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Abstract

Transfer learning has been recently popularized as a

data-efficient alternative to training models from scratch,

in particular for computer vision tasks where it provides a

remarkably solid baseline. The emergence of rich model

repositories, such as TensorFlow Hub, enables the prac-

titioners and researchers to unleash the potential of these

models across a wide range of downstream tasks. As these

repositories keep growing exponentially, efficiently select-

ing a good model for the task at hand becomes paramount.

We provide a formalization of this problem through a famil-

iar notion of regret and introduce the predominant strate-

gies, namely task-agnostic (e.g. ranking models by their

ImageNet performance) and task-aware search strategies

(such as linear or kNN evaluation). We conduct a large-

scale empirical study and show that both task-agnostic and

task-aware methods can yield high regret. We then propose

a simple and computationally efficient hybrid search strat-

egy which outperforms the existing approaches. We high-

light the practical benefits of the proposed solution on a set

of 19 diverse vision tasks.

1. Introduction
Services such as TensorFlow Hub or PyTorch Hub1 offer

a plethora of pre-trained models that often achieve state-of-
the-art performance on specific tasks in the vision domain.
The predominant approach, namely choosing a pre-trained
model and fine-tuning it to the downstream task, is an ef-
fective and data efficient approach [12, 13, 18, 23, 33, 35].
Perhaps surprisingly, this approach is also effective when
the pre-training task is significantly different from the target
task, such as when applying an ImageNet pre-trained model
to diabetic retinopathy classification [20]. Fine-tuning of-
ten entails adding several more layers to the pre-trained
deep network and tuning all the parameters using a limited

*Work done while interning at Google Research. Correspondence to C.
Renggli (cedric.renggli@inf.ethz.ch) and M. Lucic (lucic@google.com).

1https://tfhub.dev and https://pytorch.org/hub

amount of downstream data. Due to the fact that all pa-
rameters are being updated, this process can be extremely
costly in terms of compute [35]. Fine-tuning all models to
find the best performing one is becoming computationally
infeasible. A more efficient alternative is to simply train
a cheap classifier on top of the learned representation (e.g.
pre-logits). However, the performance gap with respect to
fine-tuning can be rather large [13, 14].

This raises a very practical question: Given a new task,

how to pick the best model to fine-tune? This question was
intensively studied in recent years and existing approaches
can be divided into two groups: (a) task-agnostic model
search strategies, which rank pre-trained models indepen-
dently of the downstream task (e.g. ranking the models by
ImageNet accuracy, if available) [14], and (b) task-aware

model search strategies, which make use of the downstream
dataset in order to rank models (e.g. kNN classifier accu-
racy as a proxy for fine-tuning accuracy, or using the meta-
learned Task2Vec representations) [1, 16, 22]. Most of the
prior work attempts to answer this question by using a ho-
mogeneous sets of pre-trained models whereby the models
share the same architecture or they were trained on the same
dataset. However, this does not reflect the current landscape
of models available in online repositories.

As a result, several practically relevant questions re-
mained open. Firstly, how do existing methods compare
in the presence of both “generalist models” (e.g. models
trained on a relatively diverse distribution such as Ima-
geNet) and “expert models” (e.g. trained on domain-specific
datasets such as plants), across a diverse collection of
datasets? Secondly, is there a method which strikes a good

balance between computational cost and performance?

Our contributions. In this paper, we provide a large-
scale, systematic empirical study of these questions. (i) We
define and motivate the model search problem through a no-
tion of regret. We conduct the first study of this problem in
a realistic setting focusing on heterogeneous model pools.
(ii) We consider 19 downstream tasks on a heterogeneous
set of 46 models grouped into 5 representative sets. (iii) We
highlight the dependence of the performance of each strat-
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egy on the constraints of the model pool, and show that, per-
haps surprisingly, both task-aware and task-agnostic proxies
suffer a large regret on a significant fraction of downstream
tasks. (iv) Finally, we develop a hybrid approach which
generalizes across model pools as a practical alternative.

2. Background and related work
We will now introduce the main concepts behind the

considered transfer learning approach where the pre-trained
model is adapted to the target task by learning a map-
ping from the intermediate representation to the target la-
bels [21, 29, 31, 32], as illustrated in Figure 1.

(I) Upstream models. The variety of data sources,
losses, neural architectures, and other design decisions,
leads to a variety of upstream models. The user has access
to these models, but cannot control any of these dimensions,
nor access the upstream training data.

(II) Model search. Given no limits on computation,
the problem becomes trivial – exhaustively fine-tune each
model and pick the best performing one. In practice, how-
ever, one is often faced with stringent requirements on com-
putation, and the aim of the second stage in Figure 1 is
therefore to select a relatively small set of models for fine-
tuning. Selecting this set of models is the central research
question of this paper (cf. Figure 2).

(II A) Task-agnostic search strategies. These ap-
proaches rank models before observing the downstream
data [14] and consequently select the same model for ev-

ery task. The most popular approach can be summarized as
follows (i) Pick the model with the highest test accuracy on
ImageNet, otherwise (ii) pick the one trained on the largest
dataset. If there is an (approximate) tie, pick the model with
most parameters.

(II B.1) Task-aware search strategies. In contrast to
the task-agnostic approach, task-aware methods may use
the downstream data, thus requiring additional computa-
tion. The idea is to extract the learned representations
from the pretrained model, train a linear or a kNN clas-
sifier on those representations, and select the models that
achieve highest accuracy. Note that this requires at least one
forward-pass for each instance of the dataset, and for ev-
ery model, so the computational complexity grows linearly
with the model pool size. Nevertheless, this approach is
usually several orders of magnitude faster than fine-tuning.
Strictly speaking, one can apply an early stopping strategy
to the fine-tuning procedure which allows a finer control of
the accuracy-time tradeoff. We study this in Section 5.4,
whereas in Section 6 we discuss and contrast with other
task-aware search strategies.

(II B.2) Meta-learned task-aware search strategies.
The idea is to calculate the transfer learning performance
for each task in a benchmark set. Given a new dataset,
the model search part is performed by finding the best
model(s) of the nearest benchmark task, for instance given

by learned task embedding on all the benchmark tasks and
the downstream dataset. While a single task embedding
can be computed efficiently by training a single probe-
network, meta-learned approaches require to initially eval-
uate the performance of all models across each benchmark
task. In addition, the list of transfer learning performances
needs to be expanded whenever either new models or new
benchmark datasets are added. We have simulated this
setting by considering the most prominent such approach,
namely Task2Vec [1], and provide some preliminary results
in Appendix H. In Section 6, we elaborate this approach,
along with other related work in this category (e.g. such as
semantic-based search strategies [6, 27, 34]), and contrast it
to the search strategies we consider in this work.

(III) Downstream training. In this stage, the selected
model is adapted to the downstream task (cf. Figure 1). The
predominant approach is to fully or partially apply the pre-
trained neural network as a feature extractor. The head (e.g.
last linear layer) of the pre-trained model is replaced with a
new one, and the whole model is trained on the target data.
This process is commonly referred to as fine-tuning and it
often outperforms other methods [5, 14, 20, 25].

3. Computational budget and regret
The main aim of this work is the study of simple methods

to filter and search pre-trained models before stepping into
the –more expensive– fine-tuning process. Formally, we de-
fine a search method m(M,D) with budget B as a function
which takes a set of models M and a downstream dataset
D as input, and outputs a set of distinct models Sm ✓ M,
with |Sm| = B. Those B models are then all fine-tuned to
obtain the best test accuracy on the downstream task D.

Budget and regret. Fine-tuning represents the largest
computational cost so, accordingly, we define the number of
models that are fine-tuned as the computational complexity
of a given method. Given any fixed budget B, we would
like to return a set S which includes the models resulting in
good performance downstream. In particular, we define the
notion of absolute regret of a search strategy m and a pool
of models M on dataset D as

max
mi2M

E[t(mi,D)]
| {z }

ORACLE

�E


max
si2Sm

t(si,D)

�

| {z }
s(m)

, (1)

where t(m,D) is the test accuracy achieved when fine-
tuning model m on dataset D. The first expectation is taken
over the randomness in the t(·) operator, that is, the ran-
domness in fine-tuning and due to a finite sampled test set.
In addition to the randomness in t(·), the second expecta-
tion also accounts for any potential randomization in the
algorithm that computes Sm. We define s(m) as the ex-
pected maximal test accuracy achieved by any model in the
set Sm, the set of models returned by a fixed strategy m. In
our case, kNN is deterministic as all the downstream data
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Figure 1. Transfer learning setup: (1) Upstream models Pre-training of models from randomly initialized weights on the (large) upstream
datasets; (2) Model search Either downstream task independent or by running a proxy task, i.e. fixing the weights of all but the last layer
and training a linear classifier or deploying a kNN classifier on the downstream dataset; (3) Downstream training Unfreezing all the
weights, optimizing all layers (incl. pre-defined ones) on the downstream dataset.

Figure 2. Model search methods: (A) Task-agnostic methods
do not see the downstream task, producing the same ranking of
models for all possible tasks (e.g. using the highest ImageNet ac-
curacy); (B.1) Task-aware methods deploy a proxy (e.g. linear
evaluation) for each model on user’s dataset ; (B.2) Meta-learned
task-aware methods use a collection of datasets ahead of time for
the subsequent model search (e.g. Task2Vec [1], exploring dataset
similarities and copying the ranking of the closest dataset).

is used, whereas the linear model depends on the random-
ness of stochastic gradient descent. To enable comparability
between datasets of different difficulty as well as a compari-
son between two selection strategies m1, and m2, we define
their relative delta as

�(m1,m2) :=
s(m1) � s(m2)

1 � min(s(m1), s(m2))
, (2)

with s(·) 2 [0, 1] as defined in Equation 1. Substituting
s(m1) by the ORACLE value, and s(m2) by s(m) leads to
the relative regret r(m). We discuss the impact of alterna-
tive notions in Section 5.4.

4. Experimental design
Our goal is to assess which model search strategies

achieve low regret when presented with a diverse set of
models. As discussed, there are three key variables: (i) The

set of downstream tasks, which serve as a proxy for comput-
ing the expected regret of any given strategy, (ii) the model

pool, namely the set we explore to find low-regret models,
and (iii) the transfer-learning algorithms.

4.1. Datasets and models
Datasets. We use VTAB-1K, a few-shot learning

benchmark composed of 19 tasks partitioned into 3 groups
– •natural, •specialized, and •structured [35]. The nat-

ural image tasks include images of the natural world cap-
tured through standard cameras, representing generic ob-
jects, fine-grained classes, or abstract concepts. Specialized

tasks contain images captured using specialist equipment,
such as medical images or remote sensing. The structured

tasks are often derive from artificial environments that tar-
get understanding of specific changes between images, such
as predicting the distance to an object in a 3D scene (e.g.
DeepMind Lab), counting objects (e.g. CLEVR), or detect-
ing orientation (e.g. dSprites for disentangled representa-
tions). Each task has 800 training examples, 200 validation
examples, and the full test set. This allows us to evaluate
model search strategies on a variety of tasks and in a setting
where transfer learning offers clear benefits with respect to
training from scratch [35].

Models. The motivation behind the model pools is to
simulate several use-cases that are ubiquitous in practice.
We collect 46 classification models (cf. Appendix A):

• 15 models trained on the ILSVRC 2012 (ImageNet)
classification task [24], including Inception V1-V3
models [28], ResNet V1 and V2 (depth 50, 101, and
152) [10], MobileNet V1 and V2 [11], NasNet [36]
and PNasNet [15] networks.

• 16 ResNet-50-V2 models trained on (subsets of)
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JFT [22]. These models are trained on different sub-
sets of a larger dataset and perform significantly bet-
ter on a small subset of downstream tasks we consider
(i.e. they can be considered as experts).

• 15 models from the VTAB benchmark2, with a diverse
coverage of losses (e.g. generative, self-supervised,
self-supervised combined with supervised, etc.) and
architectures. In all cases the upstream dataset was
ImageNet, but the evaluation was performed across the
VTAB benchmark which does not include ImageNet.

4.2. Model pools
(A) Identifying good resource-constrained models

(RESNET-50, DIM2048). Here we consider two cases:
(i) RESNET-50: All models with the number of parameters
smaller or equal to ResNet50-V2. While the number of pa-
rameters is clearly not the ideal predictor, this set roughly
captures the models with limited memory footprint and in-
ference time typically used in practice. Most notably, this
pool excludes the NasNet and PNasNet architectures, and
includes the expert models. (ii) DIM2048: The transfer
strategies discussed in Section 2 might be sensitive to the
size of the representation. In addition, restricting the repre-
sentation size is a common constraint in practical settings.
Hence, we consider a model pool where the representation
dimension is limited to a maximum of 2048.

(B) Identifying expert models in presence of non-
experts (EXPERT). We consider a pool of 16 ResNet-50-
V2 models from [22]. These models which we considered
as experts are trained on different subsets of a larger dataset.
As the number of available models and the upstream train-
ing regimes increase, the number of such experts is likely to
increase. As such, this presents a realistic scenario in which
an expert for the target task may be present, but it is hard
to identify it due to the presence of other models, some of
which might perform well on average.

(C) Do better task-agnostic models transfer better
(IMNETACCURACIES)? This pool offers the ability to
choose an upstream representation-learning technique that
is best suited for a specific downstream task. This pool is
mainly used to validate the idea that (a) ImageNet models
transfer well across different tasks [9,12] and that (b) better
ImageNet models transfer better [14].

(D) All models (ALL). Finally, we consider the hard-
est setting, namely when the model pool contains all 46
models and no conceptual nor computational restrictions
are in place. We note that: EXPERT ⇢ RESNET-50 ⇢
DIM2048 ⇢ ALL and IMNETACCURACIES ⇢ ALL.

4.3. Evaluation procedures
Fine tuning. To assign a downstream test accuracy to

each pair of model and task, we use the median test per-
formance of 5 models obtained as follows: (i) Add a lin-

2https://tfhub.dev/vtab

ear layer followed by a softmax layer and train a model on
all examples of the training set. (ii) Fine-tune the obtained
model twice, considering two learning rates, and 2500 steps
of SGD and a batch size of 512 [35]. (iii) Return the model
with the highest validation accuracy. Note that in this case,
the entire model, and not only the linear layer, is retrained.
As a result, there are 10 runs for each model and we obtain
8740 trained models (46 ⇥ 19 ⇥ 5 ⇥ 2).

Linear evaluation. We train a logistic regression clas-
sifier added to the model representations (fixed) using SGD.
We consider two learning rates (0.1 and 0.01) for 2500 steps
and select the model with the best validation accuracy. For
robustness we run this procedure 5 times and take the me-
dian validation accuracy out of those resulting values. As a
result, we obtain again 8740 models.

kNN evaluation. We compute the validation accuracy
by assigning to each of the 200 validation samples the label
of the nearest training example (i.e. k = 1) using standard
Euclidean distance.

5. Key experimental results
In this section we challenge common assumptions and

highlight the most important findings of this study, whilst
the extended analysis containing all the plots and tables can
be found in the supplementary material. We remark that in
the main body we only consider three main pools of models
– ALL , RESNET-50 and EXPERT, as we see them as the
most representative ones. Since DIM2048 behaves very
similarly to RESNET-50, whereas IMNETACCURACIES is
used only to confirm the findings of [14], the results of ab-
lation studies involving these two pools can be found in Ap-
pendix D. Finally, in this section we mainly investigate lin-
ear evaluation as the task-aware choice; all the correspond-
ing plots for kNN can be found in Appendix E.
5.1. High regret of task-agnostic strategies

Figure 3 shows the results for task-agnostic methods
with budget B = 1 and B = 2 on the ALL, RESNET-50,
and EXPERT pools. We observe a significant regret, par-
ticularly for RESNET-50 and EXPERT pools (30% of the
datasets have a relative regret larger than 25% on those two
pools). This highlights the fact that task-agnostic methods
are not able to pick expert models, in particular on natural
and structured datasets. As more experts become available,
this gap is likely to grow, making it clear that task-agnostic
strategies are inadequate on its own.
5.2. Are task-aware always a good predictor?

Intuitively, having access to the downstream dataset
should be beneficial. We evaluate both the linear and the
kNN predictor as detailed in Section 4. Figure 4 pro-
vides our overall results for the linear model, whereas anal-
ogous results for kNN are presented in Appendix E. The
method struggles on some structured datasets (in particular
on DSPR-LOC).
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Figure 3. Task-agnostic strategies. Relative regret (r(m), cf. Section 3) with B = 1 (transparent) and B = 2 (solid) on the ALL,
RESNET-50 and EXPERT pools, bearing in mind that there is only one task-agnostic model in EXPERT. By definition, task-agnostic
strategies exclude experts yielding high regret on the RESNET-50 and EXPERT pools, particularly on natural or structured datasets.
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Figure 4. Task-aware strategies (linear). Relative regret for B = 1 (transparent) and B = 2 (solid) on the ALL, RESNET-50, and
EXPERT pools. Compared to task-agnostic strategies, we observe improvement on natural datasets (except SVHN) and on restricted pools
(except DSPR-LOC), due to its ability to properly choose experts.

Compared to the task-agnostic strategy, as presented in
Figure 5 for B = 1, we observe significant improvements
on restricted model pools. The EXPERT pool benefits the
most: linear evaluation outperforms task-agnostic methods
on almost every dataset (task-aware is only outperformed
on three datasets by more than 1%, and by 10% in the worst
case on the KITTI-DIST dataset). On the other hand, task-
agnostic and task-aware strategies seem to outperform each
other on a similar number of datasets and by a comparable
magnitude in the ALL pool. This suggests that no single
strategy uniformly dominates all the others across pools.

In order to understand this further, we perform an abla-
tion study where we plot the linear and kNN regret on the
IMNETACCURACIES pool in Appendix D. In Figures 15
and 16 we observe that task-aware search methods perform
rather poorly when having access only to different architec-
tures trained on the same upstream data. The IMNETACCU-
RACIES models are included in the ALL pool, and in some
datasets some of those models are the best-performing ones.

Performance of the kNN predictor is on par on half of
the datasets across the pools, and slightly worse than linear
evaluation on the other half. We present these findings in
Figure 20 in Appendix E.
5.3. Hybrid approach yields the best of both worlds

A hybrid approach that selects both the top-1 task-
agnostic model and the top-(B�1) task-aware models leads
to strong overall results. Figure 6 shows how the hybrid

approach with linear evaluation as the task-aware method
significantly outperforms its linear counterpart with B = 2.
This is most noticeable in the ALL pool where the task-
agnostic model provides a large boost on some datasets.

As we saw in Figure 5, when looking at the ALL pool,
the task-agnostic candidate tends to beat the linear one on
datasets such as DSPR-LOC, SVHN or EUROSAT. Sim-
ilarly, the linear candidate model clearly outperforms its
task-agnostic counterpart on many natural datasets such as
FLOWERS or PETS. A comparison of Figures 5 and 6
reflects how the dominance of linear-only strategy van-
ishes on most datasets when confronted with the hybrid ap-
proach. For the RESNET-50 and EXPERT pools, as ex-
pected, the hybrid algorithm preserves the good picks of the
linear proxy. That said, we observe an increase of 36% on
DSPR-LOC in the RESNET-50, and 11% on KITTI-DIST.
Both are structured datasets on which the linear proxy task
performs poorly, as shown in Figure 4.

The hybrid strategy requires to fine-tune at least two
models. Given that it performs well across all model pools
and datasets, this is a reasonable price to pay in practice, and
we suggest its use as the off-the-shelf approach. Figures 21
and 22 in Appendix E depict the results for kNN. In EX-
PERT models, the second kNN pick tends to beat the task-
agnostic one – hurting the kNN hybrid outcomes. Overall,
the hybrid linear approach consistently outperforms the one
based on kNN.
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Figure 5. Task-agnostic (positive if better) vs Task-aware (linear) (negative if better) for B = 1. On the ALL pool, the methods perform
in a similar fashion, with respect to the number of datasets and the amount in which one outperforms the other. When one restricts the
pool to RESNET-50 or EXPERT task-aware methods outperform the task-agnostic method on most datasets. The relative delta is defined
in Equation 2 in Section 3.
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Figure 6. Hybrid linear (positive if better) vs Linear evaluation (negative if better) for B = 2. We observe that hybrid linear significantly
outperforms linear with the same budget on the ALL pool. Even though for RESNET-50 and EXPERT pools there are datasets on which
linear performs better than hybrid, the amounts in which it does are usually small. We note that most significant gains of hybrid come on
certain structured datasets, the hardest task for every strategy.

5.4. Further ablation studies
How does the computational budget impact the find-

ings? We have seen that for a limited budget of B = 2 the
proposed hybrid method outperforms the other strategies.
A natural question that follows is: how do these methods
perform as a function of the computational budget B? In
particular, for each budget B, we compute how frequently
does a strategy pick the best model. The results are shown
in Figure 7. We observe that the hybrid linear strategy out-
performs all individual strategies on the ALL pool. Further-
more, it also outperforms a strong impractical task-agnostic
oracle which is allowed to rank the models by the average
fine-tune accuracy over all datasets. Our hybrid strategy
achieves an on par performance with the linear approach
on pools on which linear performs well. When task-aware
strategies perform badly (e.g. pools without expert models),
hybrid linear is significantly stronger (as seen in Figure 17
in Appendix D). These empirical results demonstrate that
the hybrid strategy is a simple yet effective practical choice
for a model search strategy.

Alternative evaluation scores. Both [14] and [16]
compute the correlation between the ImageNet test accu-
racy and the average fine-tune accuracy across datasets.
Although this provides a good task-agnostic evaluation
method for the average performance (cf. Figure 1, right, in

[14]), it can be significantly impacted by outliers that have
poor correlations on a specific dataset (cf. Figure 2, middle
row, in [14]). In Appendix B we highlight another limi-
tation of using correlation scores in the context of model-
search strategies across heterogeneous pools. Nevertheless,
we empirically validate that ranking the models based on
their ImageNet test accuracy on the IMNETACCURACIES
pool transfers well to our evaluation setting (cf. Figure 14
in the Appendix D). Furthermore, we show that reporting
the differences of logit-transformed accuracies (log-odds)
leads to similar conclusions as ours (cf. Appendix C). We
opt for the relative regret r(m), defined in Section 3, as it is
more intuitive and contained in [�1, 1].

Impact of the kNN hyperparameters. The kNN clas-
sifier suffers from the curse of dimensionality [26], which
is why we study the impact of the dimension (i.e. the rep-
resentation size) on the kNN evaluation. We fix a dataset,
and plot a model’s kNN score versus its representation di-
mension. In order to have a single point per dimension and
avoid an over-representation of the expert models that are
all of the same architecture, we choose the model with the
best kNN accuracy. By calculating the Pearson correlation
coefficient between the dimension and the respective kNN
scores, we observe a moderate anti-correlation (R < �0.5)
for 3 datasets, a moderate correlation (R > 0.5) for 3 other
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Figure 7. Optimal picks as a function of the computational budget. The number of picked models (relative) with zero regret across three
representative pools. We note that hybrid linear outperforms all other methods on ALL, whilst being comparable with the linear strategy
on restricted pools where linear alone already performs well. Here, the task-agnostic oracle refers to a method which ranks models based
on their average accuracy across all datasets (more details Section 5.4).

datasets, and either small or no correlation for the remain-
ing 13 datasets. Based on this empirical evidence we con-
clude that there is no significant correlation between the
kNN classifier accuracy and the dimension. We provide
more details in Figure 23 of Appendix F. Regarding k, our
preliminary experiments with k = 3 offered no significant
advantages over k = 1.

Early stopping and fine-tuning. Early stopping ap-
proach, namely fine-tuning the entire network only for a
small number of iterations, allows one to explore the ac-
curacy vs. time tradeoff. However, it is understood that re-
sults heavily depend on the neural architectures and hyper-
parameters used during pre-training (e.g. models trained
with Batch normalization necessitate a different strategy).
In our experiments, summarized in Appendix I, we do not
exhibit any benefits which generalize beyond certain spe-
cific settings that would favor this strategy over the simple
linear proxy (cf. Figures 28).

6. Other related work
Given access to the meta-data such as the source

datasets, one could compare the upstream and downstream
datasets [3]; blend the source and target data by reweight-
ing the upstream data to reflect its similarity to the down-
stream task [18]; or construct a joint dataset by identifying
subsets of the upstream data that are well-aligned with the
downstream data [8]. These approaches are restricted to one
model per upstream dataset, while also being less practical
as they necessitate training a new model as well as access to
upstream datasets, which might be unavailable due to pro-
prietary or privacy concerns.

Additionally, best-arm identification bandits algorithms
suggest the successive elimination of sub-optimal choices
[7] derived by fine-tuning models for shorter time. This
combines model selection and downstream training, noting
that it suffers from the same limitations as the partial fine-
tuning proxy approach described Section 5.4.

Other task-aware strategies. Alternative approaches
such as H-Score [2], LEEP [19] or NCA [30] replace the

computation of the linear classifier’s weights on top of the
frozen weights by using a cheaper estimator for the classi-
fier’s accuracy. These estimators are derived using a pseudo
label distribution by analyzing the classification output of
the pre-trained models. All three approaches have a clear
limitation in supporting only those cases in which a clas-
sification head for the original task is provided together
with each pre-trained model. Furthermore, the theoreti-
cal guarantees are given with respect to linear classifica-
tion models trained on top of the frozen representations
only. As observed with LEEP, albeit on natural datasets
only, fine-tuning achieves significantly better test accura-
cies than a linear classifier, which further invites for bet-
ter understanding of using linear accuracy as a proxy for
fine-tuning, noting that linear correlations are not necessar-
ily transitive. Furthermore, training a single linear layer, or
calculating the kNN accuracy on top of transformed repre-
sentations, is typically much less computational demanding
than running the inference itself, and both steps can easily
be overlapped. Recently, [16] introduced the Mean Silhou-
ette Coefficient (MSC) to forecast a model’s performance
after fine-tuning on time series data. We omit this approach
due to its provable relation to a linear classifier proxy, whilst
being similar to kNN with respect to capturing non-linear
relationships. Finally, [22] utilize kNN as a cheap proxy
task for searching models in a set of experts with the same
architecture without quantifying and evaluating the regret.
LFC/LGC [4] are comparable to the early stopping strategy,
which instead of using the gradient at the initialization point
to compare models, follows this gradient for a small num-
ber of iterations. We note that this related work evaluates
its proposed strategy in a fairly homogeneous model pool,
a setting in which many task-aware methods and the corre-
sponding early-stopping strategies have less room to fail.

Meta-learned strategies. Meta-learned search strate-
gies aim at reducing the linear complexity of having to
run inference and training a subsequent model with the
downstream dataset on all pre-trained models for perform-
ing a model search. Such approaches typically contain a
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meta-learning part that precedes the actual search compo-
nent by making use of a set of benchmark datasets. These
datasets do not have to be related to the datasets used to
train models upstream. In fact, in our scenario, the up-
stream datasets are unknown or inaccessible to the model
search method, thereby rendering the benchmark datasets
independent from the pre-trained models. The computa-
tional complexity of performing the search is moved to the
meta-learning part by calculating the task embedding and
fine-tuning all pre-trained models on a set of benchmark
datasets, as described in Section 2 for Task2Vec [1]. This
computationally intensive task could be re-used by sub-
sequent model search queries with different downstream
datasets, but would typically need to be maintained by the
provider of pre-trained model repositories. We simulate the
performance of Task2Vec in our experimental setting in Ap-
pendix H. We observe that meta-learned task-aware strate-
gies can be improved by task-agnostic search methods (cf.
Figure 25) for the budget of B = 1, but not necessarily
for a larger budget. Investigating the impact of benchmark
datasets and larger fine-tune budget for these methods is be-
yond the scope of this work and represents an interesting
line of future work.

Another line of related work is Taskonomy [34] which
finds the best source dataset(s), or nearest benchmark task
in the meta-learned context, by exhaustively exploring the
space of all possibilities. While it achieves promising re-
sults, it is not directly comparable to our approach: (i) the
input domain and data is assumed to remain constant and
tasks are only different in their labels, (ii) the chosen ar-
chitecture keeps the weights of the encoder frozen, and the
decoder trained on top usually consists of multiple fully
connected layers, opposed to our fine-tuning regime with a
single linear layer on top. Improvements by [6] and [27]
make Taskonomy faster, but they still do not distinguish
multiple models trained on the same dataset, nor bypass
the constraints described previously. Finally, for generaliza-
tion of this approach beyond classification tasks, Mensink et
al. [17] extensively studied transfer behaviour across differ-
ent types of tasks. They suggest that a task-agnostic strat-
egy of selecting the model fine-tune on the largest possible
dataset will perform well, whereas if a task-aware strategy
is able to find a model trained on a most similar source, if it
exists, it should outperform the task-agnostic strategy.

7. Conclusions, limitations, and future work
Transfer learning offers a data-efficient solution to train

models for a range of downstream tasks. As we witness an
increasing number of models becoming available in reposi-
tories such as TensorFlow Hub, finding the right pre-trained
models for target tasks is getting harder. Fine-tuning all of
them is not an option. In practice, the computational bud-
get is limited and efficient model search strategies become
paramount. We motivate and formalize the problem of ef-

ficient model search through a notion of regret, and argue
that regret is better suited to evaluate search algorithms than
correlation-based metrics. Empirical evaluation results for
the predominant strategies, namely task-agnostic and task-

aware search strategies, are presented across several scenar-
ios, showing that both can sometimes yield high regret. In
other words, for any individual method we study, there ex-
ists a pool of models on which the method fails. Finally,
we propose a simple and computationally efficient hybrid
search strategy which consistently outperforms the existing
approaches over 19 diverse vision tasks and across all the
defined model pools.

Limitations and future work. In order to further
stress-test the generalization of analyzed strategies, the
number of relevant model pools could be increased by in-
corporating more diverse upstream tasks, in particular neu-
ral architectures, losses, and datasets. This would poten-
tially yield more expert models, making the task both more
challenging and more important, further highlighting the
advantages of an effective search strategy. Secondly, we ob-
serve that task-aware methods consistently perform poorly
in specific cases, such as when we consider diverse architec-
tures trained only on ImageNet. There is no obvious reason
for such failures. Similarly, there seems to be a clear pat-
tern where task-aware methods perform significantly worse
on structured datasets than on natural ones. We hypothe-
size that this is due to the lack of adequate expert models
for these domains. However, an in-depth analysis of these
specific cases might be beneficial and insightful.

Social impact. We examine and propose a mixed model
search strategy focusing solely on maximizing downstream
accuracy. Applying such a search strategy blindly might en-
able hurtful biases present in pre-trained models, or in the
datasets used to train the models upstream, to propagate into
the models trained downstream. Quantifying the impact of
transfer learning and different search strategies beyond ac-
curacy is left as future work, whereby we encourage users
of online pre-trained models to check for biases and fairness
issues after fine-tuning on their custom datasets.
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