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Abstract

Video inpainting remains a challenging problem to
fill with plausible and coherent content in unknown ar-
eas in video frames despite the prevalence of data-driven
methods. Although various transformer-based architec-
tures yield promising result for this task, they still suffer
from hallucinating blurry contents and long-term spatial-
temporal inconsistency. While noticing the capability of
discrete representation for complex reasoning and predic-
tive learning, we propose a novel Discrete Latent Trans-
former (DLFormer) to reformulate video inpainting tasks
into the discrete latent space rather the previous contin-
uous feature space. Specifically, we first learn a unique
compact discrete codebook and the corresponding autoen-
coder to represent the target video. Built upon these rep-
resentative discrete codes obtained from the entire target
video, the subsequent discrete latent transformer is capa-
ble to infer proper codes for unknown areas under a self-
attention mechanism, and thus produces fine-grained con-
tent with long-term spatial-temporal consistency. More-
over, we further explicitly enforce the short-term consis-
tency to relieve temporal visual jitters via a temporal aggre-
gation block among adjacent frames. We conduct compre-
hensive quantitative and qualitative evaluations to demon-
strate that our method significantly outperforms other state-
of-the-art approaches in reconstructing visually-plausible
and spatial-temporal coherent content with fine-grained
details.Code is available at https://github.com/
JingjingRenabc/dlformer.

1. Introduction
Video inpainting aims to fill in corrupted regions with

meaningful details such that the completed video is con-
sistent both spatially and temporally. It can be applied
to various industrial applications, including video restora-
tion [15, 34], unwanted object removal [18, 19] and video
retargeting [32].

1This work was done while Jingjing Ren was an intern at Tencent.
2Qingqing Zheng and Xuemiao Xu are the joint corresponding authors.
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Figure 1. Previous methods, like (b) VINet [9] and (c) STTN [34]
formulate in a continuous feature space and usually produce arti-
facts and blurry results around the occluded bars and background.
In contrast, our method (d) fills the unknown region with plausi-
ble content even in the swift movement case by formulating this
problem in a global discrete latent space (please zoom in for better
visualization).

Recently, methods [2, 9, 37] have made great progress in
this task thanks to the powerful CNN-based deep features
extractors. These methods still suffer from limited recep-
tive field along temporal domain and produce blurry and
misplacement artifacts in the completed video, as shown in
Figure 1 (b). The state-of-the-art methods [12, 16, 34] tend
to capture long-term correspondences with attention mecha-
nism, so the available content at distant frames can be glob-
ally propagated to the unknown regions. Although these
attention-based methods yield promising results, trivially
using pair-wise similarity in a continuous feature space,
e,g., STTN [34], still suffers from blurry contents (refer to
Figure 1 (c)) degrading the visual quality in high frequency
areas. It is still challenging to generate plausible and co-
herent contents with fine-grained details, especially under
complex and dynamic scenarios.

To tackle the aforementioned challenges, we propose a
novel Discrete Latent Transformer (DLFormer) to model
the video inpainting task as a code inference problem in a
discrete latent space rather than in the continuous feature
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space. Benefiting from the Vector Quantized Variational
AutoEncoder (VQ-VAE) [20], continuous representation of
one image generated by an autoencoder can be quantized
into limited discrete codes in latent space, spanned by a
codebook to form a quantized feature. Such discrete codes,
represented as the indices in the corresponding codebook,
can be delivered back to the autoencoder to reconstruct the
original image sufficiently. Inspired by this work and in
order to capture the fine-grained details, we learn a video-
specific and discriminative codebook as well as the corre-
sponding autoencoder to represent the target video in the
discrete latent space, which is spanned by a context-rich
and efficient codebook. In this way, the obtained codebook
naturally captures global discriminative features among the
entire video sequence, even for unknown regions.

Based on this discrete latent representation, inpainting
unknown regions with plausible content can be regarded
as inferring the proper discrete code indices with a certain
codebook. By adopting a self-supervised training strategy,
the latent code distribution in valid regions can be naturally
propagated to unknown regions via the proposed discrete la-
tent transformer. Moreover, to avoid spatial-temporal visual
jitters caused by such discrete prediction, we further explic-
itly enforce short-term consistency with a residual aggrega-
tion block before delivering the code inference results back
to the autoencoder to generate the final inpainting results.

We extensively evaluate our method in both video
restoration and object removal tasks on Youtube-VOS [31]
and DAVIS [24] datasets and the experimental results
demonstrate the proposed method significantly outperforms
the state-of-the-art methods. Thanks to the robust dis-
crete representation, the proposed DLFormer is able to
fill visually-plausible and spatial-temporal coherent content
with fine-grained details in unknown regions.

We summarize our contributions of this work as follows:

• To the best of our knowledge, we are the first to for-
mulate the video inpainting task as a discrete code in-
ference problem in the discrete latent space. Benefit-
ing from such discrete representation, our method is
capable to synthesize more plausible and fine-grained
details than previous methods formulating in the con-
tinues feature space.

• Based on the aforementioned novel formulation, a dis-
crete latent transformer is proposed to explicitly model
the global code distribution among the entire video se-
quence with a self-attention mechanism. The proposed
transformer is allowed to propagate such distribution
from valid regions toward corrupted regions regardless
of the limited temporal receptive field.

• We further develop a residual temporal aggregation
block to relieve temporal visual jitters caused by the
discrete prediction across adjacent frames.

2. Related Work

2.1. Video Inpainting

Traditional approaches usually extend from patch-based
image inpainting methods [1] for video inpainting. For ex-
ample, Patwardhan et al. [22,23] sampled the nearest neigh-
bor patches to fill unknown regions with a greedy com-
pletion scheme under the assumption of the static camera
or constrained camera motion. To address the challenge
of dynamic camera motion, Wexler et al. [30] formulated
a global optimization framework where spatial-temporal
patches were alternating matched and reconstructed based
on local structures. [6, 27] further extend [1, 30] to en-
hance temporal consistency by introducing flow informa-
tion. Above traditional methods only local texture and
structure information is used which is infeasible to repre-
sent complex motion and dynamic content in real world.

Recently, deep learning-based works [9, 10, 35] propose
more efficient solutions and achieve great success for video
inpainting. These deep video inpainting methods usually
fall into three main streams: alignment-based, 3D con-
volution networks as well as attention-based approaches.
Alignment-based methods [4, 12, 32] first align reference
frames with either or both optical flow and affine transfor-
mation, then borrow information from known regions in the
aligned reference frames. However, the above alignment
methods are sensitive to motion prediction errors. 3D con-
volution networks [2, 29] employ 3D convolution to lever-
age temporal features from nearby frames. Inspired by [13],
Zou et al. [37] further developed a 3D gated convolution
with an embedded temporal shift module to save computa-
tion costs. 3D convolution networks are efficient to learn
temporal features, but still fail to capture long-range in-
formation from distant frames due to the limited recep-
tive field. To better model long-range correspondences,
attention-based methods [5, 19] investigate attention mech-
anism, where similarities between corrupted regions and
known regions are calculated as weights to fuse valid in-
formation. STTN [34] directly adopts the multi-head trans-
former architecture [28] and proposes a multi-scale gener-
ative model for video inpainting. Based on [34], [15] de-
couples the attention module along the spatial and tempo-
ral dimension to narrow the search space, and thus reduce
computational complexity. FuseFormer [16] further splits
features in a more fine-grained way compared with [15,34].
All above methods tend to suffer from blurry results, espe-
cially in high-frequency regions since they perform simi-
larity evaluation and content generation on appearance fea-
tures in a continuous space.

2.2. Discrete Representation Learning

The Vector Quantized Variational AutoEncoder (VQ-
VAE) [20, 26] are generative models that encode high-
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Figure 2. The overview of the proposed video inpainting network. It consists of two components: code learning and code inference. The
code learning module learns compact discrete latent codes based on a rich codebook for video representation. With the discrete codes
learned, the code inference module subsequently models the video inpainting with the transformer in the discrete latent space.

dimensional inputs into a lower-dimensional discrete latent
space, and decode the generated latent representation back
to inputs as closely as possible. With the discrete latent rep-
resentation, they have demonstrated satisfactory reconstruc-
tion and generation quality [33, 36]. For example, Kaiser et
al. [8] employed discrete variables to speed up the decod-
ing process for neural machine translation. Esser et al. [3]
adapted VQ-VAE by equipping the decoder with a discrim-
inator to enhance details for image generation. Rakhimov
et al. [25] proposed an autoregressive model to predict new
frames in the latent space for video generation. However, to
our best knowledge, the discrete representation has not yet
been explored for video inpainting.

3. Method

Video inpainting aims to fill in spatial-temporal holes
with visually contents of spatial-temporal consistency.
Given a corrupted video sequence X = {x1, x2, · · · , xT }
of height H , width W and T frames in RGB space R, with
corresponding annotated masks M = {m1,m2, · · · ,mT }
of the same resolution, we define a mapping F that encodes
frame x in a RGB space R to a discrete latent space z ∈ Z
with

F(x) = z, F−1(z) = x̂

s.t. x, x̂ ∈ R, z ∈ Z,
(1)

where F−1 maps z back to x̂ to reconstruct x. We use a
codebook E = {ek ∈ Rd|k ∈ {1, 2, · · · ,K}} containing
K prototype vectors of d-dimension to describe Z . z repre-
sents the index of the corresponding prototype vector in E
for each spatial-temporal location. To this end, our goal is
to learn G taking as input z and mask m, outputs index pre-
diction map ẑ such that F−1(ẑ) generates completed frame
y ∈ R that is spatial-temporally consistent as

y = F−1(G(z,m)). (2)

As illustrated in Figure 2, the pipeline of our method
consists of two components: code learning and code infer-
ence. In the code learning stage, we learn mapping F and its
inversion F−1 by learning a context-rich and video-specific
codebook E to construct a discrete latent space Z and rep-
resent frames as z in a latent discrete space as elaborated
in Section 3.1. Then in the code inference stage, we ob-
tain mapping G by formulating a transformer to propagate
code constitution from seen regions to unknown regions as
described in Section 3.2. Moreover, we further propose a
temporal aggregation block (TAB) to leverage temporal in-
formation and explicitly enhance short-term temporal con-
sistency as elaborated in Section 3.3.

3.1. Video-specific Discrete Code Learning

To leverage the highly effective transformer architecture
for code index prediction, we train a variational autoen-
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coder module to learn discrete codes for video representa-
tion, which can significantly compress the feature descrip-
tion length as well as relive the difficulty of content gen-
eration in unknown regions. Similar to VQ-VAE [20], the
variational autoencoder module consists of an encoder E,
which encodes the video frames into the continuous rep-
resentation fe, a codebook E that is used to quantize the
continuous representation into the discrete space, and a de-
coder decoding the resulting discrete representation back to
the RGB space. However, we can not directly utilize the
VQ-VAE since that there is no ground truth for missing re-
gions. Therefore, we extend the VQ-VAE to learn the dis-
crete latent representation for the corrupted video sequence.

Each corrupted RGB input frame xt ∈ R3×H×W is sent
to the encoder E to learn a more compact representation
E(xt) = f t

e ∈ Rd×h×w, where h and w denote the height
and width, respectively, t denotes the tth frame, and d de-
notes the dimension for each pixel in the feature maps. In-
stead of working in a continuous feature space, we quantize
feature on each spatial-temporal location into a discrete la-
tent space using the codebook E . Specifically, we transfer
f t
e into the discrete feature f t

q ∈ Rd×h×w by element-wise
mapping f t

e to its nearest prototype vector ek in the code-
book with

(fq)
t
i = argmin

ek∈E
∥(fe)ti − ek∥, (3)

where i ∈ {1, 2, · · · , (h × w)} indicates the spatial index.
We obtain discrete representation z defined in Equation (1)
by replacing the feature on each location with the corre-
sponding index number in E with

zti = k, s.t. (fq)
t
i = ek. (4)

Subsequently, a decoder D takes as input the quantized
feature f t

q produced by retrieving prototype vectors in E ac-
cording to zt, and decodes f t

q back to input RGB space
with x̂t = D(f t

q) as mapping F−1 does in Equation (1).
In this way, we can represent frames as discrete index map
zt where each element corresponds to a index of prototype
vectors in E .

The discrete latent codes of video frames can be trained
with the whole video sequence via the following loss func-
tion:

Lvq =
1

n

∑
∥(x− x̂)⊙ (1−m)∥2 + γ1∥ek − sg[E(x)]∥

+ γ2∥E(x)− sg[ek]∥,
(5)

where n denotes the pixel number in the valid region and sg
denotes the stop gradient operation. Here, the first term in
Lvq is the reconstruction loss in the valid region. The sec-
ond term enforce ek more representative for current video
frames, and the third term is a regularization term to pre-
vent f t

e from volatility, where γ1 and γ2 denotes the penalty

weights. Since quantization operation is non-differential,
the gradient of the decoder is straightly backward to the en-
coder as in [3].

Learning effective discrete codes for video frames re-
quires a rich codebook to represent the latent embedding
space. A heuristic method is to obtain a fixed codebook
via training on a large dataset offline. However, such a
codebook may not be representative for the coming videos
and thus result in reconstruction of poor perceptual qual-
ity. Therefore, we propose a dynamic codebook refining
scheme where for each video we maintain a codebook with
rich context and video-specific information. To speed up
and ease the learning of codebook, we employ a much more
general codebank with 8192 prototype vectors pretrained
from a large-scale dataset and customize it to a specific
video sequence via Equation (5). Specifically, we adopt the
model pre-trained on COCO dataset [14] and obtain a rich
codebank B, consisting of 8192 prototype vectors of 256-
dimension, which is sufficient to describe the latent space
for complex scenarios. We select those prototypes ever
occurred in fq to construct our video-specific codebook E
(about 1

16 of B) , and further refine our codebook E , encoder
and decoder. Compared with B, E pays much more atten-
tion on the fine-grained details within the video sequence
as well as essentially reduce the difficulty of the code index
prediction in the subsequent code inference stages.

3.2. Code Inference with Discrete Latent Trans-
former

With the code learning module, we are able to represent
video frames in terms of codebook index-map z. In this
way, video inpainting can be formulated as an indices pre-
diction task given code indices in seen region.

Index maps z ∈ Rτ×h×w across adjacent τ frames is
first flattened and each index is replaced with a specific
learnable index embedding to form embedded index fea-
ture. In order to distinguish between known regions from
unknown regions, we creatively fill unseen regions with a
learnable completion embedding indicating that the con-
tent is missing and the network need to generate content
here. Although transformer is powerful to leverage long
distance dependency information, important prior inferred
from spatial-temporal location is more or less ignored. To
tackle this issue, we encode position information by tag-
ging position embedding onto the index embedding. Since
there is usually no ground truth provided for training in real-
world scenarios, we therefore propose a self-supervised
transformer framework to learn code constituent distribu-
tion in valid regions. Specifically, we randomly generate
mask mr to corrupt the valid region and thus form a pseudo
unseen region. The corresponding indices in mr are also
replaced with completion flags before training and subse-
quently provide ground truth to guide transformer to learn
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code distribution among valid regions.
Let zemb denote the index embedding with completion

flag inserted into unseen region, p denotes the position em-
bedding, transformer takes emb = zemb + p as input and
learns the global correlation between code indices from the
pseudo unknown region and valid region. There are multi-
ple stack of self-attention layers of which the lth layer pro-
cess its input embl as:

emb
′

l = MSA(LN1(embl)) + embl,

embl+1 = MLP (LN2(emb
′

l)) + emb
′

l

(6)

where MSA represents multiple-head self-attention oper-
ation, LN1, LN2 denotes layer normalization and MLP
refers to multi-layer perceptron. Note that we employ
Fourier position embedding [7] to preserve the spatial-
temporal position structure. A prediction head P realized
by one linear layer is used to produce K-way classification
scores s for each spatial-temporal location followed by a
softmax function layer.

(cti)k = e(s
t
i)k/

K∑
j=1

e(s
t
i)j (7)

Finally we impose cross entropy loss between index classi-
fication score c and z on known region as,

Lce = − 1

n

hw∑
i

τ∑
t

Imt
i=0

K∑
k

Ik=zt
i
ln (cti)k (8)

where I(·) is indicator function, which outputs 1 when the
condition (·) is satisfied and 0 otherwise. The code structure
information is well captured by our latent transformer after
learning code distribution in valid region. Therefore, the
transformer can predict the indices in unseen regions under
the assumption that in a video sequence codes in unseen
regions follow a similar distribution as that in valid regions.
In the inference phrase, the transformer predicts the indices
ẑ in unseen region according to the following rule:

ẑti = argmax
k

(cti)k (9)

Now we have learned G in Equation 2, producing code in-
ference result ẑ. In this way, the hole in the video is filled
with discrete indices propagating from the valid region with
the transformer. Finally, the corresponding prototype vec-
tors in E queried by the predicted indices ẑt are sent to de-
coder D to reconstruct RGB frames. With the robust dis-
crete latent embedding, our method is able to produce fine-
grained details and realistic results. Note that it is much
easier to predict the indices among limited discrete codes
than continuous vectors for the transformer.

Figure 3. The schematic illustration of our Temporal Aggregation
Block (TAB). Temporal information of neighboring frames is ag-
gregated to learn residual for feature refinement.

3.3. Residual Temporal Aggregation

Our latent transformer is trained on a whole video
sequence to capture global code distribution in spatial-
temporal dimension. Therefore, long-range dependency is
implicitly encoded in the sparse codebook and network it-
self. However, the short-term temporal consistency still re-
mains untackled. Since the predicted discrete code indices
may jitter between adjacent frames, reconstructed results
could be lack of short-term temporal continuity. To address
this issue, we design a Temporal Aggregation Block (TAB)
architecture to make up for the discontinuity of discrete la-
tent space. As illustrated in Figure 2 and Figure 3, TAB
takes as input the quantized feature fq , which are queried
from codebook according to predicted code index as in
Equation (3) from transformer, and outputs residual refined
feature. Specifically, the quantized feature f t−1

q , f t
q , f

t+1
q

∈ Rd×h×w is first concatenated and sent into channel atten-
tion layer for temporal feature re-weighting, and produce
residual refinement to the quantized feature to produce re-
fined feature fc. The residual is to aggregate temporal infor-
mation across adjacent frames for feature refinement to bet-
ter enhance short-term temporal consistency. A total vari-
ation loss along temporal dimension setting τ as 3 is used
to train our TAB to enhance the visual effect and relieve
temporal color discrepancy as following,

Ltv =λ1(∥f t
c − f t−1

c ∥+ ∥f t+1
c − f t

c∥)
+ λ2∥fc − fq∥,

(10)

where the first term is to enhance short-term temporal
smoothness and the second term is introduced to avoid triv-
ial solution.
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(a) Input (b) CPNet (c) FGVC (d) STTN (e) FuseFormer (f) Ours

Figure 4. Qualitative comparison of different methods for video restoration. (a) Input masked frames; (b) CPNet [32]; (c) FGVC [4]; (d)
STTN [34]; (e) FuseFormer [16]. Please zoom in for better visualization.

4. Experiments
In this section, we first give a necessary description for

the implementation details in Section 4.1. Then we con-
duct comprehensive quantitative and qualitative evaluations
to demonstrate the validity and superiority than other state-
of-the-art approaches for video restoration and object re-
moval in Section 4.2. We further conduct an ablation study
in Section 4.3 to demonstrate the effectiveness of our de-
signed components in our framework.

4.1. Implementation Details

Training details We train the proposed DLFormer with a
two-stage learning strategy, namely, the code learning stage
and the code inference stage. In the code learning stage,
we fine-tune the pre-trained codebook and autoencoder us-
ing the valid regions in the target video with Equation (5)
to obtain a video-specific codebook and the corresponding
autoencoder. In order to limit the searching space of sub-
sequent transformer and reduce the redundant prior knowl-
edge, we further remove the unused prototype vectors in our
video-specific codebook. The dimension for each prototype
vector in the codebook is experimentally set as 256.

In the subsequent code inference stage, we fix the au-
toencoder and codebook obtained in the code learning stage,
and only train the discrete latent transformer for inferring
proper code indices in unknown regions. By randomly gen-
erating pseudo masks in seen regions and giving a comple-
tion signal, we train our transformer via Equation (8) with
a self-attention mechanism. Specifically, 12 self-attention
layers each with 16 heads are stacked. We use Adam [11]
optimizer for the first stage and AdamW [17] for the second
stage with a learning rate 1.8× 10−5.

Method Youtube-VOS DAVIS
PSNR ↑ SSIM ↑ VFID ↓ PSNR ↑ SSIM ↑ VFID ↓

VINet [9] 29.72 0.953 0.111 32.38 0.967 0.105
FFVI [2] 33.39 0.968 0.119 31.13 0.972 0.087

CPNet [12] 30.21 0.957 0.117 29.57 0.955 0.147
STTN [34] 33.67 0.965 0.087 33.07 0.976 0.071

FuseFormer [16] 33.26 0.968 0.089 33.45 0.979 0.074
DLFomer (ours) 33.95 0.970 0.082 34.22 0.977 0.062

Table 1. Quantitative comparison with state-of-the-art methods for
video restoration on Youtube-VOS and DAVIS datasets.

Datasets and evaluation metrics Following [16, 34], we
fairly evaluate our method on the two most popular datasets,
namely Youtube-VOS [31] and DAVIS [24]. Youtube-VOS
contains 541 video sequences for test with various dynamic
scenes. We perform the video restoration task on Youtube
VOS and DAVIS, and generate various types of unknown
masks, including moving masks, randomly corrupted masks
and object removal masks. We perform the object removal
task on DAVIS dataset, which consists of 150 high-quality
videos, and we select 90 videos for test following [16, 34].
For quantitative comparison, we not only employ the two
widely-used metrics, structure similarity measure (SSIM)
and peak signal-to-noise ratio (PSNR), to assess overall re-
construction, but also adopt the video-based Frechet incep-
tion distance (VFID) to measure the spatial-temporal con-
sistency and perceptual quality.

4.2. Comparison with Existing Methods

Comparisons in video restoration We quantitatively com-
pare our method in the video restoration task with exist-
ing competitive methods VINet [9], FFVI [2], CPNet [12],
STTN [34] and FuseFormer [16] on Youtube-VOS and
DAVIS dataset. As shown in Table 1, our method gener-
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(a) Input (b) VINet (c) STTN (d) Fuseformer (e) ILVI (f) Ours

Figure 5. Qualitative comparison of different methods for object removal. (a) Input object-masked frames; (b) VINet [9]; (c) STTN [34];
(d) FuseFormer [16]; (e) ILVL [21]. Please zoom in for better visualization.

(a) Input (b) Reconstruction (c) DLFormer w/o TAB (d) DLFormer

Figure 6. Visual comparison of completed results of our methods and basic networks (a) Input masked frames; (b) reconstruction results;
(c) completed results without temporal aggregation block; (d) results of our full pipeline. Please zoom in for better visualization.

ates results with almost the best performance in terms of
all the three indicators. Considering our improvement over
STTN [34] and FuseFormer [16], especially around the re-
gions with high-frequency textures, is difficult to measure
with these indicators, we further present more qualitative
results in Figure 4. The results in column (b) and (c) are
produced by alignment-based methods and result in mis-
placement and blurry artifacts. Transformer-based meth-

ods, STTN [34] and FuseFormer [16], in (d) and (e) give
better results but still fail to generate visually plausible con-
tent, especially for the sportsman in the first two cases.
As shown in (f), our method recovers fine-grained details
and consistent structure in the body of sportsman and the
feather of birds which convincingly demonstrates the dis-
crete code distribution is fully learned and properly propa-
gated through the proposed discrete latent transformer.
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PSNR ↑ SSIM ↑ VFID ↓
Reconstruction 33.07 0.959 0.124

DLFormer w/o TAB 33.82 0.968 0.086
DLFomer (ours) 33.95 0.970 0.082

Table 2. Ablation experimental results on Youtube-VOS dataset.

4.3. Ablation Analysis

Comparisons in object removal For object removal task,
we present qualitative results in Figure 5. The results from
column (b) to (d) give blurry texture and obvious spatial ar-
tifacts around high-frequency areas, such as the grass, sand
beach and leaves. Although ILVI [21] outputs sharper re-
sults, the spatial-temporal distortion still remains around the
railing and leaf regions. Comparatively, our method gener-
ates more consistent results both spatially and temporally,
thanks to our novel framework as well as the specially de-
signed residual temporal aggregation block for relieving vi-
sual jitters.
User study We perform a user study to compare our re-
sults on both video restoration and object removal tasks
with state-of-the-art methods FuseFormer [16], STTN [34]
and VINet [9]. 32 volunteers are invited to rate the visual
quality (from 1 to 10, the higher the better) for both image
frames and videos randomly sampled from Youtube-VOS
and DAVIS for evaluating the inpainted details and spatial-
temporal consistency, respectively. The results of the user
study are presented in Figure 6. Our method achieves the
highest scores on both frame and video quality, indicating
our method generates more temporal-spatial consistent con-
tents in unknown regions.
Effectiveness of discrete video representation The foun-
dation of our work is the obtained discrete codebook and the
corresponding autoencoder can represent the target video
sufficiently. To measure the effectiveness of this represen-
tation, we directly deliver the quantized feature from en-
coder to decoder, without the code inference stage, to recon-
struct the target video. As shown in Figure 6 (b), the known
regions are vividly reconstructed, indicating our codebook
captures the discriminative part of the target video and the
discrete latent space is sufficient to represent it. In unknown
regions, not surprisingly, the results are filled with visible
artifacts due to the lacking of critical code inference.
Effectiveness of discrete latent transformer DLFormer
w/o TAB refers to the results generated with a completed
code map after code inference stage but without the tem-
poral aggregation block. As shown in Figure 6 (c), the un-
known region is properly recovered with overall reasonable
content, such as the plank behind the masked camel and the
part of the giant panda, indicating that discrete latent trans-
former effectively learned code distribution from the known
region and properly predicts reasonable discrete code. Al-

Figure 7. User study results. 32 volunteers are invited to rate
the completed video frames in terms of inpainted details and en-
tire video sequence in terms of spatial-temporal consistency. Our
method produces results of high image quality as well as pleasing
spatial-temporal consistency compared with existing methods.

though the quantitative results in Table 2 show that DL-
Former w/o TAB achieves much better performance com-
pared with the aforementioned reconstruction results, there
is still flicking artifacts across neighboring frames in terms
of short-term temporal consistency.
Effectiveness of TAB After the code inference stage, the
resulting index map can be mapped back to discrete codes
with the codebook. Such discrete codes are further sent to
the subsequent TAB block to refine the short-term temporal
information. In addition, a total variation loss is imposed
on the refined feature. As presented in Figure 6 (d), re-
sults with TAB block are more visually pleasing and con-
sistent across neighboring frames and quantitative results in
Table 2 demonstrate the same consequence.

5. Conclusion

We novelly formulate the video inpainting task as a dis-
crete code inference problem in the latent discrete space
which is spanned by a context-rich and efficient codebook.
We learn a compact video-specific codebook and infer
the missing code indices via a discrete latent transformer.
While training this transformer in a self-supervision man-
ner, code distribution in known regions can be propagated
to unknown regions. A temporal aggregation block across
adjacent frames is further proposed to relieve temporal vi-
sual jitters caused by the discrete prediction. Our method
generates visually-plausible and spatial-temporal coherent
content with fine-grained details in unknown regions and
outperforms the state-of-the-art methods significantly.
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