
LC-FDNet: Learned Lossless Image Compression with Frequency

Decomposition Network

Hochang Rhee1, Yeong Il Jang1, Seyun Kim2, Nam Ik Cho1

1Department of ECE, INMC, Seoul National University, Seoul, Korea
2Gauss Labs Inc.

hochang,jyicu@ispl.snu.ac.kr, seyun.kim@gausslabs.ai, nicho@snu.ac.kr

Abstract

Recent learning-based lossless image compression meth-

ods encode an image in the unit of subimages and achieve

comparable performances to conventional non-learning al-

gorithms. However, these methods do not consider the per-

formance drop in the high-frequency region, giving equal

consideration to the low and high-frequency areas. In

this paper, we propose a new lossless image compression

method that proceeds the encoding in a coarse-to-fine man-

ner to separate and process low and high-frequency regions

differently. We initially compress the low-frequency compo-

nents and then use them as additional input for encoding the

remaining high-frequency region. The low-frequency com-

ponents act as a strong prior in this case, which leads to im-

proved estimation in the high-frequency area. In addition,

we design the frequency decomposition process to be adap-

tive to color channel, spatial location, and image charac-

teristics. As a result, our method derives an image-specific

optimal ratio of low/high-frequency components. Experi-

ments show that the proposed method achieves state-of-the-

art performance for benchmark high-resolution datasets.

1. Introduction

As the need for high-quality images is increasing,

the importance of image compression is growing accord-

ingly. Driven by the development of deep neural networks

(DNNs), there has been remarkable progress in computer

vision and image processing, including lossy [3,4,8,10–17,

21, 23–25, 27, 28, 30, 32–34, 40, 44–48, 53, 54] and lossless

image compression [3,9,18,19,29,31,35,38,39,41,42,49].

Although lossy compression is generally preferred, loss-

less compression is also necessary for many applications.

Lossless compression is especially required for medical im-

ages, scientific images, technical drawings, and artistic pho-

tos. While methods such as JPEG2000 (lossless mode) [37]

employ transform coding with discrete wavelet transform

Low Frequency

High Frequency

LFC

HFC

AFDCurrent Subimage

Previous Subimages

Figure 1. Our LC-FDNet consists of Adaptive Frequency Decom-

position (AFD), Low-Frequency Compressor (LFC), and High-

Frequency Compressor (HFC). The current subimage is split into

low/high-frequency regions through the AFD. The LFC first com-

presses the low-frequency region, and then the HFC compresses

the high-frequency area using the low-frequency as strong prior.

(DWT), most of the standard/non-standard lossless com-

pression methods [2, 5, 7, 51] use predictive coding. The

standard predictive coding scheme uses a closed-loop pre-

diction where the current pixel is estimated and compressed

using the previously encoded samples.

In this sense, early learning-based lossless compression

algorithms [29, 31, 35, 38, 41, 49] design DNNs as autore-

gressive models. They rely on the strong power of DNNs in

estimating the probability distribution of a pixel conditioned

on the previous samples. For example, PixelRNN [49], Pix-

elCNN [35], and PixelCNN++ [41] compress each pixel se-

quentially, where the probability distribution is predicted

conditioned on all previous pixels. However, these meth-

ods require neural network computations for the number of

whole pixels, leading to an impractical inference time.

To achieve practicality, recent works [29, 31, 38] pro-

cess the encoding in the unit of an entire image or subim-

ages rather than individual pixels. These methods de-

rive the probability distribution of a subimage conditioned

on the previously encoded subimages, or the distribution

of a whole image conditioned on the lossy compressed

image. They show reduced and practical computation

6033

time compared to pixel-wise encoding methods. However,

these methods consider the low and high-frequency regions

equally, giving the same encoding strategies to the regions

of different characteristics. In general, it is difficult to ob-

tain optimal performance in high-frequency regions near an

edge or texture where the pixel values change rapidly.

We address this challenge and propose Lossless Com-

pression with Frequency Decomposition Network (LC-

FDNet) illustrated in Fig. 1, which consists of Adaptive

Frequency Decomposition (AFD), Low-Frequency Com-

pressor (LFC), and High-Frequency Compressor (HFC).

We also decompose an image into subimages based on our

unique decomposition scheme, where the first subimage is

compressed by a conventional lossless compressor. Then,

the rest subimages are sequentially compressed by Fig. 1.

Using the previously encoded and current subimages as the

input, the AFD decomposes the input subimage into low

and high-frequency regions, and the compressors (LFC and

HFC) encode low and high-frequency regions differently.

Since the low-frequency region is typically well predicted,

we first compress the low-frequency components. On the

other hand, high-frequency regions usually exhibit rela-

tively large prediction errors, and hence we encode them

separately with additional priors, which are the encoded

low-frequency pixels. That is, we feed the low-frequency

components as additional input for compressing the high-

frequency region.

For the image-specific frequency decomposition, the

AFD generates error variance map and error variance

thresholds. Error variance map can be comprehended as

the magnitude of the prediction error produced by the net-

work. By thresholding the error variance map with the error

variance threshold, we can classify the pixels into low and

high-frequency ones. Since the error variance differs de-

pending on the channel, spatial location, and image charac-

teristics, we design the threshold to be adaptive to those fac-

tors. This drives the frequency decomposition process to be

image-specific, where different threshold values are derived

depending on the image property. Experiments show that

the proposed method achieves state-of-the-art performance

for benchmark high-resolution datasets with reasonable in-

ference time.

In summary, the main contributions are as follows:

• We propose a lossless image compression framework

that compresses in a coarse-to-fine manner, using the

low frequency components to boost the performance in

high-frequency regions.

• We design the frequency decomposition process to

be adaptive to channel, spatial location, and image

characteristics. Hence, the encoding becomes image-

specific, improving the compression performance.

• Our method achieves state-of-the-art performance for

benchmark high-resolution datasets with reasonable

inference time.

2. Related Works

Pixel-wise Lossless Compression Learning-based lossless

compression methods generally adopt an autoregressive

model. Early methods proceeded the encoding in the pixel

unit, where each pixel is compressed based on the previ-

ously encoded ones. For example, PixelRNN [49] and Pix-

elCNN [35] modeled a pixel as the product of conditional

distributions p(x) =
∏

i p(xi|x1, ..., xi−1), where xi is a

single pixel. PixelCNN++ [41] was proposed as an ad-

vancement of the above works and achieved performance

enhancement along with faster time. They modeled the pix-

els as a discretized logistic mixture likelihood, used down-

sampling to capture structure at multiple resolutions, and

introduced additional short-cut connections. Despite these

factors, PixelCNN++ still maintains the inherent limitation

of autoregressive models, i.e., network computation is re-

quired for each pixel, requiring impractical inference time.

Subimage-wise Lossless Compression For the lossless

compression in a reasonable time, recent works perform

the encoding in the unit of an entire image or subimages.

Each of these methods has its unique strategy for convert-

ing an image into subimages. MS-PixelCNN [38] first pro-

posed a parallelized PixelCNN using a hierarchical encod-

ing scheme. Specifically, the input image is explicitly di-

vided into four subimages depending on the spatial loca-

tion, and the distribution of a subimage is conditioned on the

previously encoded subimages. However, they used PixelC-

NNs for modeling the dependency between the subimages,

which still required impractical time. L3C [29] proposed a

practical compression framework that utilizes a hierarchical

probabilistic model. The subimages are implicitly modeled

by a neural network and each subimage is conditioned on

the subimage of the previous scale. Here, the initial subim-

age is assumed as a uniform distribution. RC [31] can be

seen as a method that divides the image into two parts: lossy

compressed image and its residuals. The probability distri-

bution of the residuals is modeled based on lossy compres-

sion.

3. Method

3.1. Overview

The overall procedure of our method is illustrated in

Fig. 2. Given the input image x ∈ RH×W×3, we first con-

vert the RGB image into a YUV format through a reversible

color transform [36]. Then we split the image in a channel-

wise and spatial-wise manner. Specifically, we divide the

input image into 12 subimages xc,s ∈ R
H

2
×

W

2
×1, where c

6034

a b a b

c d c d

a b a b

c d c d

a b a b

c d c d

a b a b

c d c d

a b a b

c d c d

a b a b

c d c d

a a

a a

a a

a a

a a

a a

b b

b b

b b

b b

b b

b b

c c

c c

c c

c c

c c

c c

d d

d d

d d

d d

d d

d d
Input Image

(YUV)

Subimages

Split Compress
d d

d d

Concat

d d

d d

Bitstream

JPEG-XL

a a

a a

a a

a a

a a

a a

Bitstream Bitstream

Concat …

Y U V

𝑥𝑌𝑈𝑉,𝑎

𝑥𝑌,𝑑 𝑥𝑈,𝑑
LC-FDNet𝑌,𝑑 LC-FDNet𝑈,𝑑

Figure 2. The framework of our compression scheme. Depending on the spatial location, each pixel is grouped as either a, b, c, d. The

input image is split into subimages, which are sequentially compressed. The subimage xY UV,a is initially encoded using a conventional

compression algorithm. The remaining subimages are compressed through deep networks, which receive the previously encoded subimages

as input and compress the current subimage. The dotted arrow denotes that the corresponding subimage is currently being compressed.

The compressed subimage is then used as an additional input for encoding the next subimage.

denotes the channel index (c ∈ {Y, U, V }) and s denotes

the spatial location index (s ∈ {a, b, c, d}). The subimages

xY UV,a = {xY,a, xU,a, xV,a} are first compressed using a

conventional compression algorithm. Then, the remaining

subimages are compressed one by one with our LC-FDNet,

where previously encoded subimages are used as input. The

order of the subimages to be compressed will be explained

in Sec.3.3.

3.2. Reversible Color Transform

In general, RGB images have significant correlations be-

tween the color channels. Most standard image/video com-

pression methods adopt YUV transformation to decorrelate

the color channels and enhance the compression efficiency.

In the case of lossless compression, the YUV transforma-

tion must be itself lossless, where the inverse of the YUV

back to the RGB should be lossless in integer arithmetic.

In this paper, we adopt the reversible color transform pro-

posed in [36] since it well approximates the conventional

YUV transformation. Note that the Y channel is expressed

in 8 bits and UV channels are expressed in 9 bits.

3.3. Framework

After the reversible color transformation, the input im-

age is divided into subimages depending on the color chan-

nel and the spatial location. Fig. 2 shows how we catego-

rize the pixels into four groups (a, b, c, d) depending on the

spatial location. Pixels in the odd row and odd column are

categorized as a, odd row and even column as b, and so on.

We compress 12 subimages in total, where the compres-

sion of each subimage is conditioned on the previously en-

coded subimages. To be specific, for the compression of the

N -th subimage y ∈ R
H

2
×

W

2
×1, we concatenate the already

encoded N − 1 subimages and use it as the input, which we

denote as xin ∈ R
H

2
×

W

2
×(N−1). We neglect the notation

of the subimage index N for the sake of simplicity. In this

scenario, the order of the subimages is critical to compres-

sion efficiency. The compression performance is improved

as the correlation among the input and the N -th subimage

increases. For instance, encoding subimage xY,d is much

easier when it is conditioned on xY,a rather than xV,b.

We design the order of the subimages considering the

following two factors : 1) color channel and 2) spatial lo-

cation. In terms of the color channel, we arrange the or-

der as Y −→ U −→ V . This is a straightforward choice

since the Y channel contains more significant features than

U and V . Considering the spatial location, we design the

network to proceed in the order of a −→ d −→ b −→ c.

We figure that this is a better design choice compared to

MS-PixelCNN [38], where they progress in the order of

a −→ b −→ c −→ d. Comparing a −→ d and a −→ b, we

see that d fully utilizes the information of a both horizon-

tally and vertically. In contrast, acquiring b conditioned on

a may have more benefit in terms of the horizontal axis, but

lacks to fully utilize the vertical components. In conclusion,

we proceed the compression of the subimages in the order

of xY,a −→ xU,a −→, xV,a −→ xY,d −→ xU,d −→ · · · −→ xV,c.

For the compression of the initial subimage xY UV,a, we

adopt a conventional lossless compression algorithm, sim-

ilar to RC [31]. Prior works [29, 33] provide the initial

prior as uniform distribution or unit Gaussian distribution.

Although DNNs estimate conditional probability distribu-

tions very well, the strength is limited when weak priors are

given. Conventional algorithms instead show competitive

performance in this environment, and hence we use them

for compressing the initial subimage xY UV,a. Specifically,

we adopt JPEG-XL [2] which yields state-of-the-art perfor-

mance among the conventional compression algorithms.

6035

ො𝑦𝐿
𝑦 𝑟𝐿

𝑞𝐿
𝜎𝑦 𝑚𝐿𝑥𝑖𝑛

Q−
≤ 𝜏𝑦

Entropy

Coder

×

Low Frequency Compressor

Entropy

Coder

High Frequency Compressor

𝑥𝑖𝑛 ො𝑦𝐻 Q− 𝑟𝐻
𝑞𝐻

𝜏𝑦
𝑝𝐿

𝑝𝐻𝑚𝐻 = 1 −𝑚𝐿
Adaptive Frequency Decomposition

Figure 3. The architecture of LC-FDNet. In this figure, we consider the case of compressing y = xY,d given xin = xY UV,a. AFD part

first receives xin and determines each pixel as belonging to either low or high-frequency regions, using error variance map σy and error

variance threshold τy . Afterward, LFC encodes the low-frequency region of subimage y. HFC then receives the encoded low-frequency

region as additional input and compresses the remaining high-frequency region. The decoding process is provided in the Supplementary.

3.4. Architecture

In this section, we present the architecture of LC-FDNet

illustrated in Fig. 3, which shows the details of Fig. 1. The

goal is to compress the N -th subimage y given the input

xin, which is the concatenation of N − 1 previously en-

coded subimages. Note that LC-FDNet is required for each

of the subimages, resulting in 9 LC-FDNets in total (since

3 subimages are encoded by JPEG-XL). These networks do

not share the parameters since each of them is specific for

each subimage.

Throughout the paper, notations L and H denote low and

high-frequency, respectively. We first explain the notations

in the AFD and LFC parts.

Subimage Prediction ŷL ∈ R
H

2
×

W

2
×1 is the network pre-

diction of y, where better prediction yields more compact

compression. Given the prediction, the residual is computed

as rL = ŷL−y, which is the difference between the ground

truth subimage and the prediction. Since the obtained resid-

ual is not in the form of integers, we quantize (round) the

residual. It is denoted as qL, which is then passed to the

entropy coder.

Probability Distribution pL is the estimated probability

distribution of the quantized residual qL. We directly es-

timate the probability distribution as the probability mass

function (pmf). Hence, the dimension of pL is H
2 × W

2 ×C,

where C is 511 for the Y channel, and 1021 for the U, V

channel. Softmax operation is applied before deriving pL,

so that the probabilities sum up to 1.

Error Variance Map The error variance map σy ∈

R
H

2
×

W

2
×1 represents the estimation of the prediction error

magnitude generated by the network. We design the error

variance map to follow the magnitude of the prediction error

through the following loss:

Lev = ∥σy − |y − ŷL|∥1. (1)

Here, each value in the map can be interpreted as the predic-

tion error variance at the corresponding pixel. A large value

implies that the network is likely to make a large predic-

tion error at the point, which means that the pixel belongs

to a high-frequency region. Similarly, smooth regions i.e.,

low-frequency regions yield low error variance values.

Error Variance Threshold With the obtained error vari-

ance map, we apply a simple thresholding to categorize

each pixel into two classes; pixels in low or high-frequency

regions. However, the threshold value should be adjusted

depending on the channel, spatial location and image char-

acteristics. For instance, the error variance is typically

larger in the Y channel compared to U and V . Thus the

threshold should be larger in the Y . Therefore, instead of

a fixed threshold, we let the network derive a specific error

variance threshold τy ∈ R for each subimage. Note that 9

threshold values are derived for a single input image. With

σy and τy in hand, we acquire the low-frequency mask as

mi
L =

{

1 if σi
y ≤ τy

0 else,
(2)

where i denotes the pixel index. mL serves as an indicator

of which components are considered in the low-frequency

region.

The quantized residual qL, corresponding probability

distribution pL, and the low-frequency mask mL are passed

6036

to the entropy coder. We compress only the low-frequency

components i.e., pixels corresponding to mi
L = 1. It can

be assumed that pixels belonging to low-frequency regions

will have marginal performance enhancement even when

additional information is given, specifically when it is com-

pressed in the HFC. Instead, the compression efficiency

gain is significant when these components serve as the ad-

ditional input.

After the compression of low-frequency regions in LFC,

HFC encodes the remaining high-frequency regions. Be-

sides xin, HFC additionally receives the low-frequency

component of the currently encoding subimage y ⊙ mL.

From the input, HFC generates the following two outputs:

1) ŷH : the prediction of y, 2) pH : the probability distri-

bution of the quantized residual qH . Since low-frequency

components serve as a strong prior for the high-frequency

components, HFC can make more precise predictions. In

addition, the variance of the probability distribution is re-

duced, leading to compression efficiency.

The pipeline of HFC is similar to that of LFC. The

quantized residual qH , corresponding probability distribu-

tion pH , and the high-frequency mask mH = 1 − mL are

fed to the entropy coder. Note that HFC can ignore the esti-

mation of low-frequency components and only focus on the

high-frequency ones.

3.5. Loss Function

LC-FDNet is trained with the following three losses: 1)

Error variance loss defined as Eq. 1, 2) reconstruction loss,

and 3) bitrate loss.

Reconstruction Loss We define reconstruction loss as the

L1 loss between the ground truth and the predicted subim-

age:

Lrec = mL · ∥y − ŷL∥1 +mH · ∥y − ŷH∥1. (3)

Note that we multiply the corresponding frequency mask to

the prediction error of LFC and HFC. This lets only the low-

frequency components contribute to the reconstruction loss

of LFC, and similarly for HFC. This makes the LFC/HFC

to be specified for low/high-frequency regions, respectively.

Although the reconstruction loss is often neglected in other

researches, we figure that adopting this loss leads to stable

training and performance enhancement.

Bitrate Loss Bitrate loss is used to minimize the cross-

entropy between the real probability distribution of the

quantized residual (pqL , pqH) and the estimated (pL, pH),

respectively. Formally, it is defined as

Lbr = mL·∥− log pL(qL)∥1+mH ·∥− log pH(qH)∥1. (4)

The probability distributions pL and pH are trained to clas-

sify the corresponding quantized residuals (symbols) qL and

qH by the cross-entropy loss. This is equivalent to the ex-

pected bits per symbol and thus we can directly minimize

the coding cost. To restrict the contribution of each fre-

quency component as in the reconstruction loss, we mul-

tiply the frequency masks to the corresponding probability

distribution.

Altogether, we train our network with the loss:

L = Lrec + λbrLbr + λevLev (5)

where λev and λbr are the balancing hyperparmeters. In our

experiments, we set both λev and λbr as 1.

4. Experiments

4.1. Experimental Setup

Implementation Detail The detail of the network architec-

ture is provided in the Supplementary Material. For the

quantization, we use the round function i.e., q = round(r).
The derivative is zero except at integers, which cannot be

used in gradient-based optimization. Therefore, we approx-

imate the round function as simple STE [6] i.e., q = r in

the backward pass since [10] has shown that different quan-

tization approximation methods have a minor effect on the

compression performance. The same problem is introduced

when deriving mL with Eq. 2. This is approximated as

mL = sigmoid(−(σy − τy)) in the backward pass. For

our entropy coder, we use “torchac,” which is a fast arith-

metic coding library for PyTorch developed by the authors

of L3C [29].

Dataset We validate our method on three benchmark

datasets, CLIC.m, CLIC.p and DIV2K. CLIC mobile

(CLIC.m) and CLIC professional (CLIC.p) are datasets re-

leased as part of the “Workshop and Challenge on Learned

Image Compression” [52]. CLIC.m consists of 61 evalua-

tion images which are taken using mobile phones. CLIC.p

contains 41 evaluation images which are taken by DSLRs.

Most of the images in the CLIC datasets are 2K resolution,

but some of them are low resolution as far as 512 × 384.

DIV2K [1] is a super-resolution dataset that consists of 2K

resolution high-quality images, where 100 images are pro-

vided for evaluation.

Training We train our network with Flickr2k [26] dataset

that provides 2,000 high-quality images for training. We

randomly extract a patch of size 128 × 128 from the input

image during training. Adam optimizer [20] is used for the

training, with a batch size of 24 for 3,000 epochs. The learn-

ing rate is initially set as 1× 10−3 and decays by a factor of

0.1 every 1,000 epochs. The training takes 36 hours when

trained on a GeForce GTX 1080 Ti.

Evaluation We compare our method for both learned and

non-learned compression algorithms. We compare against

6037

Table 1. Comparison of our method with other non-learning and learning-based codecs on high-resolution benchmark dataset. We measure

the performances in bits per pixel (bpp). Best performance is highlighted in bold and the second-best performance is denoted with ∗. The

difference in percentage to our method is highlighted in green.

Method CLIC.m CLIC.p DIV2K

PNG [7] 11.79 +70.9% 11.79 +50.0% 12.69 +55.9%

JPEG-LS [51] 7.59 +10.0% 8.46 +7.6% 8.97 +10.2%

JPEG2000 [37] 8.13 +17.8% 8.79 +11.8% 9.36 +15.0%

WebP [50] 8.19 +17.8% 8.70 +11.8% 9.33 +15.0%

BPG [5] 8.52 +23.5% 9.24 +17.6% 9.84 +20.9%

LCIC [19] 7.88 +14.2% 9.02 +14.8% 9.35 +14.9%

FLIF [43] 7.44 +7.8% 8.16 +3.8% 8.73 +7.2%

JPEG-XL [2] 7.20∗ +4.3% 8.19 +4.2% 8.49 +4.3%

L3C [29] 7.92 +14.8% 8.82 +12.2% 9.27 +13.9%

RC [31] 7.62 +10.4% 8.79 +11.8% 9.24 +13.5%

Near-Lossless [3] 7.53 +9.1% 7.98∗
+1.5% 8.43∗

+3.6%

Ours 6.90 7.86 8.14

the following conventional lossless image codecs: PNG [7],

JPEG-LS [51], JPEG2000 [37], WebP [50], BPG [5],

LCIC [19], FLIF [43] and JPEG-XL [2]. As for the

learned methods, we consider L3C [29], RC [31], and Near-

Lossless [3]. L3C and RC are trained with Open Images

dataset [22] consisting of 300,000 images. Near-Lossless is

trained with the DIV2K dataset. We use bits per pixel (bpp)

as the evaluation metric, where lower bpp indicates better

compression performance.

4.2. Compression Result

Table 1 presents the comparisons on the described eval-

uation sets. It can be seen that our method shows su-

perior performance to both engineered and learning-based

codecs. Considering DIV2K, our method achieves a 3.6%

gain compared to Near-Lossless. In the case of CLIC.m,

non-learning codecs such as FLIF and JPEG-XL outper-

form existing learning-based methods. Thus, it can be inter-

preted that learning-based methods are difficult to be gener-

alized to CLIC.m. Nevertheless, our method achieves state-

of-the-art performance and outperforms JPEG-XL by 4.3%.

Finally, for CLIC.p, our method shows the best performance

achieving 1.5% gain against Near-Lossless.

In Table 2, we report the compression result for each

subimage, i.e., each channel and spatial location. Consid-

ering the spatial location, we observe that the compression

efficiency enhances in the order of a −→ d −→ b −→ c.

This is straightforward since more information is supplied

as we proceed in the above order. From the perspective of

channels, better compression is presented in the order of

Y −→ UV . This is due to the color transform that reduces

the variance in UV channels. Moreover, V channel shows a

slight improvement compared to U since we use additional

input U when encoding the V .

Table 2. Compression result of each subimage for the DIV2K

dataset. Compression performance of subimage xY UV,a is the re-

sult of JPEG-XL.

bpp a d b c

Y - 0.95 0.81 0.79

U - 0.58 0.45 0.44

V - 0.57 0.44 0.43

Total 2.68 2.10 1.70 1.66

4.3. Inference Time

We measure the inference time required for encoding a

512×512 image on an GeForce GTX 1080 Ti. The decod-

ing time is the same as the encoding time for our method.

First, the compression of the initial subimage using JPEG-

XL requires 199 ms. The forward pass for achieving the

quantized residual, probability distribution, and frequency

mask takes 33 ms. Finally, the arithmetic coding using tor-

chac requires 611 ms. In total, our method requires 841 ms.

Note that 72% of the time is consumed in arithmetic coding,

which can be shortened if better PyTorch-friendly entropy

coder is developed in the future.

4.4. Adaptive Frequency Decomposition Analysis

We quantitatively and qualitatively demonstrate that the

error variance threshold is adaptive to the channel, spatial

location, and image characteristics. We first show that the

error variance threshold is adaptive to the channel and spa-

tial location through Table 3. In general, the threshold value

decreases in the order of d −→ b −→ c and Y −→ UV . This

is consistent with the order of compression efficiency. If

the subimage is more predictable, the overall values in the

variance map tend to decrease. In this case, the error vari-

6038

0.26 0.34 9.05 9.33

Figure 4. From top to down are the visualizations of an input image, error variance map, low-frequency mask, and error variance threshold.

These elements are visualized for the case of the Y channel and d location. We choose the samples from the DIV2K dataset that have the

smallest and largest τy . The error variance map is magnified by 5 for visualization.

Table 3. Error variance threshold value for each subimage. Since

the threshold is image-specific, we average the threshold for all the

images in DIV2K dataset.

τy d b c

Y 3.57 2.84 2.72

U 2.68 2.24 2.21

V 2.66 2.30 2.24

ance threshold should also decrease to balance the low to

high-frequency ratio.

Next, we show that the error variance threshold is adap-

tive to the image characteristics. Fig. 4 shows the out-

puts generated from LFC. The first two samples contain a

large portion of the smooth background and a single ob-

ject. These samples produce a small threshold value of 0.26

and 0.34. In contrast, the last two samples are more com-

plicated than the preceding ones and introduce many high-

frequency components. These samples generate a large

threshold value of 9.05 and 9.33. We interpret that the error

variance threshold is proportional to the number of high-

frequency components an image contains.

We also verify the above conclusion quantitatively. We

figure that images with many high-frequency components

tend to introduce large values in the error variance map.

In addition, these images result in low compression rate.

Hence, for samples in DIV2K, we plot the error variance

0 2 4 6 8 10 12 14

Mean Value of Error Variance Map

0

2

4

6

8

10

12

E
rr

o
r

V
a

ri
a

n
c
e

 T
h

re
s
h

o
ld

0 0.5 1 1.5

BPP

0

2

4

6

8

10

12

E
rr

o
r

V
a

ri
a

n
c
e

 T
h

re
s
h

o
ld

Figure 5. Graph of image characteristic versus error variance

threshold for DIV2K dataset. We use the samples of DIV2K, chan-

nel of Y , and spatial location of d.

threshold against the mean value of the error variance map

and bpp in Fig. 5. It can be observed that the error variance

threshold and the two components have a positive correla-

tion. In conclusion, the error variance threshold is adap-

tive to image characteristics, where the threshold value in-

creases as more high-frequency components are present.

4.5. Ablation Study

Several ablation experiments are performed to analyze

each component of LC-FDNet. We demonstrate the contri-

bution of each component in Table 4 by excluding the com-

ponents one by one. The comparing networks are evaluated

on the DIV2K dataset. We exclude the portion of JPEG-

XL (2.68 bpp) in computing the compression performance.

6039

Table 4. Ablation study of our method on DIV2K dataset. C2F

refers to the coarse-to-fine network. ✓ indicates that the corre-

sponding element is used.

C2F Adaptive τ Loss Masking bpp

✓ 5.78 +5.8%

✓ ✓ 5.61 +2.7%

✓ ✓ 5.57 +2.0%

✓ ✓ ✓ 5.46

Coarse to Fine We first demonstrate the effect of proceed-

ing in a coarse-to-fine manner. We design a comparing net-

work that compresses the low and high-frequency compo-

nents together so that the high-frequency components do

not benefit from the low ones. Hence, the network only out-

puts the subimage prediction and probability distribution.

We match the number of parameters for both networks to

demonstrate that the performance gain does not come from

the difference in the network size. The result (first row of

Table 4) shows that we can have a 5.8% performance gain

by the coarse-to-fine processing. Hence, we can conclude

that low-frequency components act as strong priors for esti-

mating the high-frequency components.

Adaptive Error Variance Threshold We show that letting

the error variance threshold be adaptive to image character-

istics leads to performance enhancement. Specifically, we

train a network with fixed τ for every subimage. Since our

framework is sensitive to the value of τ , we should carefully

set the threshold value for a fair comparison. Hence, we use

the average τy of the DIV2K validation set derived from our

full model as our fixed τ . The second row of the table shows

that the performance decreases by 2.7% with the fixed τ .

Loss Masking We verify that multiplying the correspond-

ing frequency mask in Eq. 3 and Eq. 4 has a valid contri-

bution. Here, we train a network without the multiplication

of frequency mask. In other words, the LFC and HFC share

the same objective and are not frequency-specific. In this

scenario, a performance drop of 2.0% is observed as in the

third row, indicating that assigning frequency-specific roles

to LFC and HFC has a positive influence.

4.6. Frequency Component Analysis

We show the performance enhancement in low and high-

frequency regions separately in Table 5 for further analy-

sis of our system. We first compare our full model (C2F)

against the model without the coarse-to-fine processing

(w/o C2F) as in the ablation study. Compared to the net-

work that proceeds without the coarse-to-fine processing,

the low-frequency components have a 3.4% performance

gain, whereas high-frequency components have an 11.4%

increase. This implies that the high-frequency components

benefit significantly from the coarse-to-fine processing. The

Table 5. Performance gain on low and high-frequency regions.

F2C refers to the network proceeding in a fine-to-coarse manner.

Method Low-Freq High-Freq Total

w/o C2F 3.93 +3.4% 1.85 +11.4% 5.78 +5.8%

F2C 3.78 -0.5% 1.84 +10.8% 5.62 +2.9%

C2F 3.80 1.66 5.46

low-frequency components indeed act as strong conditions

for the estimation of high-frequency ones, as intended.

We train an additional network that proceeds in a fine-

to-coarse manner (F2C). That is, we compress the high-

frequency components first and utilize them for encoding

the low-frequency components. From Table 5, we observe

that the performance gain is 0.5% in the low-frequency

area, which is minor. In contrast, there is a considerable

performance drop of 10.8% in the high-frequency compo-

nents. Altogether, there is a total performance drop of 2.9%

when proceeding in a fine-to-coarse manner. Although low-

frequency components take up a large portion of an image,

the gain is too small to have enough contribution to the over-

all gain. Thus, we conclude that the design choice of coarse-

to-fine manner is indeed favorable.

5. Conclusion

We have proposed LC-FDNet, a lossless image com-

pression framework that decomposes an image into low

and high-frequency regions to proceed in a coarse-to-fine

manner. We resolved the performance drop in the high-

frequency areas by first compressing the low-frequency

components and using them as a strong prior for encod-

ing the remaining high-frequency components. Further-

more, we designed the frequency decomposition method

to be adaptive to color channel, spatial location, and im-

age characteristics to derive the image-specific optimal ra-

tio of low/high-frequency components. Experiments show

that our method achieves state-of-the-art performance for

high-resolution datasets. Our code is available at https:

//github.com/myideaisgood/LC-FDNet.

Acknowledgments This work was supported in part by the

National Research Foundation of Korea(NRF) grant funded

by the Korea government(MSIT) (2021R1 A2C2007220),

in part by the Institute of Information & communications

Technology Planning & Evaluation (IITP) grant funded by

the Korea government(MSIT)[NO.2021-0-01343, Artificial

Intelligence Graduate School Program (Seoul National Uni-

versity)], and in part by BK21 FOUR program of the Educa-

tion and Research Program for Future ICT Pioneers, Seoul

National University in 2022.

6040

References

[1] Eirikur Agustsson and Radu Timofte. Ntire 2017 challenge

on single image super-resolution: Dataset and study. In Pro-

ceedings of the IEEE conference on computer vision and pat-

tern recognition workshops, pages 126–135, 2017. 5

[2] Jyrki Alakuijala, Ruud van Asseldonk, Sami Boukortt, Mar-

tin Bruse, Iulia-Maria Coms, a, Moritz Firsching, Thomas Fis-

chbacher, Evgenii Kliuchnikov, Sebastian Gomez, Robert

Obryk, et al. Jpeg xl next-generation image compression

architecture and coding tools. In Applications of Digital Im-

age Processing XLII, volume 11137, page 111370K. Inter-

national Society for Optics and Photonics, 2019. 1, 3, 6

[3] Yuanchao Bai, Xianming Liu, Wangmeng Zuo, Yaowei

Wang, and Xiangyang Ji. Learning scalable ly=-constrained

near-lossless image compression via joint lossy image and

residual compression. In Proceedings of the IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition, pages

11946–11955, 2021. 1, 6

[4] Johannes Ballé, Valero Laparra, and Eero P Simoncelli.

End-to-end optimized image compression. arXiv preprint

arXiv:1611.01704, 2016. 1

[5] Bellard. Bpg image format. https://bellard.org/

bpg. 1, 6

[6] Yoshua Bengio, Nicholas Léonard, and Aaron Courville.

Estimating or propagating gradients through stochastic

neurons for conditional computation. arXiv preprint

arXiv:1308.3432, 2013. 5

[7] Thomas Boutell and T Lane. Png (portable network graph-

ics) specification version 1.0. Network Working Group,

pages 1–102, 1997. 1, 6

[8] Benoit Brummer and Christophe De Vleeschouwer. End-to-

end optimized image compression with competition of prior

distributions. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pages 1890–

1894, 2021. 1

[9] Sheng Cao, Chao-Yuan Wu, and Philipp Krähenbühl. Loss-

less image compression through super-resolution. arXiv

preprint arXiv:2004.02872, 2020. 1

[10] Zhengxue Cheng, Heming Sun, Masaru Takeuchi, and Jiro

Katto. Learning image and video compression through

spatial-temporal energy compaction. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 10071–10080, 2019. 1, 5

[11] Zhengxue Cheng, Heming Sun, Masaru Takeuchi, and Jiro

Katto. Learned image compression with discretized gaussian

mixture likelihoods and attention modules. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 7939–7948, 2020. 1

[12] Yoojin Choi, Mostafa El-Khamy, and Jungwon Lee. Variable

rate deep image compression with a conditional autoencoder.

In Proceedings of the IEEE/CVF International Conference

on Computer Vision, pages 3146–3154, 2019. 1

[13] Ze Cui, Jing Wang, Shangyin Gao, Tiansheng Guo, Yihui

Feng, and Bo Bai. Asymmetric gained deep image com-

pression with continuous rate adaptation. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 10532–10541, 2021. 1

[14] Xin Deng, Wenzhe Yang, Ren Yang, Mai Xu, Enpeng

Liu, Qianhan Feng, and Radu Timofte. Deep homography

for efficient stereo image compression. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 1492–1501, 2021. 1

[15] Ge Gao, Pei You, Rong Pan, Shunyuan Han, Yuanyuan

Zhang, Yuchao Dai, and Hojae Lee. Neural image com-

pression via attentional multi-scale back projection and fre-

quency decomposition. In Proceedings of the IEEE/CVF In-

ternational Conference on Computer Vision, pages 14677–

14686, 2021. 1

[16] Ge Gao, Pei You, Rong Pan, Shunyuan Han, Yuanyuan

Zhang, Yuchao Dai, and Hojae Lee. Neural image com-

pression via attentional multi-scale back projection and fre-

quency decomposition. In Proceedings of the IEEE/CVF In-

ternational Conference on Computer Vision, pages 14677–

14686, 2021. 1

[17] Dailan He, Yaoyan Zheng, Baocheng Sun, Yan Wang,

and Hongwei Qin. Checkerboard context model for effi-

cient learned image compression. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 14771–14780, 2021. 1

[18] Emiel Hoogeboom, Jorn WT Peters, Rianne van den Berg,

and Max Welling. Integer discrete flows and lossless com-

pression. arXiv preprint arXiv:1905.07376, 2019. 1

[19] Seyun Kim and Nam Ik Cho. Hierarchical prediction and

context adaptive coding for lossless color image compres-

sion. IEEE Transactions on image processing, 23(1):445–

449, 2013. 1, 6

[20] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. arXiv preprint arXiv:1412.6980,

2014. 5

[21] Jan P Klopp, Keng-Chi Liu, Liang-Gee Chen, and Shao-

Yi Chien. How to exploit the transferability of learned im-

age compression to conventional codecs. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 16165–16174, 2021. 1

[22] Ivan Krasin, Tom Duerig, Neil Alldrin, Vittorio Ferrari, Sami

Abu-El-Haija, Alina Kuznetsova, Hassan Rom, Jasper Ui-

jlings, Stefan Popov, Andreas Veit, et al. Openimages: A

public dataset for large-scale multi-label and multi-class im-

age classification. Dataset available from https://github.

com/openimages, 2(3):18, 2017. 6

[23] Jooyoung Lee, Seunghyun Cho, and Seung-Kwon Beack.

Context-adaptive entropy model for end-to-end optimized

image compression. arXiv preprint arXiv:1809.10452, 2018.

1

[24] Mu Li, Wangmeng Zuo, Shuhang Gu, Jane You, and David

Zhang. Learning content-weighted deep image compression.

IEEE transactions on pattern analysis and machine intelli-

gence, 2020. 1

[25] Mu Li, Wangmeng Zuo, Shuhang Gu, Debin Zhao, and

David Zhang. Learning convolutional networks for content-

weighted image compression. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,

pages 3214–3223, 2018. 1

[26] Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and

Kyoung Mu Lee. Enhanced deep residual networks for single

6041

image super-resolution. In Proceedings of the IEEE confer-

ence on computer vision and pattern recognition workshops,

pages 136–144, 2017. 5

[27] Haichuan Ma, Dong Liu, Ning Yan, Houqiang Li, and Feng

Wu. End-to-end optimized versatile image compression with

wavelet-like transform. IEEE Transactions on Pattern Anal-

ysis and Machine Intelligence, 2020. 1

[28] Ankur Mali, Alexander G Ororbia, and C Lee Giles. The

sibling neural estimator: Improving iterative image decoding

with gradient communication. In 2020 Data Compression

Conference (DCC), pages 23–32. IEEE, 2020. 1

[29] Fabian Mentzer, Eirikur Agustsson, Michael Tschannen,

Radu Timofte, and Luc Van Gool. Practical full resolu-

tion learned lossless image compression. In Proceedings of

the IEEE/CVF conference on computer vision and pattern

recognition, pages 10629–10638, 2019. 1, 2, 3, 5, 6

[30] Fabian Mentzer, Eirikur Agustsson, Michael Tschannen,

Radu Timofte, and Luc Van Gool. Conditional probability

models for deep image compression. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 4394–4402, 2018. 1

[31] Fabian Mentzer, Luc Van Gool, and Michael Tschannen.

Learning better lossless compression using lossy compres-

sion. In Proceedings of the IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition, pages 6638–6647,

2020. 1, 2, 3, 6

[32] Fabian Mentzer, George Toderici, Michael Tschannen, and

Eirikur Agustsson. High-fidelity generative image compres-

sion. arXiv preprint arXiv:2006.09965, 2020. 1

[33] David Minnen, Johannes Ballé, and George Toderici. Joint

autoregressive and hierarchical priors for learned image

compression. arXiv preprint arXiv:1809.02736, 2018. 1,

3

[34] David Minnen, Johannes Ballé, and George Toderici. Joint

autoregressive and hierarchical priors for learned image

compression. arXiv preprint arXiv:1809.02736, 2018. 1

[35] Aaron van den Oord, Nal Kalchbrenner, Oriol Vinyals, Lasse

Espeholt, Alex Graves, and Koray Kavukcuoglu. Con-

ditional image generation with pixelcnn decoders. arXiv

preprint arXiv:1606.05328, 2016. 1, 2

[36] Soo-Chang Pei and Jian-Jiun Ding. Improved reversible

integer-to-integer color transforms. In 2009 16th IEEE In-

ternational Conference on Image Processing (ICIP), pages

473–476. IEEE, 2009. 2, 3

[37] Majid Rabbani. Jpeg2000: Image compression fundamen-

tals, standards and practice. Journal of Electronic Imaging,

11(2):286, 2002. 1, 6

[38] Scott Reed, Aäron Oord, Nal Kalchbrenner, Sergio Gómez

Colmenarejo, Ziyu Wang, Yutian Chen, Dan Belov, and

Nando Freitas. Parallel multiscale autoregressive density es-

timation. In International Conference on Machine Learning,

pages 2912–2921. PMLR, 2017. 1, 2, 3

[39] Hochang Rhee, Yeong Il Jang, Seyun Kim, and Nam Ik Cho.

Lossless image compression by joint prediction of pixel and

context using duplex neural networks. IEEE Access, 2021. 1

[40] Oren Rippel and Lubomir Bourdev. Real-time adaptive im-

age compression. In International Conference on Machine

Learning, pages 2922–2930. PMLR, 2017. 1

[41] Tim Salimans, Andrej Karpathy, Xi Chen, and Diederik P

Kingma. Pixelcnn++: Improving the pixelcnn with dis-

cretized logistic mixture likelihood and other modifications.

arXiv preprint arXiv:1701.05517, 2017. 1, 2

[42] Ionut Schiopu and Adrian Munteanu. Deep-learning-based

lossless image coding. IEEE Transactions on Circuits and

Systems for Video Technology, 30(7):1829–1842, 2019. 1

[43] Jon Sneyers and Pieter Wuille. Flif: Free lossless image for-

mat based on maniac compression. In 2016 IEEE interna-

tional conference on image processing (ICIP), pages 66–70.

IEEE, 2016. 6

[44] Myungseo Song, Jinyoung Choi, and Bohyung Han.

Variable-rate deep image compression through spatially-

adaptive feature transform. In Proceedings of the IEEE/CVF

International Conference on Computer Vision, pages 2380–

2389, 2021. 1

[45] Yannick Strümpler, Ren Yang, and Radu Timofte. Learning

to improve image compression without changing the stan-

dard decoder. In European Conference on Computer Vision,

pages 200–216. Springer, 2020. 1

[46] Lucas Theis, Wenzhe Shi, Andrew Cunningham, and Ferenc

Huszár. Lossy image compression with compressive autoen-

coders. arXiv preprint arXiv:1703.00395, 2017. 1

[47] George Toderici, Sean M O’Malley, Sung Jin Hwang,

Damien Vincent, David Minnen, Shumeet Baluja, Michele

Covell, and Rahul Sukthankar. Variable rate image com-

pression with recurrent neural networks. arXiv preprint

arXiv:1511.06085, 2015. 1

[48] George Toderici, Damien Vincent, Nick Johnston, Sung

Jin Hwang, David Minnen, Joel Shor, and Michele Covell.

Full resolution image compression with recurrent neural net-

works. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 5306–5314, 2017. 1

[49] Aaron Van Oord, Nal Kalchbrenner, and Koray

Kavukcuoglu. Pixel recurrent neural networks. In In-

ternational Conference on Machine Learning, pages

1747–1756. PMLR, 2016. 1, 2

[50] WebEngines Blazer Platform Version. 1.0 hardware refer-

ence guide, xp-002202892, network engines. Inc., Jun, 1:92,

2000. 6

[51] Marcelo J Weinberger, Gadiel Seroussi, and Guillermo

Sapiro. The loco-i lossless image compression algorithm:

Principles and standardization into jpeg-ls. IEEE Transac-

tions on Image processing, 9(8):1309–1324, 2000. 1, 6

[52] Workshop and challenge on learned image compression.

https://www.compression.cc/challenge/. 5

[53] Fei Yang, Luis Herranz, Yongmei Cheng, and Mikhail G

Mozerov. Slimmable compressive autoencoders for practical

neural image compression. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition,

pages 4998–5007, 2021. 1

[54] Xi Zhang and Xiaolin Wu. Attention-guided image compres-

sion by deep reconstruction of compressive sensed saliency

skeleton. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, pages 13354–

13364, 2021. 1

6042

