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Abstract

We deal with the controllable person image synthesis
task which aims to re-render a human from a reference im-
age with explicit control over body pose and appearance.
Observing that person images are highly structured, we
propose to generate desired images by extracting and dis-
tributing semantic entities of reference images. To achieve
this goal, a neural texture extraction and distribution opera-
tion based on double attention is described. This operation
first extracts semantic neural textures from reference fea-
ture maps. Then, it distributes the extracted neural textures
according to the spatial distributions learned from target
poses. Our model is trained to predict human images in ar-
bitrary poses, which encourages it to extract disentangled
and expressive neural textures representing the appearance
of different semantic entities. The disentangled represen-
tation further enables explicit appearance control. Neural
textures of different reference images can be fused to control
the appearance of the interested areas. Experimental com-
parisons show the superiority of the proposed model. Code
is available at https://github.com/RenYurui/
Neural-Texture-Extraction-Distribution.

1. Introduction

Synthesizing person images with explicitly controlling
the body pose and appearance is an important task with a
large variety of applications. Industries such as electronic
commerce, virtual reality, and next-generation communica-
tion require such algorithms to generate content. Typical
examples are shown in Fig. 1. It can be seen that the desired
output images are not aligned with the reference images.
Therefore, a fundamental challenge for generating photo-
realistic target images is to accurately deform the reference
images according to the modifications.
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Figure 1. Controllable person image synthesis. Our model can
generate realistic images by explicitly controlling the poses and
appearance of reference images.

However, Convolutional Neural Networks lack the abil-
ity to enable efficient spatial transformation [6, 27]. Build-
ing blocks of CNNs process one local neighborhood at a
time. To model long-term dependencies, stacks of con-
volutional operations are required to obtain large receptive
fields. Realistic textures will be “washed away” during the
repeating local operations. Flow-based methods [14,22,25,
28] are proposed to enable efficient spatial transformation.
These methods predict 2D coordinate offsets assigning a
sampling position for each target point. Although realistic
textures can be reconstructed, these methods yield notice-
able artifacts, which is more evident when complex defor-
mations and severe occlusions are observed [21].
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Attention mechanism [27, 30, 33] has emerged as an ef-
ficient approach to capture long-term dependencies. This
operation computes the response of a target position as a
weighted sum of all source features. Therefore, it can build
dependencies by directly computing the interactions be-
tween any two positions. However, in this task, the vanilla
attention operation suffers from some limitations. First,
since the target images are the deformation results of the
sources, each target position is only related to a local source
region, which means that the attention correction matrix
should be a sparse matrix to reject the irrelevant regions.
Second, the quadratic memory footprint hinders its applica-
bility to deform realistic details in high-resolution features.

To deal with these limitations, we introduce an efficient
spatial transformation operation. This operation is moti-
vated by an intuitive idea: person images can be manipu-
lated by extracting and reassembling semantic entities (e.g.
face, hair, cloth). To achieve this goal, we propose a Neu-
ral Texture Extraction and Distribution (NTED) operation
based on double attention [3, 24]. The architecture of this
operation is shown in Fig. 2. Specifically, the extraction op-
eration is first used to extract neural textures by gathering
features obtained from the reference images. Then, the dis-
tribution operation is responsible for generating the results
by soft selecting the extracted neural textures for each target
position according to the learned semantic distribution.

We design a generative neural network by using NTED
operations at different scales. This network renders the in-
put skeletons by predicting the conditional semantic dis-
tributions and reassembling the extracted neural textures.
The experimental evaluation demonstrates photo-realistic
results at a high resolution of 512 × 352. The comparison
experiments show the superiority of the proposed model. In
addition, our model can be further applied for explicit ap-
pearance control. Interested semantics can be manipulated
by exchanging the corresponding neural textures of differ-
ent references. An optimization method is proposed to au-
tomatically search for the interpolation coefficients which
are further used to fuse the extracted neural textures. Our
method enables coherent and realistic results. The main
contributions of our paper can be summarized as:

• An intuitive idea for image deformation is provided.
Desired images are generated by extracting and dis-
tributing the semantic entities of reference images.

• We implement the proposed idea with a light-weighted
and computationally-efficient NTED operation. Ex-
periments show the operation as an efficient spatial
deformation module. Comprehensive ablation studies
demonstrate its efficacy.

• Thanks to the disentangled and expressive neural tex-
tures extracted by our model, we can achieve explicit
appearance control by interpolating between neural
textures of different references.

2. Related Work

Exemplar-based Image Synthesis. Recently, advances in
conditional Generative Adversarial Networks [4,8,9,19,29,
38, 39] (cGAN) have made tremendous progress in synthe-
sizing realistic images. As a typical task of cGAN, image-
to-image translation [9] aims to train a model such that the
conditional distribution of the generated images resembles
that of the target domain. To achieve flexible and fine-
grained control over the generated images, some exemplar-
based image translation methods [8,20,29,32] are proposed.
These methods condition the translation on an exemplar im-
age with the desired style. Latent vectors are extracted from
exemplars to modulate the generation. Images with spe-
cific styles are generated. However, 1D vectors may be in-
sufficient for representing complex textures, which hinders
models to reconstruct realistic details. Some models [35,37]
solve this problem by extracting dense semantic correspon-
dence between cross-domain images. The warped exem-
plar images provide spatially-adaptive textures, which helps
with the reconstruction of local textures.

Pose-guided Person Image Synthesis. The pose-guided
person image synthesis task can be seen as a kind of
exemplar-based image translation task where the appear-
ance of the reference images is expected to be reproduced
under arbitrary poses. Some early attempts [5, 17] solve
this problem by extracting pose-irrelevant vectors to rep-
resent appearance. However, textures of different seman-
tic entities vary greatly. Directly extracting vectors from
reference images will limit the model to represent com-
plex textures. To alleviate this problem, methods are pro-
posed to extract attributes from different segmentation re-
gions [18] or pre-process the reference images with UV-
maps [23]. These methods can extract expressive latent
vectors to improve the generation quality. However, since
they apply the modulation uniformly, detailed patterns may
be washed out in the final output. To achieve spatially-
adaptive modulations, dense deformations are estimated to
generate aligned features by warping the references. Flow-
based methods [1, 13, 14, 21, 22, 25, 26] are proposed to es-
timate appearance flow between the references and desired
targets. Models are trained with either unsupervised method
or pre-calculated labels obtained by 3D models of human
bodies. Although the flow-based methods generate realis-
tic details, they may fail to extract accurate motions when
complex deformations or severe occlusions are observed.
Some other methods [35,37] extract dense correspondences
with the attention-based operation. They can generate accu-
rate structures for the final images. However, the quadratic
memory footprint limits these methods to estimate high-
resolution correspondence. Our model with sparse atten-
tion can be applied to extract high-resolution neural textures
without increasing the memory footprint dramatically.
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Figure 2. Overview of the neural texture extraction and distribution operation. Semantic neural textures are first extracted from the
reference feature map. Then they are distributed according to the spatial distributions learned from the target skeleton. The heat maps show
the attention coefficients C̄e and C̄d. Dark color indicates high weights.

3. The Proposed Model
In this paper, we propose a novel model for controllable

person image synthesis. We introduce an efficient spatial
transformation operation i.e. neural texture extraction and
distribution (NTED) operation in Sec. 3.1. In Sec. 3.2, a
generative model is designed with a hierarchical strategy
that applies NTED operations at different scales. We intro-
duce the loss functions in Sec. 3.3.

3.1. The NTED Operation

A fundamental challenge of the person image synthesis
task is to accurately reassemble the reference images. In
this subsection, we introduce a NTED operation. As shown
in Fig. 2, this operation consists of two steps: the extraction
operation and the distribution operation.

The Extraction Operation is responsible for extracting
semantic neural textures from the reference feature maps.
This operation is achieved by an attention step where each
neural texture is calculated with a weighted sum of the val-
ues. Let Fr ∈ Rhw×c represents the feature map extracted
from the reference image Ir. Symbols h and w are the spa-
tial sizes of the feature map. The number of feature chan-
nels is denoted as c. The attention correlation matrix is
calculated between Fr and the semantic extraction filters
We ∈ Rk×c.

Ce = WeF
T
r (1)

where Ce ∈ Rk×hw is the correlation matrix. Each row i
of Ce contains the contributions of every reference feature
to the ith neural texture. The semantic extraction filters We

are implemented using convolutional filters. The same fil-
ters are used for all images in a dataset. This setting helps

the model to automatically learn suitable semantic compo-
nents. Meanwhile, the neural texture extracted by a spe-
cific filter always represents the same semantic component,
which helps the model to disentangle the appearance of dif-
ferent semantics.

After obtaining Ce, a softmax function is applied to nor-
malize the correlation matrix across feature positions.

C̄i,j
e =

exp(Ci,j
e )∑hw

j=1 exp(C
i,j
e )

(2)

where C̄e is the normalized correlation matrix. The neural
textures are extracted by a weighted sum of the values.

Fe = C̄ef(Fr) (3)

where values f(Fr) is obtained by transforming Fr with
a projection function f . The neural textures Fe ∈ Rk×c

represent the appearance of the semantic entities.
The Distribution Operation is responsible for distributing
the extracted neural textures according to the target poses.
Let Ft ∈ Rhw×c denotes the feature map of the target skele-
tons Pt. The distribution operation first models the spatial
distribution of the semantic neural textures.

Cd = WdF
T
t (4)

where Wd ∈ Rk×c denotes the semantic distribution fil-
ters. Similar to that of the extraction operation, we im-
plement Wd using convolutional filters. The output matrix
Cd ∈ Rk×hw contains the correlations between all seman-
tic entities and all target features. We normalize this matrix
along with axis k.

C̄i,j
d =

exp(Ci,j
d )∑k

i=1 exp(C
i,j
d )

(5)
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Figure 3. Overview of the proposed model. Our model generates the result images by rendering target skeletons with reference features.
NTED operations are used at different scales to deform both local and global contexts.

Each column j of C̄d represents the contributions of each
semantic neural texture when generating jth features. The
final output of the NTED operation is calculated as

Fo = C̄T
d Fe (6)

where Fo ∈ Rhw×c is the output feature map. To simplify
the notation, we define a warping notation W to represent
the overall NTED operation as

Fo = W(f(Fr), C̄ed) = C̄T
d C̄ef(Fr) (7)

where C̄ed = C̄T
d C̄e denotes the deformations estimated by

the NTED operation. The NTED operation can be seen as
a linear attention whose computational complexity is linear
with the length of sequences. See Supplementary Materials
for more discussions.

3.2. Person Image Synthesis Model

We design the person image synthesis model as a pose-
conditioned generative neural network that generates photo-
realistic images Ît by rendering the target skeletons Pt with
the neural textures extracted from the reference images Ir.
The architecture is shown in Fig 3. It can be seen that this
model is composed of three modules: the skeleton encoder,
the reference encoder, and the target image renderer.
The Skeleton Encoder is designed to transform the target
skeletons into feature maps. This encoder takes a skeleton
representation with resolution 512×512. The final output of
the encoder is with resolution 16× 16. A total of 5 encoder
blocks are contained in the encoder where each block down-
samples the inputs with a factor of 2.
The Reference Encoder is responsible for encoding the
reference images into multi-scale feature maps. We use a

similar architecture to the skeleton encoder. Feature maps
are generated for each scale from 512× 512 to 16× 16.

The Target Image Renderer is used to synthesize the tar-
get images by rendering the skeletons using the extracted
neural textures. This network takes the feature maps gen-
erated by the skeleton encoder as inputs. For each layer,
the NTED operation is used to deform the reference fea-
tures. We design the NTED operation to predict the resid-
ual of current results. The aligned feature map Fl

o of the
lth NTED operation is added to the target feature map Fl

t.
We employ the image skip connections proposed in Style-
GAN2 [11]. The RGB images are predicted at different
scales. The final outputs are calculated by up-sampling and
summing the contributions of these RGB outputs.

3.3. Training Losses

We train our model in an end-to-end manner to simulta-
neously learn the neural texture deformation and the target
image generation. We employ several loss functions that
fulfill specific tasks.

Attention Reconstruction Loss Lattn. We use an attention
reconstruction loss to constrain the NTED operation to ex-
tract accurate deformations. This loss penalizes the ℓ1 dif-
ference between the deformed output and the ground truth
image for each layer l.

Lattn =
∑
l

∥Il↓t −W(Il↓r , C̄l
ed)∥1 (8)

where Il↓t and Il↓r are obtained by resizing the target im-
ages It and the reference images Ir to the resolution of the
lth layer. C̄l

ed represents the deformations estimated by the
NTED operation in the lth layer.
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Reconstruction Loss Lrec. A reconstruction loss is used
to calculate the difference between the generated images Ît
and the ground-truth images It. We employ the perceptual
loss proposed in paper [10].

Lrec =
∑
i

∥ϕi(It)− ϕi(Ît)∥1 (9)

where ϕi denotes the i-th activation map of the pre-trained
VGG-19 network. This loss calculates the ℓ1 difference be-
tween the VGG-19 activations.
Face Reconstruction Loss Lface. In addition to the recon-
struction loss Lrec, we also use a face reconstruction loss to
calculate the perceptual distance between cropped faces.

Lface =
∑
i

∥ϕi(Cface(It))− ϕi(Cface(Ît))∥1 (10)

where Cface is the face cropping function that crops the
faces according to the target poses.
Adversarial Loss Ladv . A generative adversarial loss is
employed to mimic the distribution of ground-truth images.
A discriminator is trained to distinguish outputs from the
real images in the target domain.

Ladv = E[log(1−D(G(Pt, Ir)))] + E[log(D(It))] (11)

where G and D denote the generator and the discriminator.
Total Loss Ltotal. We train our model with a joint loss.

Ltotal = λattnLattn+λrecLrec+λfaceLface+Ladv (12)

where λattn, λrec, and λface are the hyper-parameters.

4. Optimization for Appearance Control
Given the trained model, images with arbitrary poses can

be synthesized by extracting and reassembling neural tex-
tures of the reference images. Although we do not use any
semantic labels to supervise the neural texture extraction,
the proposed model can obtain meaningful and expressive
latent vectors. Fig. 4 shows the visualizations of the atten-
tion correlation matrix C̄e and C̄d. It can be clearly seen
that a specific neural texture is always formed by summing
the regions with a certain semantic component and controls
the generation of the corresponding target regions. There-
fore, we can expect to control the appearance of the final
images by exchanging the corresponding semantic neural
textures of different references.

Without loss of generality, we assume that a novel image
Ît is generated from two reference images Ir1 and Ir2 by
using the semantic entity i of Ir2 and the other semantic
components of Ir1. To achieve this goal, the neural textures
related to the semantic entity i are extracted from Ir2, while
the others are extracted from Ir1. Inspired by paper [12],

Extraction
Visualization

#8 “hair” #9 “background” #10 “upper” #26 “down” #28 “skin”Reference &
Skeleton

Distribution
Visualization

Extraction
Visualization

Distribution
Visualization

Figure 4. The visualizations of several typical channels in C̄l
e and

C̄l
d at layer l with resolution 64×64. For each sample, the first row

is the visualizations of the extraction operation, while the second
row is the visualizations of the distribution operation.

we use an optimization method to automatically implement
this task. Let F[1,L]

e1 ≡ {F1
e1,F

2
e1, ...,F

L
e1} and F

[1,L]
e2 ≡

{F1
e2,F

2
e2, ...,F

L
e2} denote neural textures of Ir1 and Ir2.

Symbol L is the number of network layers. We define a set
of mask tensor m[1,L] ≡ {m1,m2, ...,mL} to interpolate
between the extracted neural textures. For each layer l, the
fused neural textures are obtained by

Fl
e = Fl

e1 +ml(Fl
e2 − Fl

e1) (13)

where ml ∈ Rk×1 has values between 0 and 1. We optimize
the interpolation coefficients m[1,L] with

Lopt = λreguLregu + λr1Lr1 + λr2Lr2 (14)

Regularization Loss Lregu. Desired coefficients m[1,L]

should be assigned with large values for the neural tex-
tures related to the semantic entity i and small values for
the other textures. An operation A is defined to distinguish
between the neural textures. Recalling that the attention
correlation matrix C̄d ∈ Rk×hw of the distribution oper-
ation contains the spatial distributions of different semantic
neural textures. It provides a clear clue to find neural tex-
tures generating semantic entity i. Let St denotes the binary
segmentation labels of the generated images Ît obtained by
off-the-shelf segmentation techniques, where the regions of
the semantic entity i are set as 1. Operation A is defined as

A(C̄d,S
↓
t ) =

∑
hw C̄d ⊙ S↓

t∑
hw S↓

t

> σ (15)
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256× 176 Images 512× 352 Images
PATN ADGAN PISE GFLA Ours CocosNet2 Ours

SSIM ↑ 0.6714 0.6735 0.6537 0.7082 0.7182 0.7236 0.7376
LPIPS ↓ 0.2533 0.2255 0.2244 0.1878 0.1752 0.2265 0.1980
FID ↓ 20.728 14.540 11.518 9.8272 8.6838 13.325 7.7821

Table 1. The quantitative comparisons with several state-of-the-art methods on both 256× 176 and 512× 352 images.

where A(C̄d,S
↓
t ) ∈ {0, 1}k×1 contains the indexes of

the neural textures related to the semantic entity i. S↓
t ∈

{0, 1}1×hw is the resized segmentation labels. Symbol ⊙
denotes the spatial-wise multiplication. Operation A cal-
culates the average attention coefficient in the regions of
semantic entity i. The neural textures with attention values
larger than a threshold σ are regarded as the neural textures
generating region i. Our regularization loss is defined as

Lregu =
∑
l

A(C̄l
d,S

l↓
t )⊙(1−ml)+A(C̄l

d,1−Sl↓
t )⊙ml

(16)
Appearance Maintaining Loss Lr1. The appearance
maintaining loss encourages the final image Ît maintains
the editing-irrelevant semantic components in Ir1. Let Ît1
and St1 denote the pose-transformed image of Ir1 and its
segmentation label. This loss calculates the perceptual dis-
tance between the masked Ît and Ît1.

Lr1 = Lrec(Ît ⊙ (1− St), Ît1 ⊙ (1− St1)) (17)

where Lrec is the perceptual reconstruction loss in Eq. 9.
Appearance Editing Loss Lr2. The appearance editing
loss encourages the final image Ît contains the semantic en-
tity i in Ir2. Let Ît2 and St2 denote the pose-transformed
image of Ir2 and its segmentation label. This loss calculates
the perceptual distance between the masked Ît and Ît2.

Lr2 = Lrec(Ît ⊙ St, Ît2 ⊙ St2) (18)

With the joint loss function Lopt in Eq. 14, we can opti-
mize the interpolation coefficients m[1,L]. After obtaining
m[1,L], the fused neural textures Fe in Eq. 13 can be sent to
the target image renderer to generate the editing results.

5. Experiment

In this section, experiments are conducted to evaluate the
performance of the proposed model. The implementation
details are first provided in Sec. 5.1. Then, we compare our
model with several state-of-the-art methods in Sec. 5.2. In
Sec. 5.3, ablation models are trained to verify the efficacy
of the proposed modules. Finally, in Sec. 5.4 we provide
results of appearance control.

5.1. Implementation Details

Dataset. We train our model on the In-shop Clothes Re-
trieval Benchmark of the DeepFashion dataset [15]. This
dataset contains 52, 712 high-resolution images of fashion
models. Images of the same person in the same cloth are
paired for training and testing. The skeletons are extracted
by OpenPose [2]. We use the dataset splits provided by [40].
There are a total of 101, 966 pairs in the training set and
8, 570 pairs in the testing set.
Metrics. We evaluate the model performance from
different aspects. Structure Similarity Index Measure
(SSIM) [31] and Learned Perceptual Image Patch Similar-
ity (LPIPS) [36] are used to calculate the reconstruction ac-
curacy. SSIM calculates the pixel-level image similarity,
while LPIPS provides perceptual distance by employing a
network trained on human judgments. Fréchet Inception
Distance (FID) [7] is used to measure the realism of the
generated images. It calculates the distance between the
distributions of synthesized images and real images.
Training Details. In our experiments, we train the pro-
posed model with 256×176 and 512×352 images. We use
Adam [16] solver with β1 = 0, β2 = 0.99. The learning
rate is set to 2× 10−3 for both generator and discriminator.
The model is trained for 200 epochs with a batch size of 16.
More details can be found in the Supplementary Materials.

5.2. Comparisons

We compare the proposed model with several state-
of-the-art methods including PATN [40], ADGAN [18],
GFLA [22], PISE [34], and CocosNet2 [37]. The released
weights provided by the corresponding authors are used to
obtain the results.
Quantitative Results. The evaluation results are shown in
Tab. 1. We evaluate the performance on both 256× 176 im-
ages and 512 × 352 images according to the training set of
the competitors. Since CoCosv2 uses a different train/test
split, we retrain this model using their source codes. It
can be seen that our model achieves the best results com-
pared with the state-of-the-art methods. This means that our
model can generate images with not only accurate structures
but also realistic details.
Qualitative Results. We provide the generated results in
Fig. 5 and Fig. 6. It can be seen that PATN struggles to
generate realistic images due to the lack of efficient spatial
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Reference Target PATN ADGAN PISE GFLA Ours

Figure 5. Qualitative comparisons with several state-of-the-art
methods on the DeepFashion dataset with 256× 176 images.

deformation blocks. PATN and ADGAN generate images
with accurate structures. However, they extract image ap-
pearance using 1D vectors, which hinders the generation of
complex textures. The flow-based method GFLA can gener-
ate realistic textures. However, it yields noticeable artifacts
when severe occlusions are observed. CocosNet2 generates
high-resolution images with accurate structures. However,
it fails to maintain the patterns of complex textures. Our
model generates visually appealing results with both accu-
rate structures and vivid textures.

5.3. Ablation Study

We evaluate the efficacy of the proposed neural tex-
ture extraction and distribution operation by comparing our
model with several variants.
Baseline Model. A baseline model is trained to prove the
necessity of the neural texture deformation module. An
auto-encoder network is used for this model. The reference
images and target skeletons are concatenated as the model
inputs. We train this model using the reconstruction loss,
the face reconstruction loss, and the adversarial loss.
Style-based Model. A style-based model is designed to
compare the NTED operation with the style-based modu-
lation block proposed in StyleGAN2. In this model, the
NTED operations are replaced by the style modulation
blocks. Reference images are encoded as 1D vectors to
modulate the generation. We train this model using the
same loss functions as that of the Baseline Model.

Reference Target OursCocosNet2

Figure 6. Qualitative comparisons with CocosNet2 on the Deep-
Fashion dataset with 512× 352 images.

Reference Target Baseline Style-based Attention Ours

Figure 7. Qualitative results of the ablation study.

Attention Model. The attention model is used to compare
the NTED operation with the vanilla attention operation.
We replace our NTED operations with the attention oper-
ations. The attention correlations are calculated between
the reference feature Fr and the target skeleton feature Ft.
To ensure the fairness of the comparison, we do not use
the sub-sampling trick. Meanwhile, the number of feature
channels is not reduced when calculating the attention. The
model is trained with the same loss functions as our method.
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Baseline Style-based Attention Ours

SSIM ↑ 0.7085 0.7111 0.7158 0.7182
LPIPS ↓ 0.1935 0.1884 0.1761 0.1752
FID ↓ 8.6568 9.3502 8.5732 8.6838
FLOPs ↓ 53.73 G 62.57 G 219.94 G 103.99 G

Table 2. The evaluation results of the ablation study.

Ours. We employ the proposed model with the NTED op-
erations here.

We train all ablation models with the same setting as that
of our model. The quantitative results of the ablation study
are shown in Tab. 2. It can be seen that our model achieves
competitive results compared with the ablation methods.
Taking the advantage of the generative adversarial tech-
niques, the baseline model generates realistic person images
with a good FID score. However, the poor LPIPS result
indicates that the model cannot faithfully reconstruct the
textures due to the lack of efficient spatial transformation
blocks. The style-based model improves the LPIPS score by
leveraging both local and global contexts. However, the 1D
vectors are insufficient to represent complex spatial distri-
butions, which may lead to performance degradation. The
attention model tries to establish the correlations between
all sources to all targets. However, as discussed above, each
target position only needs to sample a local source patch,
which implies that some calculations may be unnecessary.
This inference can be confirmed by comparing the evalu-
ation results of the attention model with ours. Our model
achieves competitive results with less than half FLOPs of
the attention model.

We show the qualitative results in Fig. 7. It can be seen
that the Baseline Model fails to reproduce complex spatial
distributions. The style-based model alleviates this prob-
lem by hierarchically injecting the extracted vectors. How-
ever, the uniform modulation hinders it to generate local
details. The attention model and our model can faithfully
reconstruct the textures of reference images.

5.4. Appearance Control Results

Our model enables appearance control by combining
the neural textures extracted from different reference im-
ages. We optimize the interpolation coefficients by using
the methods described in Sec 4. The results are shown in
Fig. 8. We observe that our model can seamlessly combine
the areas of interest and generate coherent images. The gar-
ments are extracted from images with arbitrary poses. Both
structure and textures are faithfully reconstructed. Mean-
while, the unrelated semantic regions are well-preserved,
which indicates that our model represents different seman-
tics with disentangled neural textures.

Reference
Image

Garment
Image

Reference
Image

Garment
Image

Figure 8. Images generated by controlling the appearance of in-
terested areas. For each sample, the first row contains the garment
images. The second row contains the generated images.

Reference Skeleton Generated Reference Skeleton Generated Reference Skeleton Generated

Figure 9. Failure cases caused by underrepresented poses (left),
garments (middle), and in-the-wild identities (right).

6. Conclusion and Discussion
We have presented a novel model for synthesizing photo-

realistic person images by explicitly controlling the pose
and appearance of a reference image. The NTED oper-
ation is described for spatial transformation. This opera-
tion first extracts hierarchical semantic neural textures from
reference images. Then the extracted neural textures are
reassembled according to the spatial distributions learned
from target poses. Our model outperforms state-of-the-art
methods and generates realistic images even for references
with extremely complex textures. Meanwhile, the disentan-
gled neural textures enable a further application on appear-
ance control. Promising results are generated by seamlessly
merging the areas of interest from different images.
Limitations and Ethical Considerations. Although our
model generates promising results, it still fails in cases of
underrepresented images. We show some failure cases in
Fig. 9. Artifacts or inconsistencies can be found in these
results. The pose transfer or appearance control applica-
tions could be misused and pose a societal threat. We do
not condone using our work with the intent of spreading
misinformation or tarnishing reputation.
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