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Abstract

In this work, we study the cross-view information fusion
problem in the task of self-supervised 3D hand pose estima-
tion from the depth image. Previous methods usually adopt
a hand-crafted rule to generate pseudo labels from multi-
view estimations in order to supervise the network training
in each view. However, these methods ignore the rich se-
mantic information in each view and ignore the complex de-
pendencies between different regions of different views. To
solve these problems, we propose a cross-view fusion net-
work to fully exploit and adaptively aggregate multi-view
information. We encode diverse semantic information in
each view into multiple compact nodes. Then, we introduce
the graph convolution to model the complex dependencies
between nodes and perform cross-view information inter-
action. Based on the cross-view fusion network, we propose
a strong self-supervised framework for 3D hand pose and
hand mesh estimation. Furthermore, we propose a pseudo
multi-view training strategy to extend our framework to a
more general scenario in which only single-view training
data is used. Results on NYU dataset demonstrate that our
method outperforms the previous self-supervised methods
by 17.5% and 30.3% in multi-view and single-view scenar-
ios. Meanwhile, our framework achieves comparable re-
sults to several strongly supervised methods.

1. Introduction
3D hand pose estimation plays an essential role in

human-computer interaction, virtual reality, and augmented
reality. With the development of deep learning and the in-
crease of the amount of labeled data, depth-based 3D hand
pose estimation has made significant progress [3, 12, 13,
20, 31, 32, 49, 54, 59]. However, acquiring large-scale hand
datasets with 3D hand pose and mesh annotations is time-
consuming and labor-consuming. Meanwhile, even after
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careful design and manual correction, the annotation qual-
ity of the existing automatic or semi-automatic annotation
algorithms is difficult to guarantee [33, 57, 64].

Recently, some methods [8, 53, 55] achieve accurate
3D hand pose estimation through self-supervised learning.
These methods introduce a 3D hand model into the neural
network and optimize the network by penalizing the dif-
ferences between the hand model and the input depth im-
age. As mentioned in [53, 55], adopting multi-view in-
formation during training is the key to the success of the
self-supervised methods. Complementary multi-view infor-
mation can alleviate the uncertainty of estimation caused
by self-occlusion or holes. The previous methods adopt a
hand-crafted rule, e.g., taking median value, to aggregate
the estimated poses from multiple views as pseudo labels in
order to supervise the network training in each view.

However, the hand-crafted rule only considers the co-
ordinate information of the joint itself in multiple views.
This method ignores the rich semantic information in vi-
sual features in each view and ignores the complex depen-
dencies between different hand regions in different views.
Thus, this method is susceptible to interference from the
low-quality estimations that frequently occurs in a self-
supervised framework. To better exploit multi-view in-
formation, some multi-view human pose estimation meth-
ods propose to perform pixel-wise cross-view interaction in
2D feature space by establishing point-to-point correspon-
dence [19, 29, 38, 58, 67]. However, performing pixel-by-
pixel matching based on feature similarity is computation-
ally expensive and redundant. Meanwhile, these methods
are sensitive to self-occlusion and holes [19]. For exam-
ple, when some hand regions in one view are occluded or
missing, the local features of these regions are difficult to
be detected and matched robustly in other views.

To solve these problems, we propose a cross-view fusion
network to fully exploit multi-view information to generate
more accurate and robust pseudo labels. Specifically, we
first encode high-dimensional visual features and the esti-
mated hand pose in each view into multiple semantic nodes.
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Then, we adopt a hierarchical graph convolutional network
to perform intra-view and cross-view information interac-
tion according to the hand bone structure and the cross-
view joint correspondence. Furthermore, when construct-
ing the graph nodes, we adopt a group-wise confidence en-
coding strategy to prevent high-quality features from being
corrupted by low-quality features in information passing.
Our method can fully mine the rich semantic information in
each view and efficiently model the dependencies between
different views. Meanwhile, performing cross-view infor-
mation interaction according to the intrinsic hand structure
avoids complex pixel-by-pixel matching and reduces the in-
terference of self-occlusion and depth holes.

Based on the cross-view fusion network, we propose
a strong self-supervised framework for 3D hand pose and
mesh estimation. Considering that the multi-view setup
may increase the difficulty of data collection and limits the
application scenarios of our method, we further extend our
framework to a more general scenario in which only single-
view training data is used. By treating different augmented
samples of the same input data as different view images,
we propose a pseudo multi-view training strategy for the
single-view scenario. Unlike previous methods [62,66] that
perform self-supervised learning by maintaining the predic-
tive consistency between different augmented samples, our
method aggregates the multiple pseudo views information
to generate more accurate estimations, which can more ef-
fectively guide network training in each view.

We conduct experiments on three 3D hand pose esti-
mation datasets (NYU [52], ICVL [49], and MSRA [47]).
On NYU dataset, our method improves the state-of-the-art
(SOTA) self-supervised methods by 17.5% in the multi-
view scenario and by 30.3% in the single-view scenario.
Meanwhile, our method achieves comparable results to
strongly supervised methods. Qualitative experiments on
ICVL and MSRA datasets show that our method generates
more accurate hand poses than the annotations. We evalu-
ate our method in real-world scenarios and the results also
verify the effectiveness of our model. Code is available at
https://github.com/RenFeiTemp/MMI.

Our contributions can be summarized as follows:
• We propose a cross-view fusion network to fully mine

the rich semantic information in each view and efficiently
model the dependencies between different views.

• We propose a strong self-supervised framework for
depth-based 3D hand pose and mesh estimation. Further-
more, we extend our framework to a more general scenario
in which only single-view training data is used.

• Our method outperforms existing self-supervised
methods by a large margin and achieves comparable results
to several strongly supervised approaches. In addition, our
method can yield more accurate hand poses than the anno-
tations of some existing datasets.

2. Related Work
2.1. Depth-based 3D Hand Pose Estimation

Depth-based 3D hand pose estimation can be catego-
rized into three classes: model-based methods, learning-
based methods, and hybrid methods. Model-based meth-
ods [23,45,48,50,51,63] adopt a pre-defined 3D hand model
to fit the depth input by minimizing a set of model-fitting
terms. This kind of method requires no labeled data, but
it is sensitive to the parameters of model initialization and
the design of the energy function. In addition, it is eas-
ily trapped in error accumulation. Learning-based methods
[3,4,11–13,15,17,20,30,31,34,35,41,54,59,69] use labeled
data to learn a hand pose estimator. With the development
of deep learning, learning-based methods achieve more ac-
curate and robust estimates compared with the model-based
method. However, these methods may overfit the annota-
tion errors of the dataset [33]. Hybrid methods [37, 45, 52]
use a learning-based method to initialize the hand model
or re-initializing when tracking fails and perform temporal
hand tracking using model-based methods.

2.2. Self-supervised 3D Hand Pose Estimation

Recently, given that obtaining accurate 3D pose and
mesh annotations is time-consuming and labor-intensive,
some depth-based methods [8,53,55] and RGB-based meth-
ods [5, 6] propose to perform self-supervised training on
unlabeled real data. RGB-based self-supervised methods
require additional annotations such as 2D poses [6] or 3D
poses [5] to assist the self-supervised training. Benefiting
from the rich geometric structure information of depth data,
with the help of some prior loss items, depth-based methods
only require synthetic data to pre-train the network. Depth-
based methods [53, 55] usually adopt multi-view informa-
tion to alleviate the estimation ambiguity caused by self-
occlusion and image missing. On the one hand, they mini-
mize the difference between the estimated hand model from
one view and the depth data under other views. On the other
hand, they take the median value of the multi-view estima-
tions as pseudo labels to supervise the network’s training in
each view. However, their method discards the visual fea-
tures of each view while ignoring the dependencies between
cross-view hand regions.

2.3. Multi-view 3D Human Pose Estimation

Multi-view information has been widely explored in 3D
human pose estimation. Some methods [21, 24, 27, 43, 56]
train the network in a weakly-/self-supervised manner by
constraining the consistency of the estimated poses in mul-
tiple views. However, these methods do not really aggre-
gate multi-view information to obtain more accurate results.
Some methods [22, 36, 38] project estimated 2D heatmaps
in each view to a 3D volume and estimate the 3D pose from
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Figure 1. Overview of the framework. The single-view estimation network predicts 3D hand pose and 3D hand model in parallel. The
cross-view fusion network utilizes visual features and estimated hand poses from multiple views to generate more accurate results in the
candidate view. Here, we choose view 1 as the candidate view. First, we use synthetic data for pre-training. Then, the two networks adopt
a single-view model-fitting loss Lsm and a cross-view model-fitting loss Lcm to perform self-supervised learning on unlabeled real data.
Meanwhile, the single-view estimation network is trained to produce results consistent with the cross-view fusion network, which is called
multi-view self-distillation loss Lms. During the inference, only the single-view estimation network is utilized.

the 3D volumes with volumetric convolutional networks or
pictorial structures model, which is computationally com-
plex. Some methods [38, 58, 67] use the epipolar geometry
to aggregate estimated 2D heatmaps from different views.
However, these methods ignore the semantic information
contained in image features. Some methods [19, 29] per-
form cross-view fusion on image features, enabling the 2D
image feature to perceive 3D geometric information. How-
ever, pixel-wise interaction is computationally demanding,
and the feature matching process based on feature similar-
ity is sensitive to occlusion and image missing. Our method
encodes visual features into compact nodes and performs
information interaction according to the semantic relation-
ship between different hand parts, which is robust to occlu-
sion and can aggregate multi-view information efficiently.

2.4. Graph Convolutional Network

Graph Convolutional Network (GCN) shows a strong
ability to perform message passing on structured data. It
is widely used in many visual tasks, e.g., action recogni-
tion [7,46,61], human pose estimation [6,28,65,68,71] and
hand pose estimation [2, 9, 11, 14, 25]. Kulon et al. [25]
and Ge et al. [14] adopt GCN for 3D hand mesh genera-
tion. Doosti et al. [9] propose an adaptive GCN to con-
vert 2D hand pose to 3D. They construct the graph node
by concatenating the global features extracted by CNN and
the 2D coordinates of each joint, which may introduce the
features of irrelevant regions. Fang et al. [11] adopt an at-
tention mechanism to construct graph node features from
the visual feature and perform graph reasoning to capture
the relationship between nodes in order to enhance the orig-

inal visual feature maps. Cai et al. [2] propose a hierarchical
GCN to estimate the 3D hand pose from a short sequence of
2D poses. Different from these methods, we adopt GCN to
perform cross-view information interaction and our method
fully exploits the multi-view information, including the vi-
sual features, joint coordinates, and estimation confidence.

3. Method
As shown in Fig. 1, our framework consists of two net-

works, one is a single-view estimation network that predicts
3D hand pose and 3D hand model from a single-view im-
age, and the other is a cross-view fusion network that fuses
multi-view information to generate more accurate results.

3.1. Single-view Estimation Network

Self-supervised 3D hand pose estimation methods [8,53,
55] introduce a hand model into the neural network and
adopt a set of carefully designed model-fitting terms to train
the network. However, directly regressing model parame-
ters is a highly non-linear process and is difficult to perceive
fine-grained image features, resulting in image-model mis-
alignment. Thus, we adopt an encoder-decoder structure,
using the global features from the encoder to regress the
hand model parameters, and using 2D feature maps from
the decoder to perform pixel-wise pose estimation.

For 3D hand model estimator (HME), we adopt a para-
metric hand model, MANO [44] and use a fully connected
(FC) layer to regress MANO parameters. We can obtain a
3D hand mesh M ∈ R778×3 and 3D hand joints JHME ∈
R21×3 from the estimated hand model. For hand pose esti-
mator (HPE), we adopt a 3D heat map H ∈ R21×h×w and
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Figure 2. Hierarchical graph structure in the encoding process
of UGCN. The spatial edges represent the physical connection of
joints. The cross-view edges connect the same joints between any
two different views. For easy illustration, we only plot a part of
the cross-view edges.

a directional unit vector D ∈ R(21×3)×h×w as intermedi-
ate representations [20, 54], which represent 3D Euclidean
distance and 3D unit direction from each pixel to the tar-
get joint, respectively. Specifically, for a pixel i in the input
depth image I, the corresponding ground-truth value Ĥj(i)

and D̂j(i) about the target joint j can be formulated as:

Ĥj(i) =

{
λ

d−∥Ii−Jj∥2

d ∥Ii − Jj∥2 ≤ d,

0 otherwise.
(1)

D̂j(i) =

{
λ

Ii−Jj

∥Ii−Jj∥2
∥Ii − Jj∥2 ≤ d,

0 otherwise.
(2)

where Ii ∈ R3 and Jj ∈ R3 are the image plane coordinate
of the pixel i and of the joint j respectively; λ is equal to
zero if i belongs to the background, otherwise equal to one;
d denotes the maximum distance from the pixel in the depth
image to the target hand joint. Furthermore, we estimate a
weight map W ∈ R21×h×w to indicate the reliability of the
estimation result for each pixel to the target joint. The 3D
coordinate JHPE

j of the joint j can be obtained as follow:

JHPE
j =

∑
i∈I

Wj (i) (Ii − (d− dHj(i))Dj(i)) , (3)

3.2. Cross-view Fusion Network

We consider a setting in which N spatially calibrated and
temporally synchronized cameras capture the depth image
of a single hand. Given the 2D image features Fc and the
estimated hand pose Jc in each camera view c, we aim to
fully mine the information in each view to predict more ac-
curate results. However, performing pixel-by-pixel cross-
view interaction requires a huge computation and is sus-
ceptible to interference from the self-occlusion and depth
holes. Thus, we encode visual features and the estimated
hand pose into multiple compact nodes and then adopt a
U-shaped graph convolutional network (UGCN) to perform
hierarchical cross-view information interaction and fusion.

Graph Construction. The cross-view graph is orga-
nized as an undirected graph as G = (V, E). Each graph
node V refers to a hand joint in a camera view. As shown
in Fig. 2, the edges of the graph E are composed of spatial
edges that represent physical skeleton connections among

different joints and cross-view edges that connect the same
joint across views. Let Xcj ∈ RZ denote a feature vec-
tor associated with each node j in a camera view c. Xcj

consists of two parts: position features Xp
cj ∈ RZ

2 and vi-
sual features Xs

cj ∈ RZ
2 . For position features, we project

the hand pose Jc in view c to the candidate camera space
as Ĵc and encode the 3D coordinate of a joint j to Xp

cj

through a FC layer. For visual features, we adopt an at-
tention mechanism to reduce the influence of the features of
irrelevant regions. Specifically, we obtain the node visual
features Xs

cj by multiplying the normalized weight map
Softmax (Wcj) with each channel of the embedded fea-
ture maps φ (Fc) and performing a spatial global average
pooling. Here, φ is an 1×1 convolutional layer used to em-
bed the visual features into the node feature space.

U-shaped Graph Convolutional Network. We adopt
an encoder-decoder structure to capture multi-scale depen-
dencies between multi-view nodes. As shown in Fig. 2,
for the encoding process, we gradually cluster the whole
nodes based on the skeletal structure of the hand. For the
decoding process, similar to [2,60], we duplicate the coarse
nodes to generate fine-grained nodes according to the in-
verse clustering process. We adopt the graph convolution
to perform information interaction between nodes in the en-
coder. In the decoder, we adopt a per-node FC layer to fuse
the same-scale nodes from the encoding and decoding pro-
cesses. The global features from the encoder are used to
regress MANO parameters, from which we can obtain the
refined hand mesh MF and refined hand pose JFHME . The
enhanced node features from the decoder are used to esti-
mate relative offsets Oc ∈ R21×3 of the initial poses Ĵc,
from which we can obtain the refined pose JFHPE by av-
eraging the results of all views.

Quality-aware Fusion. The fusion strategy introduced
in the previous section treats all nodes equally, which does
not consider the feature quality of each node. However, if a
joint in one view cannot be observed due to self-occlusion
or image hole, its initial estimated location is often inaccu-
rate, and its visual features are likely corrupted. The weight
map W represents the reliability of the estimation results
of each pixel. Generally, the larger the maximum response
value of the weight map, the higher the confidence of the
estimated joints. Thus, we regard the maximum response
of the normalized weight map as the quality of the node
and encode it as part of the node features. In particular,
since we do not supervise the weight map during training,
the weight map tends to be adaptively distributed to joint-
related regions. Therefore, the weight map of different joint
has different shapes, resulting in significant differences in
the interval of the maximum value of each joint. In or-
der to solve this problem, we classify joints into multiple
groups and then use different FC layers for different groups
for quality embedding. In addition, the cross-view fusion
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network will re-estimate the quality of each node. Then, we
perform a weighted average to obtain the refined pose from
all views, which hardly improves the network performance
but makes the self-supervised training process more stable.

3.3. Self-supervision Loss

The self-supervised loss L consists of four parts in-
cluding a single-view model-fitting loss Lsm, a cross-view
model-fitting loss Lcm, a multi-view self-distillation loss
Lms and a prior loss Lprior.

L = wsmLsm+wcmLcm+wmsLms+wpriorLprior, (4)

where wsm, wcm, wms and wprior are constant weights.
Single-view Model-fitting Loss. The single-view loss

Lsm updates the network by penalizing the difference be-
tween the estimated 3D hand model and the input depth
data. Similar to [53, 55], Lsm consists of a model-to-data
term Lm2d and a data-to-model term Ld2m. Lm2d aligns
the hand model as close as possible to the input depth im-
age. We adopt a differentiable renderer [40] to render the
estimated 3D hand mesh to a depth image Ir.

Lm2d =
∑
i∈I

|Iri − Ii| . (5)

Ld2m minimizes the distance between each point on the in-
put depth image and its projection on to the estimated hand
mesh M.

Ld2m =
∑
i∈I

D (Ixyzi ,M) , (6)

where Ixyzi ∈ R3 are the world coordinates of the pixel i; D
represents the 3D Euclidean distance of Ixyzi to the closest
triangular face in hand mesh M.

Cross-view Model-fitting Loss. The cross-view model-
fitting loss Lcm trains the network by maintaining multi-
view consistency. Specifically, we project the estimated
hand model from a source view to other view and evaluate
the difference between the hand model and the depth image
captured from other views according to Lm2d and Ld2m.

Multi-view Self-distillation loss. For multi-view self-
distillation loss Lms, the fusion results JFHPE and MF are
projected back to the target camera view c as pseudo labels
J̃c and M̃c to guide the training of the single-view estima-
tion network. For the HPE, we adopt Lms,p and Lms,i to
supervise estimated pose and intermediate representations.

Lms,p =
∑
c

∑
j

L1
(
JHPE
cj , J̃cj

)
, (7)

Lms,i =
∑
c

∑
j

L1
(
Hcj , H̃cj

)
+
∑
c

∑
j

L1
(
Dcj , D̃cj

)
.

(8)

Here, H̃cj and D̃cj are the pseudo labels of the 3D heatmap
and unit 3D directional vector fields, which are generated
from J̃cj . L1 represents Smooth L1 loss in [3, 17, 42] to
make the loss less sensitive to the outliers.

For the HME, we adopt Lms,m to supervise the hand
joint and the hand mesh of the estimated hand model.

Lms,m =
∑
c

∑
j

L1
(
JHME
cj , J̃cj

)
+
∑
c

∑
m

L1
(
Mcm, M̃cm

)
.

(9)
Prior Loss. To make the estimated hand model plausi-

ble, we introduce the prior loss Lprior, including a shape
term [18] and a collision term [53]. To avoid extreme mesh
deformations, the shape term constrains the predicted mesh
shape as close as possible to the average shape. The col-
lision term is adopted to avoid self-intersection, which is
achieved by placing multiple spheres in the hand model and
then penalizing overlaps between these spheres.

3.4. Training

The training of our framework includes three stages. The
first stage is pre-training the single-view estimation network
using synthetic data. The second stage is pre-training the
cross-view fusion network using multi-view synthetic data.
The last stage is fine-tuning the whole network on multi-
view real data. In particular, we use both labeled synthetic
data and unlabeled real data in the last stage to stabilize
self-supervised training. To reduce the domain gap between
the synthetic and the real data, we adopt CycleGAN [70] to
translate synthetic data into more realistic data. Meanwhile,
we randomly erase some depth regions to simulate the depth
holes in the real depth image.

Requiring multi-view data limits the application scenar-
ios of the self-supervised method. Thus, we extend our
framework to a more general single-view scenario. Specif-
ically, in the third stage, we treat different augmented sam-
ples of the same depth image as pseudo multi-view im-
ages. Compared with the multi-view scenario, we adopt
a stronger data augmentation for the unlabeled real data to
increase the diversity of generated images. By default, we
generate three augmented samples for a single depth image.

4. Experiment
4.1. Dataset and Evaluation Metrics

NYU dataset [52] is a publicly available multi-view
depth dataset, including a frontal view and two side views.
For each view, it contains 72K training images and 8.2K
testing images. It is a challenging dataset with a wide cover-
age of hand poses and image noise. Similar to the previous
methods [53,55], we only adopt the ground-truth annotation
to calculate camera extrinsics. ICVL dataset [49] consists
of 22K training and 1.6K testing depth images captured by
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Fusion Method J F C GC HME HPE
No-Fusion 23.71 14.14
Average ! 23.03 13.34
Weight ! 22.76 12.13
Median ! 22.15 11.68
UGCN ! 13.05 11.16
UGCN ! ! 12.62 10.46
UGCN ! ! ! 11.83 10.32
UGCN ! ! ! 11.64 10.29

Table 1. Effect of the cross-view fusion. We report the mean joint
error (mm) of the fusion results for HME and HPE. J, F, C, and GC
indicate the use of joint coordinates, visual features, confidence,
and group-wise confidence encoding strategy, respectively.

an Intel Real-sense camera. The training images are col-
lected from 10 subjects and the testing images are collected
from 2 subjects. The annotation of the hand pose contains
16 joints. MSRA dataset [47] contains 76.5K images cap-
tured by an Intel Real-sense camera from 9 subjects. Each
subject contains 17 hand gestures with 21 annotated joints.

We evaluate our method using two widely used met-
rics: the mean joint error and the percentage of success-
ful frames. The mean joint error is the mean 3D Euclidean
distance between the predicted coordinates and the ground-
truth coordinates for each joint over the whole test set. The
percentage of successful frames is defined as the proportion
of good frames in all testing frames. If the maximum value
of the joint error in a frame is less than a certain threshold,
it will be judged as a good frame. Considering the differ-
ent joint settings between the MANO and the annotation in
these datasets, we ignore three joints (two wrist joints and
one palm joint) of the NYU and ignore the palm joint of
the ICVL and MSRA during evaluation. Meanwhile, we
slightly adjust MANO’s default joint settings to match the
joint settings in these datasets better.

4.2. Implementation Details

We train and evaluate our method on a single server with
an NVIDIA RTX 3090 GPU. The network is implemented
within PyTorch and trained using AdamW [26] with a batch
size of 32. We adopt the hand center provided by [31] to
crop the hand from the original depth image. We resize the
cropped image to a fixed size of 128×128. The depth values
are normalized to [-1, 1] for the cropped image. To gener-
ate synthetic data, we randomly sample 200K hand pose
data from the BigHand2.2M dataset [64]. Then, we use an
iterative optimization method [1] to obtain the MANO pa-
rameters and render the 3D hand mesh obtained from the
MANO as the synthetic depth image. More details are pro-
vided in the supplementary material.

4.3. Ablation Study

Study of the Cross-view Fusion. First, we compare
the performance of the hand-crafted fusion method and our
UGCN-based fusion method. Inspired by previous work
[53], we adopt three hand-crafted fusion methods to di-
rectly aggregate the estimated results from multiple views,
including taking average value (Average), taking median
value (Median), and weighted average according to the con-
fidence (Weight). As shown in Table 1, the hand-crafted
methods significantly reduce the error of the estimated hand
pose, but have a relatively small improvement on the esti-
mated hand model, which is due to the low quality of the
initial hand model. When only joint coordinates (J) are
used, the UGCN-based fusion method further improves the
accuracy of pose estimation and dramatically improves the
accuracy of the estimated 3D hand model, which is impor-
tant for subsequent self-supervised learning. It shows that
it is meaningful to model the dependencies between multi-
view joints and perform information interaction. Then, we
show the effect of adopting different node features. Adopt-
ing visual features (F) brings notable improvement for the
hand pose and hand model. Adopting the joint confidence
(C) helps the mean joint error of the estimated hand model
decrease by 6.3%. Group-wise confidence encoding strat-
egy (GC) further improves the performance of cross-view
fusion. The above results show that it is necessary to fully
exploit the semantic information of each view.

Lsm Lcm Lms Lprior HME HPE
! ! 17.49 12.47
! ! ! 13.49 12.32
! ! ! 12.52 10.71
! ! ! ! 12.43 10.50
! ! ! 12.39 10.66

Table 2. Effect of the self-supervised loss during fine-tuning. We
report the mean joint error (mm) of HME and HPE.

Effect of the Self-supervised Loss. We study the con-
tributions of four self-supervised loss terms during fine-
tuning. As shown in Table 2 and Fig. 3 (a), when adopting
the single-view model-fitting loss Lsm, the performances
of HME and HPE are significantly improved. However,
the accuracy of the estimated hand model is still unsatis-
factory. Adopting multi-view information significantly im-
proves the performance of the network. By fully mining
semantic information from multiple views, the multi-view
self-distillation loss Lms brings more improvement than the
cross-view model-fitting loss Lcm. Lms greatly decreases
the error of HME from 17.49 mm to 12.52 mm (28.4%) and
the HPE from 12.47 mm to 10.71 mm (14.1%). Besides,
although the prior loss Lprior has little effect on accuracy,
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Figure 3. The proportions of successful frames over different thresholds. (a) The impact of different self-supervised losses on HME. (b)
The impact of different training data on HME. (c) The impact of different training data on HPE.

Transfer Train Data Test Data HME HPE

Pretrain 24.32 16.21
! 23.71 14.14

Multi-view
Finetune

! ! 12.43 10.50
! ! 10.81 10.43
! ! ! 10.49 10.23

Single-view
Finetune

! ! 15.05 12.04
! ! 14.90 11.93
! ! ! 13.49 11.95

Table 3. Effect of the training data during pre-training and fine-
tuning. We report the mean joint error (mm) of HME and HPE.

it prevents unreasonable self-intersections and extreme de-
formations of the hand mesh.

Effect of the Training Data. We investigate how differ-
ent training data, including synthetic data for pre-training
and real data for fine-tuning, influences the resulting net-
work. As shown in Table 3, adopting style transfer improves
the performance of pre-training, especially for HPE. When
investigating the impact of real data on fine-tuning, we first
train only with the testing samples to check how well our
self-supervised method can fit the training data. Then, we
show the results of training the network using both testing
and training data. As shown in Table 3 and Fig. 3, contrary
to previous works [53, 55], training with only testing sam-
ples outperforms training with only training samples in our
method. This indicates that our method can effectively ex-
ploit the 3D geometric information in the depth data and has
a stronger fitting ability. Meanwhile, the performance of our
method is further improved when training with both train-
ing and testing data. In supplementary material, we show
that our method has good semi-supervised learning ability
and robustness to the sampling strategy of synthetic data.

4.4. Comparisons with State-of-the-arts

Similar to previous methods [53], we adopt a two-
stacked single-view estimation network, which further im-

Method NYU ICVL MSRA
Strongly Supervised Method

DeepModel [69] 19.02 11.73 -
Pose-REN [3] 12.05 6.90 8.64
DenseReg [54] 9.60 7.30 7.15
CrossInfoNet [10] 10.43 6.82 7.89
Point-to-Point [16] 9.30 6.35 7.65
V2V-PoseNet [31] 8.43 6.34 -
A2J [59] 8.61 6.52 -
SRN [42] 7.95 6.34 7.13
FeatureMapping [39] 7.81 - -
AWR [20] 7.53 6.06 7.17

Sinlge-View Self-supervised Method
SM [53] 17.79 - -
MM [55] 16.96 - -
Ours-HME 12.91 (12.40) 14.44 12.97
Ours-HPE 11.82 (11.07) 15.57 12.56

Multi-View Self-supervised Method
SM [53] 12.26 - -
MM [55] 13.09 - -
Ours-HME 11.78 (11.28) - -
Ours-HPE 10.11 (10.33) - -

Table 4. Comparison with SOTA methods on NYU, ICVL, and
MSRA datasets. The parenthesis indicates the performance of the
method crops the hand using annotations.

proves the performance of our method. We compare
our method with SOTA self-supervised methods, including
parametric model-based method (PM) [8], sphere-model
based method (SM) [53], and mesh-model based method
(MM) [55]. These methods do not describe which type of
hand center they used to crop the hand image. Thus, we
also report the results of cropping the hand image using the
hand center obtained from joint annotations [32]. As shown
in Table 4, on NYU dataset, our method reduces the mean
joint error by 17.5% (10.11 mm vs 12.26 mm) and 30.3%
(16.96 mm vs 11.82 mm) in multi-view and single-view
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Figure 4. Comparison with SOTA self-supervised methods on
NYU dataset in single-view scenario (top) and multi-view scenario
(bottom). Methods with ∗ crop the hand image using the annota-
tion of the joints.

scenarios compared with SOTA self-supervised methods.
As shown in Fig. 4, on the error threshold of 20 mm, our
method significantly increases the percentage of success-
fully frames from 48% to 67% in the multi-view scenario
and from 36% to 60% in the single-view scenario. Mean-
while, when comparing with strongly supervised methods
[3,10,16,20,31,39,54,59,69], our model can get compara-
ble performance. However, on ICVL and MSRA datasets,
the mean joint error of our method is much higher than the
strongly supervised methods. We attribute this to the fact
that the two datasets have significant annotation errors and
bias. As mentioned in previous works [33], the strongly
supervised method tends to over-fit the incorrect annota-
tions. We show some examples with large estimation er-
rors. As shown in Fig. 5, our method predicts more accu-
rate 3D hand pose than ground-truth (GT). Furthermore, we
provide supplementary videos to show the performance of
our method on the whole test set of the ICVL and MSRA
datasets, which shows that our method appears systemati-
cally better. We also show the performance of our method
on real-world data. During testing, our two-stacked network
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Figure 5. Qualitative results for ICVL, MSRA and real-world. The
numbers represent the frame ID in the test set.

has an average run time of 9.4 ms per image (106 FPS) on
a single NVIDIA RTX 3090 GPU

5. Conclusion and Limitations
In this paper, we propose a strong self-supervised frame-

work for depth-based 3D hand pose and mesh estimation.
First, we propose a cross-view fusion network to fully mine
multi-view information, which provides accurate and ro-
bust guiding information for the single-view estimation net-
work during self-supervised training. Then, by adopting a
pseudo multi-view training strategy, we extend our frame-
work to the single-view scenario. On the NYU dataset, our
method outperforms the previous self-supervised methods
by a large margin in both single-view and multi-view sce-
narios. On the ICVL and MSRA datasets, our method gen-
erates more accurate poses than annotations. However, in
the multi-view scenario, our method must use the camera
extrinsic parameters, which is unfriendly to the scene where
the camera position is constantly changing. Besides, we
find that although we adopt the collision loss, the estimated
hand model still can not completely avoid self-intersection,
especially for fingertips.
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