from teachers compensates each other and significantly prompts the accuracy of the student transformer. Our main observations of this paper are as follows:

- We observe that the intrinsic inductive bias of the teacher model matters much more than its accuracy.
- CNNs and INNs with different inductive biases are inclined to learn complementary patterns, while a vision transformer, a more general architecture with fewer inductive biases, can inherit knowledge from both.
- When several teachers with different inductive biases are provided, a student model with less inductive biases is more compatible to learn various knowledge.
- Compared with introducing the inductive bias into the transformer, knowledge distillation makes student transformer performs more similar to various inductive bias teachers.
- Our cross inductive bias vision transformers (Cit) outperform all previous vision transformers of the same architecture and only require super lightweight teachers with 20% and 50% parameters of the teacher in DeiT-Ti and DeiT-S, respectively.

2. Related Works

CNNs. Convolution operator was first proposed in [19] around thirty years ago. Its rejuvenation appears in the past decade, when deep CNNs (e.g., AlexNet [18], VGGNet [26], ResNet [11], EfficientNet [27]) led to an astonishing breakthrough in a great variety of tasks. The remarkable performance of CNNs origins from inherent characteristics (a.k.a. inductive biases) of the convolution operator such as translation equivariance [6] and spatial-agnostic [20]. On the other hand, its locality alternatively makes CNNs struggle to relate spatially-distant concepts, unless we deliberately increase the kernel size and/or model depth.
Transformers. Transformers, which first prevailed in natural language processing [32], has drawn attention in the computer vision community recently. The ViT proposed in [6] feeds 16×16 image patches into a standard transformer, achieving comparable results as SOTA CNNs on JFT-300M [6]. However, its superiority is at the expense of exorbitantly long training time and tremendous amount of labeled data. Most importantly, when insufficient amount of data are given, ViT only achieves modest improvement of accuracy. Furthermore, DETR and VT were proposed in [1] and [35], respectively. DETR [1] exploits bipartite matching loss and a transformer-based encoder-decoder structure in object detection task, while VT [35] represents images as semantic tokens and exploits transformers in image classification and semantic segmentation. Alternatively from theoretical perspective, it has been proven in [3] that the self-attention mechanism used in transformers is at least as expressive as a convolution layer.

INNs. Involution operator was proposed in [20, 33] lately. In a nutshell, convolution operator is spatial-agnostic and channel-specific, while an involution kernel is shared across channels and distinct in the spatial extent. In other words, involution attains precisely inverse inherent characteristics compared to convolution. As a result, it has the ability to relate long-range spatial relationship in an image. It is depicted in [20] that their involution-based RedNet consistently delivers enhanced performances compared with CNNs and transformers.

Knowledge Distillation. Knowledge distillation (KD) was first formulated in [16] as a strategy of model compression, in which a lightweight student is trained from a high-capacity teacher [31, 36]. Specifically, authors in [16] achieve this goal by minimizing the KL divergence of student’s and teacher’s probabilistic predictions. Afterwards, KD unfolds usefulness in various tasks such as privileged learning [21, 31], cross-modal learning [17, 36], adversarial learning [15, 24], contrastive learning [28], and incremental learning [23]. In relevance to our work, authors in [30] proposed to train transformers via a token-based KD strategy. By distilling from a large-scale and powerful CNN teacher, the resulting DeiT [30] can perform as well as CNNs on ImageNet, while the preceding ViT [6] cannot. Our method outperforms DeiT by distilling from two weak teachers with much fewer parameters, worse accuracy but different inductive bias.

3. Proposed Method

3.1. Cross Inductive Bias Teachers

DeiT [30], where the teacher model is a single convolution-based architecture, is limited by the knowledge of the teacher. A popular idea to go beyond the teacher performance is an ensembling of multiple teachers with different initializations [16]. However, those teachers with the same architecture have the same inductive biases, and consequently offer similar perspectives of data.

When teachers have different inductive biases, the output distribution may vary distinctively as the different inductive biases inherently make the model biased towards different patterns. Such variation on output distribution may not be obvious if we use the top-1 accuracy to evaluate. For a better understanding, here we introduce out-of-distribution datasets [12–14] which are generated by applying different perturbations on ImageNet, e.g. natural adversarial examples (ImageNet-A), semantic shift (ImageNet-R), common image corruptions (ImageNet-C). As shown in Table 1, when the convolution model (ResNet) and involution model (RedNet) have similar accuracy on ImageNet like ResNet-50 and RedNet-152 or ResNet-101 and RedNet-38, but their performances vary on out-of-distribution dataset. This implies that if we take CNNs and INNs as teachers, CNN teachers will perform better on ImageNet-R/C but worse on ImageNet-A compared with INN teachers. This phenomenon also demonstrates that convolution and involution model may focus on different patterns and will drive different knowledge to the student model. In other words, the knowledge provided by cross inductive bias teachers can describe the data more precisely and comprehensively. In our later experiments, we show that our students will inherit the trend of teachers on out-of-distribution datasets: We match class toekn, Conv token and Inv token to golden labels, RegNet (CNN teacher), and RedNet (INN teacher), respectively. We observe that the Conv token and Inv token will perform similar to the CNN teacher and INN teacher respectively on out-of-distribution datasets.

![Table 1. Performance on ImageNet and Out-of-Distribution dataset](image)

<table>
<thead>
<tr>
<th>Model</th>
<th>ImageNet(%)</th>
<th>A (%)</th>
<th>R(%)</th>
<th>C(\text{mCE})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conv</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ResNet-18</td>
<td>68.74</td>
<td>2.60</td>
<td>31.90</td>
<td>65.58</td>
</tr>
<tr>
<td>ResNet-34</td>
<td>72.62</td>
<td>3.45</td>
<td>35.17</td>
<td>60.26</td>
</tr>
<tr>
<td>ResNet-50</td>
<td>75.57</td>
<td>2.60</td>
<td>35.61</td>
<td>59.15</td>
</tr>
<tr>
<td>ResNet-101</td>
<td>77.00</td>
<td>6.03</td>
<td>38.77</td>
<td>54.33</td>
</tr>
<tr>
<td>ResNet-152</td>
<td>77.96</td>
<td>7.73</td>
<td>40.72</td>
<td>53.18</td>
</tr>
<tr>
<td>Involution</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RedNet-26</td>
<td>75.19</td>
<td>5.49</td>
<td>33.33</td>
<td>61.09</td>
</tr>
<tr>
<td>RedNet-38</td>
<td>76.88</td>
<td>6.88</td>
<td>34.80</td>
<td>58.15</td>
</tr>
<tr>
<td>RedNet-50</td>
<td>77.72</td>
<td>7.64</td>
<td>35.72</td>
<td>56.03</td>
</tr>
<tr>
<td>RedNet-101</td>
<td>78.35</td>
<td>9.03</td>
<td>36.30</td>
<td>54.78</td>
</tr>
<tr>
<td>RedNet-152</td>
<td>78.54</td>
<td>9.24</td>
<td>36.84</td>
<td>53.58</td>
</tr>
</tbody>
</table>
3.2. Token Inductive Bias Alignment

Previous works [6, 30] use randomly initialized tokens to learn the label and distill from a CNN teacher. However, a randomly initialized token has limited power to learn a convolution teacher which has very specific inductive bias. To address this issue, we propose token inductive bias alignment, making tokens explicitly possessing different inductive biases so that they could move towards their corresponding teachers. Specifically, we have three kinds of teachers: human (i.e., golden labels), convolution teacher and involution teacher. Therefore, we have three tokens: Class token, Conv token, and Inv token. For the Class token, we simply apply truncated gaussian initialization [30] which makes this token have no inductive bias. To introduce corresponding inductive bias into the remaining two tokens, we combine token generation and patch embedding. Previous methods simply split image to non-overlap patches and use a linear projection to map these patches into tokens. We introduce convolution stem [9, 10] and involution stem to replace the linear projection. Then the Conv token and Inv token are the average pooled output of convolution and involution stem output respectively.

3.3. Cross Inductive Bias Distillation

The schematic of our CiT is demonstrated in Figure 3. Our learning objective is expressed as a weighted summation of two Kullback-Leibler divergence losses (\mathcal{L}_{KL}) and a cross-entropy loss (\mathcal{L}_{CE}):

$$\mathcal{L} = \lambda_0 \mathcal{L}_{CE}(\sigma(z_{s,\text{class}}), y) + \lambda_1 \tau_1^2 \mathcal{L}_{KL}[\sigma(\frac{z_{s,\text{conv}}}{\tau_1}), \sigma(\frac{z_{t_1}}{\tau_1})] + \lambda_2 \tau_2^2 \mathcal{L}_{KL}[\sigma(\frac{z_{s,\text{inv}}}{\tau_2}), \sigma(\frac{z_{t_2}}{\tau_2})],$$

(1)

where $0 < \tau_1, \tau_2 < \infty$ are hyper-parameters controlling the temperature of Softmax function σ [16]. $z_{s,\text{class}}$, $z_{s,\text{conv}}$, $z_{s,\text{inv}}$, z_{t_1} and z_{t_2} denote logits of the CNN teacher and INN teacher, respectively. Here $0 \leq \lambda_0, \lambda_1, \lambda_2 \leq 1$ are weights balancing the importance of three loss terms.

4. Experimental Results

In Section 4.1, we describe our implementation details, and next compare our CiT with various transformers, convolution- and involution-based neural networks on ImageNet-1k [5] in Section 4.2. In the rest of this section, experiments are conducted on ImageNet-100 [34]. We analyze impacts of teacher performance and inductive biases to student performance in Section 4.3.1. Then we explain the advantage of choosing a transformer as student over CNNs and INNs in Section 4.3.1. To prove the efficiency of our co-advising strategy, we compare the prediction accuracy
of models trained by our cross inductive bias distillation and naive multi-teacher distillation in Section 4.3.3. Finally, we study the influence of the inductive bias alignment on ImageNet and Out-of-Distribution datasets with or without distillation.

4.1. Implementation Details

For comparison purpose, following DeiT [30], we implement two variants of our model: (i) CiT-Ti has two hidden layers with dimensions of 192 and 12, respectively (each with three attention heads), and (ii) CiT-S has two hidden layers with dimensions of 384 and 12, respectively (each with six attention heads). (ii) CiT-SAK is the same as CiT-S except the token inductive bias Alignment. We use the same data augmentation and regularization methods described in DeiT [30] (e.g., Auto-Augment, Rand-Augment, mixup). The weights of our transformers are randomly initialized by sampling from a truncated normal distribution. We use AdamW [22] as optimizer with learning rate equal to 0.001 and weight decay equal to 0.05. For hyper-parameters in distillation, we set $\lambda_0 = \lambda_1 = \lambda_2 = 1$ and $\tau_1 = \tau_2 = 1$. During inference, we retrieve the value stored in the class token as the final output.

4.2. Comparison among Different Architectures

In this section, we compare accuracy of various convolution-, involution-, and transformer-based models on ImageNet-1k [5].

Teacher Model

In Table 2, we compare teacher models used in DeiT [30] and CiT. Different from DeiT, which uses a powerful convolution teacher RegNetY-16GF [25] with 84M parameters and top-1 accuracy of 82.9%, we choose a convolution teacher and an involution teacher who possess similar model sizes as the student transformer. We emphasize that the overall parameters of teacher models used in our CiT are still much fewer than those in DeiT, and that such small teachers significantly speed up the whole training process.

Results

We report inference speed, top-1 accuracy of several models in Table 3. Compared with CNNs, when the model size is small (say around 6 million parameters), transformers do not reveal better performances. For instance, RegNet-600MF performs the best with top-1 accuracy equal to 76.0%, while DeiT-Ti, DeiT-Ti-KD, and our CiT-Ti achieve top-1 accuracy of 72.2% (−4.1%), 74.5% (−1.8%), and 75.3% (−1.0%), respectively. Namely, our CiT narrows the gap between the accuracy of CNNs and transformers in this context. When the model size grows, the accuracy of our CiT grows much faster than that of other models, and our CiT-S outperforms all other models at 20 million parameters. The performance of our CiT-S improves 2.6% over RegNet-4GF and 2.9% over RedNet-101.

Compared with the recent transformer-based model ViT [6] (i.e., ViT-L /1 and ViT-B /16 in Table 3), our CiT-S requires about 4 times or 15 times fewer model parameters, while at the same time, achieves about 4.1% or 5.5% more accurate predictions. Furthermore, our CiT-S also outperforms the latest work DeiT-KD, even though DeiT-KD has a more potent teacher. Moreover, our CiT achieves similar inference speed as DeiT-KD or even slightly better: CiT-Ti and CiT-S improve 0.4% and 0.8% over the corresponding DeiT-KD of similar sizes. To sum up, the extra convolution and involution tokens boost the performance of student transformer almost without additional computation cost.

4.3. Ablation on Cross Inductive Bias Distillation

In this section, we keep the same Transformer as DeiT and perform all experiments on ImageNet-100.
This section delves into the impacts of teacher’s performance and inductive biases when distilling to a student transformer. For illustration purpose, we conduct an experiment on student’s accuracy when it distills from different kinds of teachers. We take three kinds of teachers into consideration: convolution-based ResNet and RegNet, and involution-based RedNet. We choose CIT-Ti as student. During distillation, either a CNN teacher or an INN teacher (but not both) is provided, and thus one of the three tokens in CIT-Ti will be discarded in this experiment. From now on, this degenerated CIT-Ti will be referred to as Transformer-Ti. The results are reported in Figure 4.

As shown in Figure 4, if the teacher models share similar architecture (i.e., viewing horizontally in both (a) and (b)), the student model retains similar performance even though the teacher performances are boosted. For instance, in Figure 4(a), increasing training epochs leads to performance improvement of teacher models. Training extra 100 epochs helps the RegNet-200M teacher improve 9%, but the performance of the student transformer keeps hardly changed. Similar observation can be generalized to ResNet-18 and RedNet-26 teachers. In Figure 4(b), although the performances increase 6.5% from RegNet-200M to RegNet-600M, the performance of students remains still. This observation implies that the accuracy of the teacher model is not the most important factor determining the student’s performance in this context. Namely, we are approaching saturation: when the accuracy of teacher model is sufficiently large, improving teacher accuracy won’t result in the improvement of student model.

4.3.1 Teacher Performance and Inductive Biases.

Alternatively, the vertical view of Figure 4 implies that we could resort to a teacher of a different type. For instance, when a teacher has similar performance but belongs to different kinds (e.g., CNNs or INNs) can yield students with different accuracy.

When distilling cross inductive knowledge to a student, the student needs to have few inductive biases to avoid overly inclining to a certain teacher. Moreover, the student model needs to have enough capability and model capacity to learn from its teachers. Based on these two considerations, we choose ResNet-10, Transformer-Ti, and Mixer-Ti [29] as students for testing purpose, and ResNet-18, RedNet-26 as teachers. ResNet-10 has stronger inductive biases than Transformer-Ti, and such inductive biases are similar to those of ResNet-18 and conflicts with those of RedNet-26. The results are reported in Table 4.

Our experiment results demonstrate that ResNet-10 distilling from two teachers attains a similar performance to that distilling from a single convolution-based ResNet-18. In contrast, Transformer-Ti can learn from both teachers and achieve higher performance (88%) than distilling from a single teacher. We believe the intrinsic reason is that a
Table 5. The output KL divergence. A smaller value indicates a larger similarity.

<table>
<thead>
<tr>
<th>Student</th>
<th>ResNet-18</th>
<th>RedNet-26</th>
<th>Top-1 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ResNet-10</td>
<td>0.261</td>
<td>0.274</td>
<td>83.4</td>
</tr>
<tr>
<td>Mixer-Ti</td>
<td>0.358</td>
<td>0.313</td>
<td>82.3</td>
</tr>
<tr>
<td>CiT-Ti conv token</td>
<td>0.255</td>
<td>0.290</td>
<td>87.1</td>
</tr>
<tr>
<td>CiT-Ti inv token</td>
<td>0.254</td>
<td>0.154</td>
<td>87.7</td>
</tr>
</tbody>
</table>

Transformer possesses few inductive biases and the attention layer could not only perform convolution [4], but also has close relationship to involution [20].

This rises a natural question: An MLP possesses the fewest inductive biases, how about choosing it as student? To this end, we include the recent Mixer model [29], a pure multi-layer perceptron (MLP) structure, into comparison. For fairness of comparison, the Mixer-Ti used in our paper has 12 layers, and the hidden dimension is 192. As shown in Table 4, it indicates that without any distillation, Mixer-Ti and Transformer-Ti have similar performances. However, after distilling knowledge from teachers, Transformer-Ti gains more improvement than Mixer. This demonstrates the effectiveness of choosing transformer as a student.

The reason why Mixer-Ti doesn’t gain as much as a Transformer through distillation will be clear if we compute the KL divergence between student’s and teacher’s outputs. As shown in Table 5, all values of KL divergence in Mixer-Ti are much larger than the others. It implies that Mixer-Ti doesn’t have the ability to learn from the teacher when its model size is constrained to the same as its Transformer counterpart. On the contrary, compared with other students, CiT-Ti are more similar to teachers. Not surprisingly, the convolution token and involution token are more inclined to convolution and involution teacher, respectively, because our loss function in Eq (1) advocates them to mimic their corresponding teachers.

4.3.3 Naive Multi and Cross Inductive Bias Teachers.

In this section, we verify the effectiveness of our cross inductive bias distillation by comparing it with naive multi-teacher distillation. We implement three teachers: (i) ResNet-18, ResNet-50 are both convolution-based models. They have similar inductive biases, but different performances due to different model sizes. (ii) RedNet-26 is an involution-based model but with similar performance as ResNet-50. The results are illustrated in Table 6.

When Transformer-Ti distills from a single teacher, its performance gain is significant regardless the type of teacher. Specifically, after distilling from the convolution-based ResNet-18, Transformer-Ti can achieve about 86.5% top-1 accuracy on ImageNet-100, while after distilling from the involution-based RedNet-26, its performance gain is relatively moderate: achieving 85.0% top-1 accuracy.

When one more teacher is further allowed in distillation, interesting phenomenon occurs. If both teachers are convolution based (a.k.a. teacher ensembling [8]), the further performance improvement is limited (e.g. from 86.5% to 87.0% or 87.2%). In contrast, if we choose the additional teacher as the involution-based RedNet-26, the performance of Transformer-Ti rises to 88.0%. This justifies the effectiveness of providing two different types of teachers.

4.4. Ablation on Token Inductive Bias Alignments

In this section, we evaluate our token inductive bias alignments with or without knowledge distillation on ImageNet-1k and Out-of-Distribution datasets.

Inductive Bias Injection. We aim at align the inductive bias
Table 7. Performances of various models on ImageNet-100. A check mark ✓ represents a teacher of the specified type is presented.

<table>
<thead>
<tr>
<th>Student</th>
<th>Token</th>
<th>Teacher</th>
<th>Top-1 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transformer-Ti</td>
<td>1</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Transformer-Ti (Ours)</td>
<td>3</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Table 8. Performances of inductive bias injection on ImageNet-1k. A check mark ✓ represents a kind of inductive biases which are injecting into the transformer.

<table>
<thead>
<tr>
<th>Model</th>
<th>Inductive Bias</th>
<th>Top-1 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Convolution</td>
<td>Involution</td>
</tr>
<tr>
<td>Transformer-S</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Transformer-S</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Transformer-S (Ours)</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

between the teachers and the corresponding tokens with token inductive bias alignments, but we find that simply inject the inductive bias will also brings significant improvements. As show in Table 8, if we inject involution or convolution, the performance will be improved 1.7% and 1.6% respectively. When we inject both two kinds of inductive bias, we are pleased to find they are compatible and complementary and can further improve the performance.

Tokens on Out-of-Distribution Dataset. Inductive bias is the set of assumptions predefined in the model, it is hard to say ‘transfer’ or ‘inherent’ inductive bias by knowledge distillation without model modification. However, the tokens in our distilled student performs more similar to the corresponding teachers with different inductive bias comparing with simply inject some inductive bias into the model. According to the results on Table 1, convolution perform better on ImageNet-R and C but worse on ImageNet-A comparing with involution when models have similar performance on ImageNet. As shown in Table 9, when we simply inject the inductive bias to the tokens which inherent the inductive bias of teachers but different tokens share same learning targets (Random w/o KD and Align w/o KD), such modification truly brings some differences but is too limited. When the situation goes to knowledge distillations (Random w/o KD and Random w/ KD), there is no inductive bias injected into the student model, but thanks to the different knowledge, the student model perform much similar to the teachers than simply inject the inductive bias. Specifically, convolution teacher perform better than the involution teacher on ImageNet-R and C but worse on ImageNet-A. The tokens in our student inherent the characteristics and the Conv token perform better than Inv token on ImageNet-R and C but worse on ImageNet-A. Finally, when the knowledge distill and token inductive bias alignments combine together (Random w/o KD and Align w/ KD), our student inherent the characteristics of the teacher best.

5. Conclusion

In this paper, we introduce a cross inductive bias transformer (CiT) by distilling from teacher networks with diverse inductive biases. Compared with distilling from convolution teacher, cross inductive bias teachers provide different perspectives of data and avoid that student is over biased toward single teacher. In our experiments, we find that the teacher inductive biases play a more critical role than the teacher performance in knowledge distillation. Furthermore, we delve into the student model’s inductive biases, and the capability of imitating teachers and the transformer shows its superiority in these two aspects comparing with Mixer and ResNet. Finally, we evaluate the effectiveness of token alignment, and prove the distillation help student perform more similar to teachers, and the distillation help student perform best together with the token alignment.

Limitations. We need to independently train our two lightweight teachers, although the total training time is still much less than that of the heavy teacher in DeiT. In theory, our method is compatible with more cross inductive bias teachers. More suitable teachers other than CNNs and INNs will be explored in our future work.

Acknowledgement. This project is supported by the National Natural Science Foundation of China (No. 61972162); Guangdong International Science and Technology Cooperation Project (No. 2021A0505030009); Guangdong Natural Science Foundation (No. 2021A1515012625); Guangzhou Basic and Applied Research Project (No. 20210201074); and CCF-Tencent Open Research fund (RAGR20210114).
References

[22] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization, 2017. 5

[29] Ilya Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas Unterthiner, Jessica Yung, Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, Mario Lucic, and Alexey Dosovitskiy. Mlp-mixer: An all-mlp architecture for vision, 2021. 6, 7

