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Abstract

Recent Vision Transformer (ViT) models have demon-
strated encouraging results across various computer vision
tasks, thanks to its competence in modeling long-range de-
pendencies of image patches or tokens via self-attention.
These models, however, usually designate the similar recep-
tive fields of each token feature within each layer. Such a
constraint inevitably limits the ability of each self-attention
layer in capturing multi-scale features, thereby leading to
performance degradation in handling images with multi-
ple objects of different scales. To address this issue, we
propose a novel and generic strategy, termed shunted self-
attention (SSA), that allows ViTs to model the attentions at
hybrid scales per attention layer. The key idea of SSA is to
inject heterogeneous receptive field sizes into tokens: before
computing the self-attention matrix, it selectively merges to-
kens to represent larger object features while keeping cer-
tain tokens to preserve fine-grained features. This novel
merging scheme enables the self-attention to learn rela-
tionships between objects with different sizes, and simul-
taneously reduces the token numbers and the computa-
tional cost. Extensive experiments across various tasks
demonstrate the superiority of SSA. Specifically, the SSA-
based transformer achieve 84.0% Top-1 accuracy and out-
performs the state-of-the-art Focal Transformer on Ima-
geNet with only half of the model size and computation
cost, and surpasses Focal Transformer by 1.3 mAP on
COCO and 2.9 mIOU on ADE20K under similar param-
eter and computation cost. Code has been released at
https://github.com/OliverRensu/Shunted-Transformer.

1. Introduction

The recent Vision Transformer (ViT) models [7] have
demonstrated superior performance across various com-
puter vision tasks, e.g., classification [6], object detec-
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Figure 1. Top-1 accuracy on ImageNet of recent SOTA CNN and
transformer models. Our proposed Shunted Transformer outper-
forms all the baselines including the recent SOTA focal trans-
former (base size). Notably, it achieves competitive accuracy to
DeiT-S with 2× smaller model size.

tion [8, 13], semantic segmentation [4, 36] and video action
recognition [15, 22]. Different from convolutional neural
networks focusing on local modeling, ViTs partition the in-
put image into a sequence of patches (tokens) and progres-
sively update the token features via global self-attention.
The self-attention can effectively model long-range depen-
dencies of the tokens and progressively expand sizes of their
receptive fields via aggregating information from other to-
kens, which accounts largely for the success of ViTs.

However, the self-attention mechanism also brings the
cost of expensive memory consumption that is quadratic
w.r.t. the number of input tokens. Thus, state-of-the-
art Transformer models have resorted to various down-
sampling strategies to reduce the feature size and the mem-
ory consumption. For example, the approach of [7] con-
ducts a 16×16 down-sampling projection at the first layer,
and computes the self-attention at the resulted coarse-
grained and single-scale feature maps; the incurred fea-
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(a) ViT (b) PVT (c) Ours

Figure 2. Comparison of different attention mechanisms in Vi-
sion Transformer (ViT), Pyramid Vision Transformer (PVT), and
our SSA with the same feature map size. The number of circles
represents the number of tokens involved in the self-attention com-
putation, and reflects the computation cost. The size of the circle
indicates the receptive field size of the corresponding token. Un-
like ViT and PVT, our method adaptively merges circles on large
objects for enhancing computation efficiency, and accounts for ob-
jects of different scales simultaneously, e.g., cyan for large sofa,
purple for middle size window and orange for small size fan and
bottle.

ture information loss, therefore, inevitably downgrades the
model performance. Other approaches strive to compute
self-attention at high-resolution features and reduce the cost
by merging tokens with spatial reduction on tokens [25, 26,
29]. Nevertheless, these approaches tend to merge too many
tokens within one self-attention layer, thereby resulting in a
mixture of tokens from small objects and background noise.
Such behavior, in turn, makes the model less effective in
capturing small objects.

Besides, prior Transformer models have largely over-
looked the multi-scale nature of scene objects within on
attention layer, making them brittle to in-the-wild scenar-
ios that involves objects of distinct sizes. Such incompe-
tence is, technically, attributed to the their underlying atten-
tion mechanism: existing methods rely on only static recep-
tive fields of the tokens and uniform information granular-
ity within one attention layer, and are therefore incapable of
capturing features at different scales simultaneously.

To address this limitation, we introduce a novel
and generic self-attention scheme, termed shunted self-
attention (SSA), which explicitly allows the self-attention
heads within the same layer to respectively account for
coarse-grained and fine-grained features. Unlike prior
methods that merge too many tokens or fail in capturing
small objects, SSA effectively models objects of various
scales simultaneously at different attention heads within the
same layer, lending itself to favorable computational effi-
ciency alongside the competence to preserve fine-grained
details.

We show in Figure 2 a qualitative comparison between
vanilla self-attention (from ViT), down-sampling aided at-
tention (from PVT), and the proposed SSA. When differ-
ent attentions are applied to features maps of the same

Image PVT Ours

Figure 3. The attention map of PVT and our model. PVT at-
tends to only large objects like sofa and bed, while our model, by
contrast, precisely captures the small objects like lights alongside
large ones.

size, ViT captures fine-grained small objects yet with an
extremely heavy computational cost (Figure 2(a)); PVT re-
duces the computation cost but its attention is limited only
to coarse-grained larger objects (Figure 2(b)). By con-
trast, the proposed SSA maintains a light computational
load yet simultaneously accounts for hybrid-scale atten-
tions (Figure 2(c)). Effectively, SSA precisely attends to not
only coarse-grained large objects (e.g., sofa) but also fine-
grained small objects (e.g., bottle and fan), even some of
those located at the corners, which are unfortunately missed
by PVT. We also show visual comparisons of attention maps
in Figure 3, to highlight the learned scale-adaptive atten-
tions of SSA.

The multi-scale attentive mechanism of SSA is achieved
via splitting multiple attention heads into several groups.
Each group accounts for a dedicated attention granularity.
For the fine-grained groups, SSA learns to aggregate few
tokens and preserves more local details. For the remaining
coarse-grained head groups, SSA learns to aggregate a large
amount of tokens and thus reduces computation cost while
preserving the ability of capturing large objects. The multi-
grained groups jointly learn multi-granularity information,
making the model able to effectively model multi-scale ob-
jects.

As depicted in Figure 1, we demonstrate the performance
of our Shunted Transformer model obtained from stacking
multiple SSA-based blocks. On ImageNet, our Shunted
Transformer outperforms the state of the art, Focal Trans-
formers [29], while halving the model size. When scaling
down to tiny sizes, Shunted Transformer achieves perfor-
mance similar to that of DeiT-Small [20], yet with only
50% parameters. For object detection, instance segmen-
tation, and semantic segmentation, Shunted Transformer
consistently outperforms Focal Transformer on COCO and
ADE20K with a similar model size.

In sum, our contribution are listed as follows.

• We propose the Shunted Self-Attention (SSA) which
unifies multi-scale feature extractions within one self-
attention layer via multi-scale token aggregation. Our
SSA adaptively merges tokens on large objects for
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computation efficiency and preserves the tokens for
small objects.

• Based on SSA, we build our Shunted Transformer,
which is able to capture multi-scale objects especially
small and remote isolated objects efficiently.

• We evaluate our proposed Shunted Transformer on
various studies including classification, object detec-
tion, and segmentation. Experimental results demon-
strate that our Shunted Transformer consistently out-
perform previous Vision Transformers under similar
model sizes.

2. Related Work
2.1. Self-Attention in CNNs

The receptive field of a convolution layer is usually small
and fixed. Although dilated convolution [30] enlarge the re-
ceptive filed and deformable convolution allows some off-
sets [5] for the kernel, it is hard for them to be adaptive and
flexible to extend to the whole feature maps. Inspired by
the self-attention [21] layer of transformers pioneered in the
NLP field, some works introduce self-attention or non-local
blocks [27] to augment convolutional neural networks in the
computer vision field. Such attentions always apply in the
deep layers, where the size of feature map is small and pre-
processed by multiple convolution layers. Therefore, they
do not incur too much additional computation cost but bring
limited performance improvements.

2.2. Vision Transformer

Vision Transformer (ViT) [7] models directly apply self-
attention in very shadow layers to build a convolution-free
neural network model. Since the seminal ViT model, many
follow-up works are developed to improve the model’s clas-
sification performance [17, 20] via more complex data aug-
mentation or knowledge distillation. Because the compu-
tational complexity of self-attention is quadratic w.r.t. the
number of tokens, it is hard for them to directly apply
on large number of tokens. Therefore, these ViT models
usually partition the image into non-overlapped and large-
size patches (tokens). But such partitioning is too coarse
and loses much fine-grained information. To preserve fine-
grained features,

these models usually down-sample the feature maps and
operate on low-resolution features. This compromise how-
ever impedes their deployment in dense-prediction tasks
like segmentation and detection.

2.3. Efficient ViT Variants

To make the self-attention attention applicable on large-
size feature maps, recent works develop two solution strate-
gies [2, 14, 25, 26, 29] to reduce the computation cost: (1)

Q K,V

PVT

Q K,V

PVT

Q,K,V

ViT

Q,K,V

ViT

Q

Ours

K,V

K,V

K,V

Q

Ours

K,V

K,V

K,V

Swin

Q,K,V

Swin

Q,K,V

Figure 4. Comparing our shunted self-attention with self attention
in ViT, Swin, PVT. ViT applies self-attention globally on small-
size feature maps. Swin Transformer applies local self-attention
on large-size feature maps within small regions. PVT fuses the
key and value with a large stride. Differently, our shunted self-
attention conducts multi-scale token aggregation for obtaining key
and value of various sizes.

split the features maps into regions and perform local self-
attention within the region or (2) merge tokens to reduce the
number of tokens. The representative work of local atten-
tion is the Swin Transformer [14] that splits feature maps
into non-overlap squared regions and do the self-attention
locally. However, to model global dependencies via self-
attention, these local attention needs to shift the windows
over the image or stack a lot of layers for obtaining a global
receptive field. Regarding the strategy of token merging,
PVT (Pyramid Vision Transformer) [26] designs a spatial-
reduction attention to merge tokens of key and query. How-
ever, PVT and similar models tend to merge too many to-
kens in such spatial-reduction. This makes the fine-grained
information of small objects mixed with the background
and hurts model’s performance. Therefore, we propose
the shunted self-attention that can simultaneously preserve
coarse- and fine-grained details while maintaining a global
dependency modeling over the image tokens.

3. Method

The overall architecture of our proposed Shunted Trans-
former is illustrated in Figure 5. It is built upon the novel
shunted self-attention (SSA) blocks. There are two main
differences between our SSA blocks and the traditional self-
attention blocks in ViT: 1) SSA introduces a shunted at-
tention mechanism for each self-attention layer to capture
multi-granularity information and better model objects with
different sizes, especially the small objects; 2) it enhances
the capability of extracting local information in the point-
wise feed-forward layer by augmenting the cross-token in-
teraction. Besides, our Shunted Transformer deploys a new
patch embedding method for obtaining better input feature
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Figure 5. Left: the overall architecture of our Shunted Transformer. Right: details of our Shunted Self-Attention block.

maps for the first attention block. In the following, we elab-
orate on these novelties one by one.

3.1. Shunted Transformer Block

In the i-th stage of the proposed Shunted Transformer,
there are Li transformer blocks. Each transformer block
contains a self-attention layer and a feed-forward layer.
To reduce the computation cost when processing high-
resolution feature maps, PVT [26] introduces spatial-
reduction attention (SRA) to replace the original multi-head
self-attention (MSA). However, SRA tends to merage too
many tokens within one self-attention layer and only pro-
vides token features at a single scale. These limitations
impede the capability of the models in capturing multi-
scale objects especially the small-size ones. Therefore, we
introduce our shunted self-attention with learning multi-
granularity within one self-attention layer in parallel.

3.1.1 Shunted Self-Attention

The input sequence F ∈ Rh×w×c are projected into query
(Q), key (K) and value (V ) tensors at first. Then the multi-
head self-attention adopts H independent attention heads to
compute self-attention in parallel. To reduce the computa-
tion cost, we follow the PVT [26] and reduce the length of
K and V instead of splitting {Q,K, V } into regions as in
Swin Transformer [14].

As show in Figure 4, our SSA is different from the SRA
of PVT in that the length of K, V is not identical across
the attention heads of the same self-attention layer. Instead,
the length varies in different heads for capturing different
granularity information. This gives the multi-scale token
aggregation (MTA). Specifically, the keys K and values V
are down-sampled to different sizes for different heads in-
dexed by i:

Qi = XWQ
i ,

Ki, Vi = MTA(X, ri)W
K
i , MTA(X, ri)W

V
i ,

Vi = Vi + LE(Vi).

(1)

Here the MAT(·; ri) is the multi-scale token aggregation
layer in the i-th head with the down-sampling rate of

ri. In practice, we take a convolution layer with ker-
nel size and stride of ri to implement the down-sampling.
WQ

i ,WK
i ,WV

i are the parameters of the linear projection
in the i-th head. There are variant ri in one layer across the
attention heads. Therefore, the key and value can capture
different scales in a self-attention. LE(·) is the local en-
hancing component of MTA for value V by a depth-wise
convolution. Comparing with the spatial-reduction [26],
more fine-grained and low-level details are preserved.

Then the shunted self-attention is calculated by:

hi = Softmax

(
QiK

T
i√

dh

)
Vi (2)

where dh is the dimension. Thanks to multi-scale key and
value, our shunted self-attention is more powerful in cap-
turing multi-scale objects. The computation cost reduction
may depend on the value of r, therefore, we can well de-
fine the model and r to trade-off the computation cost and
model performance. When r grows large, more tokens in
K,V are merged and the length of K,V is shorter, there-
fore, the computation cost is low but it still preserve the
ability of capturing large objects. In contrast, when r be-
comes small, more details are preserved but brings more
computation cost. Integrating various r in one self-attention
layer enables it to capture multi-granularity features.

3.1.2 Detail-specific Feedforward Layers

In the traditional feed forward layer, the fully connected
layer are point-wise and no cross token information can be
learnt. Here, we aim at complementing local information by
specifying the details in the feedforward layer. As shown in
Figure 6, we complement the local details in the feed for-
ward layer by adding our data specific layer between the
two fully connected layer in the feed forward layer:

x′ = FC(x; θ1),

x′′ = FC(σ(x′ +DS(x′; θ)); θ2),
(3)

where DS(·; θ) is the detail specific layer with parameters
θ, implemented by a depth-wise convolution in practice.
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Output Size Layer Name Shunted-Tiny Shunted-Small Shunted-Base Shunted-L

Stage1 56x56 Transformer
Block

ri=

{
4 i <head

2

8 i ≥ head
2

ri=

{
4 i <head

2

8 i ≥ head
2

ri=

{
4 i <head

2

8 i ≥ head
2

ri=

{
4 i <head

2

8 i ≥ head
2

C1=64, head=2, N1=1 C1=64, head=2, N1=2 C1=64, head=2, N1=3 C1=64, head=2, N1=4

Stage2 28x28 Transformer
Block

ri=

{
2 i <head

2

4 i ≥ head
2

ri=

{
2 i <head

2

4 i ≥ head
2

ri=

{
2 i <head

2

4 i ≥ head
2

ri=

{
2 i <head

2

4 i ≥ head
2

C2=128, head=4, N1=2 C2=128, head=4, N1=4 C2=128, head=4, N1=4 C2=128, head=4, N1=8

Stage3 14x14 Transformer
Block

ri=

{
1 i <head

2

2 i ≥ head
2

ri=

{
1 i <head

2

2 i ≥ head
2

ri=

{
1 i <head

2

2 i ≥ head
2

ri=

{
1 i <head

2

2 i ≥ head
2

C3=256, head=8, N1=4 C3=256, head=8, N1=12 C3=256, head=8, N1=24 C3=320, head=10, N1=32

Stage4 7x7 Transformer
Block

r= 1 r= 1 r= 1 r= 1
C4=512, head=16, N1=1 C4=512, head=16, N1=1 C4=512, head=16, N1=2 C4=768, head=24, N1=2

Table 1. Model variants for our Shunted Transformer. C and N represent the dimension and number of blocks. head indicates the number
of heads.

Ours

Detail 

Specific

FCFC

FCFC

GELU

FCFC

FCFC

DWConv

GELU

FCFC

FCFC

ViT PVT

Figure 6. Comparing the feed-forward layer in ViT (left), PVT
(right), and our detail-specific feedfoward layer. We complement
fine-grained cross-token details in the feed-forward layer.

3.2. Patch Embedding

Transformer is firstly designed for handling sequential
data. How to map the image to sequence is important for
the model’s performance. ViT directly splits the input im-
age into 16 × 16 non-overlap patches. A recent study [23]
finds using convolution in the patch embedding provides a
higher-quality token sequence and helps transformer “see
better” than a conventional large-stride non-overlapping
patch embedding. Therefore, some works [14, 26] conduct
overlapped patch embedding like using a 7×7 convolution.

In our model, we take different convolution layers with
overlapping based on the model size. We take a 7× 7 con-
volution layer with stride of 2 and zero padding as the first
layer in the patch embedding, and add extra 3 × 3 convo-
lution layer with stride of 1 depending on the model size.
Finally, a non-overlapping projection layer with stride of 2
to generate the input sequence with size of H

4 × W
4 .

3.3. Architecture Details and Variants

Given an input image with size of H × W × 3, we
adopt the above patch embedding scheme for obtaining
more informative token sequence with the length of H

4 × W
4

and the token dimension of C. Following previous de-
signs [2, 14, 26, 29], there are four stages in our model and
each stage contain several Shunted Transformer blocks. In
each stage, each block outputs the feature maps of the same
size. We take a convolution layer with stride 2 (Linear em-
bedding) to connect different stages and the size of the fea-
ture maps will be halved before feeding into to the next
stage, but the dimension will be doubled. Therefore, we
have four feature maps F1, F2, F3, F4 of the output of each
stage and the size of Fi is H

2i+1 × W
2i+1 × (C × 2i−1).

We propose three kinds of different configurations of
our model for fair comparison under similar parameters and
computation costs. As show in Table 1, head and the Ni

indicate the number of heads in one block and the number
of blocks in one stage. The variants only comes from the
number of layers in different stage. Specifically, the num-
ber of head in each block is set 2,4,8,16. The convolution in
the patch embedding range from 1 to 3.

4. Experiments

To evaluate the effectiveness of our Shunted Trans-
former, we apply our model on ImageNet-1K [6] classifi-
cation, COCO [13] object detection and instance segmen-
tation, ADE20K [36] semantic segmentation. Besides, we
evaluate effects of different components of our model via
ablation studies.

4.1. Image Classification on ImageNet-1K

We first evaluate our model and compare it with recent
SOTA CNN and transformer based models on ImageNet-
1K. For fair comparison, we follow the same training strate-
gies of DeiT [20] and PVT [26]. Specifically, we take
AdamW as the optimizer with the weight decay of 0.05.
The whole training epochs are 300 with the input size of
224×224, and the batch size is 1024. The learning rate is set
to 1×10−3 following cosine learning rate decay. The data
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Model
Params Image FLOPs Top1

(M) Size (G) (%)

ResNet-18 [12] 11.7 2242 1.8 69.8
Reg-1.6G [16] 11.2 2242 1.6 78.0
DeiT-T [20] 5.7 2242 1.3 72.2
PVT-T [26] 13.2 2242 1.9 75.1
PVTv2-b1 [25] 13.1 2242 2.1 78.7
Shunted-T 11.5 2242 2.1 79.8

ResNet-50 [12] 25.0 2242 4.1 76.2
Reg-4G [16] 20.6 2242 4.0 79.4
Efficient-B4 [19] 19 3802 4.2 82.9
DeiT-S [20] 22.1 2242 4.6 79.9
T2T-14 [31] 22.0 2242 5.2 81.5
DeepViT-S [37] 27.0 2242 6.2 82.3
ViL-S [34] 24.6 2242 4.9 82.0
TNT-S [11] 23.8 2242 5.2 81.3
CViT-15 [1] 27.4 2242 5.6 81.5
PVT-S [26] 24.5 2242 3.8 79.8
Swin-T [14] 28.3 2242 4.5 81.2
Twin-S [2] 24 2242 2.9 81.7
Focal-T [29] 29.1 2242 4.9 82.2
PVTv2-b2 [25] 25.4 2242 4.0 82.0
Shunted-S 22.4 2242 4.9 82.9
Shunted-S 22.4 3842 4.9 84.3

ResNet-101 [12] 45.0 2242 7.9 77.4
ViT-B [7] 86.6 2242 17.6 77.9
DeiT-B [20] 86.6 2242 17.5 81.8
Swin-S [14] 49.6 2242 8.7 83.1
Swin-B [14] 87.8 2242 15.4 83.4
PVT-M [26] 44.2 2242 6.7 81.2
PVT-L [26] 61.4 2242 9.8 81.7
Focal-S [29] 51.1 2242 9.1 83.5
Focal-B [29] 89.8 2242 16.0 83.8
Shunted-B 39.6 2242 8.1 84.0
Shunted-L 81.2 2242 14.9 84.6
DeiT-B [20] 86.6 3842 55.4 83.1
Swin-B [14] 87.8 3842 47.0 84.2
Shunted-B 39.6 3842 27.2 85.5
Shunted-L 81.2 3842 48.4 85.8

Table 2. Comparison of different backbones on ImageNet-1K clas-
sification.

augmentations and regularization methods follow DeiT [20]
including random cropping, random flipping, label smooth-
ing [18], Mixup [33], CutMix [32] and random erasing [35].

As shown in Table 2, by comparing with other CNN
backbones under similar parameters and computation cost,
our model is the first transformer based model that achieves
comparable results with EfficientNet which uses much
larger input resolution. Notably, although RegNet and Ef-
ficientNet come from neural architecture search, our manu-
ally designed Transformer still outperform them.

We then compare our model with Transformer back-
bones. Our tiny model achieves similar performance with

Transformer baseline (DeiT-S) but only requires half of pa-
rameters (22M→11M) and computation cost (4.6G→2.1G
FLOPs). When our model size grows similar to DeiT-S, it
outperforms by 3%. Comparing with the very recent SOTA
models like Swin and Twin, our model consistently out-
perform them. Specifically, our small-size model outper-
forms the existing state-of-the-art, Focal Transformer Tiny
by 0.7%, while reducing the model size by 20%. When
model size grows large, our base model achieve state-of-
the-art performance with only half of parameters and com-
putation cost comparing with Focal Transformer.

We further fine-tune our model 30 epochs on the size of
384×384, and whether the model size is small or base, our
model shows more superiority over Swin Transformer.

4.2. Object Detection and Instance Segmentation

We evaluate the models for object detection and instance
segmentation on COCO 2017 [13]. We take our proposed
Shunted Transformer as backbone and plug it into Mask R-
CNN. We compare it with other SOTA backbones including
ResNet, Swin Transformer, Pyramid Vision Transformer,
Twin and Focal Transformer. We follow the same settings
of Swin: pretraining on ImageNet-1K and fine-tuning on
COCO. In the fine-tuning stage, we take two training sched-
ules: 1× with 12 epochs and 3× with 36 epochs. In 1×
schedule, the shorter side of the input image will be resize
to 800 while keeping the longer side no more than 1333. In
3× schedule, we take multi-scale training strategy of resiz-
ing the shorter size between 480 to 800. We take AdamW
with weight decay of 0.05 as the optimizer. The batch size
is 16 and initial learning rate is 10−4.

In Table 3, we take Mask-RCNN for object detection
and report the bbox mAP (AP b) of different CNN and
Transformer backbones. Under comparable parameters, our
model outperforms previous SOTA with a significant gap.
For object detection, with 1× schedule, our tiny model
achieves 9.1 points improvements over ResNet-50, and 2.3
points over Focal Transformer with only 85% model size.
Moreover, with 3× schedule and multi-scale training, our
backbone still concisely outperforms CNN backbones over
7.7 and Transformer backbone over 1.6 points on average.
We find similar results in instance segmentation. We report
the mask mAP (APm) in Table 3. Our model achieves 8.1
points higher than ResNet-50 and 1.5 points higher than Fo-
cal Transformer in 1× schedule and in 3× schedule. Our
model achieves these superior performances at a smaller
model size, clearly demonstrating the benefits of its shunted
attention for learning multi-granularity tokens and effec-
tiveness in handling presence of multi-scale visual objects.

We also report the results of RetinaNet in the Table 4.
With the least parameters, our model outperforms all the
previous ones in both 1× and 3× schedule. Comparing with
PVT, our model brings improvements on all small, medium
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Backbone
Params Mask R-CNN 1× schedule Mask R-CNN 3× schedule + MS

(M) AP b AP b
50 AP b

75 APm APm
50 APm

75 AP b AP b
50 AP b

75 APm APm
50 APm

75

Res50 [12] 44 38.0 58.6 41.4 34.4 55.1 36.7 41.0 61.7 44.9 37.1 58.4 40.1
PVT-S [26] 44 40.4 62.9 43.8 37.8 60.1 40.3 43.0 65.3 46.9 39.9 62.5 42.8
Swin-T [14] 48 42.2 64.6 46.2 39.1 61.6 42.0 46.0 68.2 50.2 41.6 65.1 44.8
TwinP-S [2] 44 42.9 65.8 47.1 40.0 62.7 42.9 46.8 69.3 51.8 42.6 66.3 46.0
Twin-S [2] 44 43.4 66.0 47.3 40.3 63.2 43.4 46.8 69.2 51.2 42.6 66.3 45.8
Focal-T [29] 49 44.8 67.7 49.2 41.0 64.7 44.2 47.2 69.4 51.9 42.7 66.5 45.9
Shunted-S 42 47.1 68.8 52.1 42.5 65.8 45.7 49.1 70.6 53.8 43.9 67.8 47.5

Res101 [12] 63 40.4 61.1 44.2 36.4 57.7 38.8 42.8 63.2 47.1 38.5 60.1 41.3
PVT-M [26] 64 42.0 64.4 45.6 39.0 61.6 42.1 44.2 66.0 48.2 40.5 63.1 43.5
Swin-S [14] 69 44.8 66.6 48.9 40.9 63.4 44.2 48.5 70.2 53.5 43.3 67.3 46.6
Swin-B [14] 107 46.9 - - 42.3 - - 48.5 69.8 53.2 43.4 66.8 46.9
TwinP-B [2] 64 44.6 66.7 48.9 40.9 63.8 44.2 47.9 70.1 52.5 43.2 67.2 46.3
Twin-B [2] 76 45.2 67.6 49.3 41.5 64.5 44.8 48.0 69.5 52.7 43.0 66.8 46.6
Focal-S [29] 71 47.4 69.8 51.9 42.8 66.6 46.1 48.8 70.5 53.6 43.8 67.7 47.2
Shunted-B 59 48.0 69.8 53.3 43.2 66.9 46.8 50.1 70.9 54.1 45.2 68.0 48.0

Table 3. Object detection and instance segmentation with Mask R-CNN on COCO. Only 3× schedule has the multi-scale training. All
backbone are pretrained on ImageNet-1K.

Backbone
Params RetinaNet 1× schedule RetinaNet 3× schedule + MS

(M) AP b AP b
50 AP b

75 APS APM APL AP b AP b
50 AP b

75 APS APM APL

Res50 [12] 37.7 36.3 55.3 38.6 19.3 40.0 48.8 39.0 58.4 41.8 22.4 42.8 51.6
PVT-S [26] 34.2 40.4 61.3 43.0 25.0 42.9 55.7 42.2 62.7 45.0 26.2 45.2 57.2
ViL-S [26] 35.7 41.6 62.5 44.1 24.9 44.6 56.2 42.9 63.8 45.6 27.8 46.4 56.3
Swin-T [14] 38.5 42.0 63.0 44.7 26.6 45.8 55.7 45.0 65.9 48.4 29.7 48.9 58.1
Focal-T [29] 39.4 43.7 65.2 46.7 28.6 47.4 56.9 45.5 66.3 48.8 31.2 49.2 58.7
PVTv2-b2* [25] 35.1 44.6 65.6 47.6 27.4 48.8 58.6 - - - - - -
Shunted-S 32.1 45.4 65.9 49.2 28.7 49.3 60.0 46.4 66.7 50.4 31.0 51.0 60.8

Table 4. Object detection with RetinaNet on COCO. Only 3× schedule has the multi-scale training. All backbone are pretrained on
ImageNet-1K. * indicate that methods have not been peer reviewed.

and large size objects which shows the strong power of cap-
turing multi-scale objects in our shunted self-Attention.

4.3. Semantic Segmentation on ADE20K

We evaluate the performance of our model for seman-
tic segmentation on the ADE20K [36] dataset. There are
20,210 images for training, 2,000 images for validation and
3,352 images for testing with 150 fine-grained semantic cat-
egories. We report the mIOU with and without multi-scale
testing. We take UperNet and Semantic FPN as the main
frameworks and take different architectures as backbones.
We follow the defaults settings of Focal Transformer and
mmsegmentation [3]. For UpperNet, we take AdamW with
weight decay of 0.01 as the optimizer for 160K iterations.
The learning rate is 6 × 10−5 with 1500 iteration warmup
at the begining of training and linear learning rate decay.
The augmentations include random flipping, random scal-
ing and random photo-metric distortion. The input size is
512×512 in training, and single scale and multi-scale (MS)
test. For SemanticFPN, we take AdamW with weight de-
cay of 0.0001 as the optimizer and the learning rate is also

0.0001 for 80K iterations.
The results are reported in Table 5. Our Shunted Trans-

former outperforms previous state-of-the-art with a large
margin and less parameters for all the frameworks. Specifi-
cally, when using semantic FPN, our model outperforms the
Swin Transformer by 6.7 mIOU, with 20% model size re-
duction. When the framework is UpperNet, our Shunted
Transformer is 3.1% and 2.9% higher than focal trans-
former. The results of segmentation the shows the supe-
riority of our Shunted Transformer.

We also take SegFormer [28] as the framework and com-
pare our backbone with the MiT in the SegFormer. The
results are reported in Table 6. With less parameters, our
method achieve 1.8 mIoU improvements over SegFormer.

4.4. Ablation Studies

Patch Embedding Many recent works [9, 10, 24] study
the function of the image to token mapping, i.e. the patch
embedding head. They find well-designed head provide bet-
ter input sequence for the transformer models. We evaluate
the impact of our patch embedding with non-overlap head in
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Backbone
Semantic FPN 80k Upernet 160K

Param (M) FLOPs (G) mIOU (%) Param (M) FLOPs (G) mIOU (%) MS mIOU (%)

ResNet-50 [12] 28.5 183 36.7 - - - -
Swin-T [14] 31.9 182 41.5 59.9 945 44.5 45.8
PVT-S [26] 28.2 116 39.8 - - - -
TwinsP-S [2] 28.4 162 44.3 54.6 919 46.2 47.5
Twin-S [2] 28.3 144 43.2 54.4 901 46.2 47.1
Focal-T [29] - - - 62 998 45.8 47.0
Shunted-S 26.1 183 48.2 52 940 48.9 49.9

Table 5. Comparison of the segmentation performance of different backbones in Semantic FPN and UpperNet framework on ADE20K.

Backbone Params(M) FLOPs (G) mIoU

MiT-B2 27.5 62.4 46.5
Ours 25.1 70.3 48.3

Table 6. Comparison of different backbone in Segformer frame-
work on Ade20K.

ViT, overlap head in Swin and PVT. The results are shown
in Table 7. With more complex head like overlapping or
our patch embedding, the computation cost and model size
only slightly grow, but the performance improves relatively
significant. Specifically, with limited additional parameters,
from the traditional non-overlap head or the overlap head to
patch embedding, the model achieves 1.4% and 0.3% per-
formance gain respectively.

Patch Embedding Params (M) FLOPs (G) Top-1 (%)

Non-Overlap 22.3 4.4 81.5
Overlap 22.4 4.5 82.6
Ours 22.4 4.9 82.9

Table 7. Top-1 accuracy on ImageNet of different patch embed-
ding heads. Our patch embedding requires slightly more compu-
tation cost, but the performance improvement is significant.

Token Aggregation Function We propose a new token
aggregation function to merge tokens for multi-scale ob-
jects and keeping the global and local information simul-
taneously. From Table 8, our novel token aggregation func-
tion has similar computation with the convolutional spatial-
reduction but gain more improvements.

Aggregation Params(M) FLOPs (G) Top-1 (%)

Linear 18.5 4.5 82.1
Convolution 22.4 4.9 82.6
Ours 22.4 4.9 82.9

Table 8. Top-1 accuracy on ImageNet of different token aggrega-
tion functions.

Detail-specific Feed-Forward In the Feed-Forward
layer [20], all the operation is point-wise and no cross

token operations exists, therefore, complement the cross
token and local information will significantly improves
the learning ability of the feed-forward layer. In Table 9,
we compare our new detail-specific feed-forward layer,
traditional feed-forward layer [20] and convolutional
feed-forward layer [25] in ViT and our model. The
detail-specific feed-Forward consistently brings perfor-
mance gain over the traditional feedforward layer which
indicate the utility of complementing the local details in the
feedforward layer.

Layers Backbone Top-1 (%)

Feedforward ViT 79.8
Conv-Feedforward ViT 80.5
Detail Specific Feedforward ViT 80.7

Feedforward Shunted 82.6
Conv-Feedforward Shunted 82.7
Detail Specific Feedforward Shunted 82.9

Table 9. With similar parameter numbers and FLOPs, Detail-
specific feedForward layers provide higher top-1 accuracy on Im-
ageNet than the traditional feedforward ones.

5. Conclusion

In this paper, we present a novel Shunted Self-
Attention (SSA) scheme to explicitly account for multi-
scale features. In contrast to prior works that focus on
only static feature maps in one attention layer, we maintain
various-scale feature maps that attend to multi-scale objects
within one self-attention layer. Extensive experiments show
the effectiveness of our model as a backbone for various
downstream tasks. Specifically, the proposed model out-
performs prior Transformers, and achieves state-of-the-art
results on classification, detection, and segmentation tasks.
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