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Abstract

Depth completion has been widely studied to predict a
dense depth image from its sparse measurement and a sin-
gle color image. However, most state-of-the-art methods
rely on static convolutional neural networks (CNNs) which
are not flexible enough for capturing the dynamic nature of
input contexts. In this paper, we propose GuideFormer, a
fully transformer-based architecture for dense depth com-
pletion. We first process sparse depth and color guidance
images with separate transformer branches to extract hier-
archical and complementary token representations. Each
branch consists of a stack of self-attention blocks and has
key design features to make our model suitable for the task.
We also devise an effective token fusion method based on
guided-attention mechanism. It explicitly models informa-
tion flow between the two branches and captures inter-
modal dependencies that cannot be obtained from depth or
color image alone. These properties allow GuideFormer
to enjoy various visual dependencies and recover precise
depth values while preserving fine details. We evaluate
GuideFormer on the KITTI dataset containing real-world
driving scenes and provide extensive ablation studies. Ex-
perimental results demonstrate that our approach signifi-
cantly outperforms the state-of-the-art methods.

1. Introduction

Guided depth completion is the task of converting sparse
depth observations to dense depth maps with the corre-
sponding color image. This task has been drawing more
and more research attention, thanks to its wide range of ap-
plications in the computer vision field, e.g., 3D scene map-
ping [26] and 3D object detection [22] for robotic percep-
tion and autonomous driving. However, commercial depth-
sensing cameras (e.g. LiDAR sensors) suffer from their
inherent drawbacks, including specular surfaces, quantiza-
tion, occlusion, and noise. These properties make depth
completion a challenging problem. To tackle depth comple-
tion, a variety of methods, mostly based on deep convolu-
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tional neural networks (CNNs), have been proposed. Early
works deal only with sparse depth input to estimate dense
depth via sparsity invariant CNN [30] or auxiliary vision
tasks [13, 18]. Recent works have shown a great success
in using multi-modal information, including color images
[10,15,20,31,40] and surface normal [23,36]. These meth-
ods have achieved state-of-the-art performances over the
conventional methods using only depth input. Nevertheless,
CNN-based methods show fundamental limitations by their
basic building block, i.e., the static convolutional layers.
The interaction between convolution kernels and inputs is
content-independent. Applying the same kernels to any re-
gion might not be flexible for adapting diverse and disparate
spatial contexts. Furthermore, the convolution is not effec-
tive for modeling long-range dependencies. Recently, there
are several attempts to develop content-adaptive CNNss for
depth completion. ACMNet [40] constructs a graph prop-
agation based network, and learns graph affinities by con-
sidering color and depth information. GuideNet [29] pro-
poses a guided-convolution module, dynamically predict-
ing content-adaptive convolution kernels from color im-
ages. However, these methods still use CNNs as the back-
bone, which leaves room for further improvement.

In this paper, we propose GuideFormer, a dual-branch
architecture that takes full advantage of attention mecha-
nisms for depth completion. Each branch, consisting of a
stack of modified self-attention blocks, embeds hierarchical
and complementary tokens from sparse depth and color im-
ages. This allows our model to better capture adaptive intra-
modal dependencies through the whole completion process.
An effective token fusion method, called guided-attention
module (GAM), is also introduced by extending the stan-
dard self-attention mechanism. It models explicit informa-
tion exchange among the two complementary branches and
captures inter-modal dependencies from the learned cross-
modal similarity. To the best of our knowledge, we are the
first to apply fully transformer-based architecture for depth
completion task. Experimental results on the KITTI bench-
mark [30] demonstrate the effectiveness of the proposed
method, which outperforms the state-of-the-art methods.

Our contributions can be summarized as follows:
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* We propose a dual-branch and fully transformer-based
architecture for depth completion task. It learns input-
adaptive token representations from the sparse depth
and color guidance images, respectively through the
whole completion process. This allows us to reason
about diverse intra-modal dependencies better than the
existing static CNN-based methods.

* We introduce a guided-attention module (GAM) by ex-
tending the standard self-attention mechanism. It cap-
tures inter-modal dependencies and models informa-
tion flow between depth and color tokens. We show
that GAM is a more powerful method of fusing multi-
modal information, compared to simple concatenation
[10] or guided-convolution module [29].

¢ Our method outperforms the recent state-of-the-art ap-
proaches on the KITTI benchmark. We also provide
extensive ablation studies with both quantitative and
qualitative experimental analyses.

2. Related Works
2.1. CNN-based Depth Completion Methods

Depth completion methods are broadly divided into two
categories: the first one takes only sparse depth measure-
ments as input [13, 18, 30], and the second one addition-
ally utilizes synchronized color images as guidance infor-
mation [3, 8, 10, 15,19,20,23,29,31,37,40]. By incorpo-
rating additional structural guidance, the second category
significantly improves depth completion performance. Typ-
ically, Ma et al. [19] concatenate sparse depth map and its
corresponding color image, and then feed them into CNNs.
The works of [3, 20, 37] initially estimate dense but coarse
depth image using CNNs, and then refine it with spatial
propagation network (SPN) by learning local or non-local
affinities. Recent methods [10, 15, 23, 29, 40] construct a
dual-branch CNN to separately extract features from sparse
depth and color images, and fuse them for final depth pre-
dictions. DeepLiDAR [23] and Xu et al. [36] impose geo-
metric constraints between depth and intermediate surface
normal to regularize the completion process and improve
the robustness. However, the aforementioned methods are
based on static CNN kernels that stay unchanged for input.

2.2. Content-adaptive CNNs for Depth Completion

To overcome the limitation of earlier CNN-based meth-
ods, several works [11, 29, 40] develop content-adaptive
CNNs for depth completion. Huang ef al. [11] use self-
attention mechanism, implemented by gated-convolution,
on each convolutional layer. They further propose a bound-
ary consistency to produce a dense depth of the clear struc-
ture. ACMNet [40] defines a graph using k-nearest neigh-
bor, and adaptively aggregates CNN features to encode con-
textual information. In the decoder, it uses a symmetric

gated fusion strategy to combine depth and color informa-
tion. GuideNet [29] introduce a guided-convolution module
that dynamically predicts content-adaptive convolution ker-
nels for multi-modal feature fusion.

2.3. Vision Transformer

Transformer has received considerable attention in the
computer vision community since its great success in nat-
ural language processing (NLP) [32]. Recently, it has
shown outstanding performance on many computer vision
tasks such as image classification [0, 7, 16, 33, 34, 39], ob-
ject detection [, 6, 16,24, 33], and semantic segmentation
[28,35,41]. Several works [25,38] apply transformers to
monocular depth estimation, closely related to depth com-
pletion task. DPT [25] uses ViT [7] as a backbone to encode
an image into token representations and reassembles them
into image-like representations at multiple stages. These
tokens are then progressively combined by the CNN de-
coder to recover depth from a single color image. Trans-
Depth [38] extracts CNN features and further processes
them with transformers, and applies attention gate decoder
with independent channel- and spatial-wise attention. Un-
like these methods [25, 38], we propose a dual-branch
and fully transformer-based architecture to extract and fuse
multi-modal token representations for depth completion.

3. Method

We elaborate GuideFormer with a detailed network
structure and design choices for depth completion. It con-
sists of three main components: (1) fully transformer-based
encoder-decoder, (2) guided-attention module (GAM) to
enrich the representations from (1) using a guided-attention
mechanism, and (3) the final depth fusion module. The
high-level architecture is illustrated in Figure 1.

3.1. Self- and Guided-attention Mechanisms

Before presenting GuideFormer, we first review the
window-based self-attention mechanism in the Swin Trans-
former [16], and extend it to the guided-attention one. Since
global self-attention [7] is computationally unaffordable for
large image sizes, the Swin Transformer performs the self-
attention within non-overlapping shifted local windows.
Given a local window feature F € RW? xC the query, key,
and value matrices are computed as follows:

Q=FW? K=FW! V=FW", (1)

where W and C' denote the window size and the number of
input channels, respectively. W9, W*_ and W* € R€*9 are
d-dimensional projection matrices which are shared across
local windows. The self-attention is computed as follows:

QK"
Vd

S-Attn(Q, K, V) = softmax( +B)V, (2
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Figure 1. The overall architecture of the proposed GuideFormer. CBC, CBD, DBC, and DBD denote color-branch confidence map, color-
branch depth map, depth-branch confidence map, and depth-branch depth map, respectively. The dual-branch transformer architecture
extracts the token representation of multi-modal entities. The information of the tokens is fused with the guided-attention module. The
output of the decoder is further processed by the reconstruction block to produce the dense depth maps with their corresponding confidence
maps. Then the final complete depth map is obtained by the depth fusion module.

where B is the relative positional bias [16]. Equation 2 is re-
peated for h-times in parallel, and the outputs are concate-
nated to form multi-head self-attention (MSA). Note that
unlike static convolutions in previous methods [10, 15,23,

], attention weights are dynamically calculated based on
the input contents (i.e. self-similarity).

Let us consider two groups of features from input and
guidance images, where the latter guides the attention learn-
ing for GuideFormer. We will use the subscripts I and G to
denote the intermediate representations from each image.
The guided-attention mechanism is defined as follows:

QK¢
Nz

where we assume that F; and Fg have the same spatial di-
mension. The form of multi-head guided-attention (MGA)
is straightforward. Conceptually, the self-attention (Equa-
tion 2) takes weighted-average on V; with respect to the
similarity learned from Q; and K;. In contrast, the guided-
attention (Equation 3) attends V ¢ with the cross-modal sim-
ilarity between Q; and K. By adding the attended V¢ to
F;, we can explicitly transfer information of color branch
to depth branch by considering cross-modal dependencies.

G-Attng—1(Qr, Kea, V@) = softmax( +B)Ve, (3)

3.2. Fully Transformer-based Encoder-Decoder

We introduce a fully transformer-based encoder-decoder
that maps a sequence of tokens to a dense depth image. We
basically follow the Swin Transformer [ 6], but make sev-
eral key modifications for dense depth completion. A dual-

branch encoder-decoder architecture is designed to thor-
oughly exploit hierarchical and complementary information
from color and depth images as shown in Figure 1. Two
branches have identical architecture. Sparse depth (or color)
image is first split into tokens through an embedding layer.
Most vision transformers implement this embedding as a
single large-stride and -kernel convolution (from 4 to 16).
However, we found that such convolution makes transform-
ers difficult to optimize, and degrades the final performance
for dense depth completion. We instead adopt a shallow
feature extractor with two 3 x 3 residual blocks [9]. The
stack of small convolutional layers is a good choice in the
early processing pipeline, leading to more stable training
and better performance.

The resulting shallow features are then flattened, and
pass through three encoder stages. Each stage contains two
self-attention blocks (Figure 2a) and one down-sampling
layer (i.e. patch merging in [16]). A feed-forward oper-
ation in Figure 2 is composed of two linear layers with a
depth-wise convolution (DWC) layer between them. We
add the DWC layer to better model the local context in self-
attention blocks, which is essential for preserving edges and
fine-grained details. After the encoding stage, we apply
consecutive self-attention blocks to extract bottleneck fea-
tures without down-sampling. The decoder has a symmet-
ric structure to its encoder counterpart, and progressively
reconstructs high-resolution feature maps from the bottle-
neck. Each decoder stage contains one up-sampling layer
and two self-attention blocks. We realize the inverse oper-
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Figure 2. Two basic attention blocks of GuideFormer. ® denotes
matrix multiplication and & denotes addition. The self-attention
block takes an input feature and outputs the feature attended by
itself. On the other hand, the guided-attention block takes the input
feature along with the guidance feature and outputs the attended
feature guided by the guidance feature.

ation of patch merging [16] with a patch shuffle layer [27],
followed by a linear layer to match the channel dimen-
sion. We add skip connections between encoder stages and
their symmetric decoder stages. Comparing the architec-
ture in [25] for dense prediction, our model captures global
as well as local dependencies, and maintains the capacity to
dynamically learn kernel weights both in the encoder and
decoder. In the following, we explicitly model information
flow between sparse depth and color branches with the pro-
posed guided attention mechanism.

3.3. Guided-attention Module

Due to the difference in semantic information between
color and sparse depth images, the features processed by
each branch of transformer encoder-decoder are comple-
mentary to each other. Contrast to simple concatena-
tion [10] or guided-convolution module [29,40], we utilize
GAM for fusing information from multi-modal inputs. Us-
ing cross-modal similarities between two features as atten-
tion weights, guided-attention provides a more straightfor-
ward way to integrate multi-modal features.

Based on the guided-attention mechanism mentioned in
Section 3.1, we form a guided-attention block as shown in

| [ | _,—(
S-Attn G-Attn G-Attn S-Attn
) )

S-Attn G-Attn S-Attn S-Attn
Guide Input Guide Input Guide Input
Feature Feature Feature Feature Feature Feature

(a) Pre-Guide (b) Post-Guide (c) Bidirectional-Guide

Figure 3. Flowcharts of three GAM variants for depth comple-
tion. (a) Pre-guide GAM employs guided-attention to depth fea-
ture before performing self-attention, (b) Post-guide GAM applies
guided-attention to depth feature after performing self-attention,
(c) Bidirectional-guide GAM first implements guided-attention to
depth feature and then after performing self-attention it employs
guided-attention to color feature in the reverse direction.

the Figure 2b. As in the self-attention block, the attended
output of guided-attention is fed into a feed-forward layer to
produce output tokens. Note that both the self-attention and
the guided-attention blocks utilize the same feed-forward
layer. Thus, only the attention mechanism differs among
them. Next, we construct three GAM variants (Figure 3),
depending on the combination of the self-attention and the
guided-attention blocks. In all three GAM variants, the
color feature is first processed with self-attention to cap-
ture intra-modal interaction before offering guidance to the
depth feature. In pre-guide GAM (Figure 3a), the guided-
attention is carried out before the implementation of the
self-attention. Then the self-attention is performed on the
color-guided depth feature to reorganize the information.
On the other hand, post-guide GAM (Figure 3b) performs
the guided-attention after modeling intra-modal interaction
of the depth feature. Bidirectional-guide GAM (Figure 3c)
is similar to the pre-guide GAM, but a reverse guided-
attention is added to enable bidirectional information flow
between two different modalities. We compare the perfor-
mances of GAM variants in Section 4.2.

The modular GAM layers can be easily stacked in se-
ries for fusing multi-modal information in multiple scales.
Based on GAM, we formulate two guidance architectures
as shown in Figure 4. In the parallel guidance architec-
ture, GAM processes color and depth features simultane-
ously. Denote the consecutive color features at the encoder
as F(C), Fi, e FCL and the corresponding depth features as
FY, F}i, S Fﬁ . Then the input and output of the [-th GAM
are expressed as follows:

[F.,Fq] = GAM,

parallel

(FLFY), 4)

where [ € {1, 2, ---, L}. In the sequential guidance archi-
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Figure 4. Two guidance architectures based on a stack of GAMs.

tecture, the color branch is processed first and the decoded
color features provide guidance to the encoded depth fea-
tures. In this architecture, the final decoded color feature
Ff provides guidance to the initial encoded depth feature
FY, FCL -1 provides guidance to Fé, and so on.

F,, = GAM!

sequential ([

FLo L) (5)

Note that the two guided-attention models have the same
size with the same L.

3.4. Depth Fusion and Loss Function

After passing through the transformer encoder-decoder
with GAMs, the final color feature FCL and the final depth
feature FULl are obtained. Then they are taken as inputs to
reconstruction blocks, consisting of two transposed convo-
lution layers, for reconstructing the dense depth maps with
corresponding confidence maps. GAMs effectively trans-
fer the semantic information from the color images to the
depth features, but not all complementary information is ex-
tracted from the color features. Thus, the final color-branch
depth map is combined with the depth-branch depth map
to improve the quality of the final output. As Gansbeke et
al. [31], we utilize the confidence maps as weights for fus-
ing the two dense depth maps. The weight values are com-
puted from the confidence maps using the softmax function.
Then, the final dense depth prediction ﬁout is obtained by

Bos(y) — 7 Dep) + €40 Da(p)
out\P) = eCe(®) 1 eCalp)

; (6)

in which p denotes a pixel and we denote the dense maps
predicted from each branch by D. and Dy, and the confi-
dence maps by C. and C,.

In training the proposed network, we use the mean
squared error (MSE) for computing the training loss. How-
ever, since the ground truth depth maps are often not com-
pletely dense, proper masking is required to filter valid pix-
els when computing the MSE. We use the following equa-
tion to compute the loss.

N 1 .
£Dou) = 5 > Dout(p) = Dar@)*, ()
peP

where D, P, and | P| denote the ground truth depth map,
the set of valid pixels of Dg7, and the number of valid pix-
els, respectively.

Moreover, during the entire training process of the pro-
posed network, we introduce an additional supervision to
the depth prediction for each branch as below:

L= LDyut) + AL(D.) + NaL(Dy) (8)

where A, and \; are hyperparameters chosen from empiri-
cal experiments.

4. Experiments

In this section, we verify the effectiveness of our method
in depth completion. We first describe the dataset used for
our experiments and implementation details. Next, we pro-
vide ablation studies to analyze the importance of compo-
nents of our model. Finally, we show the superior perfor-
mance of our method by comparing it with other state-of-
the-art approaches both quantitatively and qualitatively.

4.1. Implementation Details

Dataset We evaluate our method on the KITTI Depth
Completion dataset [30], a large dataset with real-world out-
door scenes captured by a driving vehicle. It provides color
images with corresponding aligned sparse depth maps for
which ground truth depth is created by aggregating 11 con-
secutive 3D LiDAR frames and projecting them into one
image frame. Nevertheless, since the GT depth contains
only 16% annotated depth pixels, the sparsity of GT depth
makes depth completion a challenging task. The dataset
consists of 86K training samples along with 1K samples of-
ficially selected for validation and another 1K samples for
testing. The validation and test set images have the resolu-
tion of 1216 x 352, while the training set has a slightly dif-
ferent image size. We use the test set to compare our model
with the state-of-the-art models on the KITTI benchmark,
while we use the validation set for ablation studies.
Metrics Following the criteria of the KITTI benchmark,
we adopt four metrics for evaluation of performance: root
mean squared error (RMSE), mean absolute error (MAE),
root mean squared error of the inverse depth (iIRMSE), and
mean absolute error of the inverse depth iMAE). Among
these metrics, RMSE is used as the primary metric when
evaluating our model.
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Figure 5. Visualization of the proposed method for typical examples.

pre-guide GAMs forming the sequential guidance architecture.

Model size  FLOPs ™ | pMsE
time

CNN enc - CNN dec 132M 748G 0.053s | 772.78

CNNenc - Transdec | 115M  1584G  0.091s | 770.13

Trans enc - CNN dec 11IM  1212G  0.076s | 768.41

Trans enc - Trans dec 99M 1802G  0.101s | 765.38

Table 1. Comparison between CNN and Transformer. Concatena-
tion is used for fusing multi-modal information by the sequential
guidance architecture in all models.

Training configuration The proposed method is imple-
mented on the PyTorch [21] framework, and the training
setting is similar to PENet [10]. Since the depth maps have
rare LiDAR points at the top, the training images are firstly
bottom-cropped to the size of validation set images (1216 x
352) and then randomly cropped to 1216 x 320. We train
our model on 8 NVIDIA V100 GPUs with a batch size of
8 for 30 epochs. We use the Adam optimizer [ 4] with the
momentum of 81 = 0.9, #2 =0.99, and the weight decay of
1 x 1075, Most transformer papers select the AdamW opti-
mizer [17] with relatively large weight decay (from 102 to
10~*) to train their models, but this setting makes training
unstable and degrades the performance of our model. The
initial learning rate is 2 x 10~ and it is decayed by half for
every 5 epochs. Moreover, the loss function in Equation 8
is configured with an initial value of 0.2 for A, and A4, de-

All the results are obtained by the GuideFormer model with the

cayed gradually. Note that many transformer models need
to be pretrained on a large dataset like ImageNet [5] to get
the expected performance. On the other hand, our model is
not pretrained with any additional data and we only use the
KITTI training set to train our model.

4.2. Ablation Studies

We conduct a number of experiments to verify the ef-
fectiveness of each component of GuideFormer, including
the transformer encoder-decoder architecture, GAM vari-
ants, and the guidance architectures. The results are ana-
lyzed in detail with Table 1, 2, and 3.

CNN vs. Transformer The results in Table 1 show that
transformer outperforms CNN with less parameters. This
verifies that the input-adaptive self-attention block is more
effective at extracting useful information and reconstruct-
ing dense depth maps from color and sparse depth images,
compared to the static convolutional layer. However, al-
though we employ window-based self-attention blocks to
relieve the burden of computation, the computational cost
of the transformer is still higher than that of CNN, which
makes inference slow. Making the transformer computa-
tionally efficient is beyond the scope of this paper.

GAM Variants As shown in Table 2, the proposed GAM
variants demonstrate their superior performance over sim-
ple concatenation. We can also see that pre-guide GAM
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Model Parallel  Sequential | Size
Concat 768.47 765.38 99M
Pre-guide 756.15 754.17 130M
Post-guide 759.98 757.52 130M
Bidirectional-guide | 755.09 - 163M

Table 2. Comparison of different GAM variants. The concatena-
tion model is selected as a baseline for comparison.

Model Parallel  Sequential
Single-branch 867.94
Dual-branch - DBD 759.61 758.26
Dual-branch - Fused depth | 756.15 754.17

Table 3. Effect of dual-branch architecture and the depth fusion
module. Single- and dual-branch models are of the same size. Pre-
guide GAMs are adopted by dual-branch models.

outperforms post-guide GAM, meaning that performing
guided-attention ahead of self-attention makes guidance
more effective. Especially at the early stage of the trans-
former encoder, it is not easy for the transformer to learn
representation from a sparse depth map. Guided-attention
helps this process by delivering useful contextual informa-
tion from the color features to the depth features. How-
ever, it is interesting that bidirectional-guide GAM gives
better results compared to pre-guide GAM. Since color and
depth features contain complementary contextual informa-
tion, guiding the color feature with the depth feature aug-
ments its context.

Parallel vs. Sequential The results in Table 2 and 3 show
that the sequential guidance architecture produces better re-
sults in general compared to its parallel counterpart. It
implies that processing color features followed by depth
features sequentially utilizes the guided-attention mecha-
nism efficiently, while connecting two branches at the same
stages decreases the effect of guidance. Color and depth
features contain different levels of semantic information at
each encoder or decoder stage. Corresponding information
of each color and depth branch is more compatible in the
proposed sequential guidance architecture compared to the
parallel architecture, which improves the quality of guid-
ance. Furthermore, it is interesting that the pre-guide GAMs
in the sequential guidance architecture performs better than
the bidirectional-guide GAMs in the parallel guidance ar-
chitecture. We deduce that this is because the decoder fea-
ture of color branch is much informative than the encoder
one for dense prediction. In conclusion, the nature of the
guidance architecture impacts the performance more than
the GAM itself.

Dual-Branch + Depth Fusion From the results in Table
3, we can see that a dual-branch encoder-decoder archi-
tecture predicts more precise dense depth maps than sin-

Method RMSE MAE iRMSE iMAE | reference
CSPN [4] 1019.64 279.46 293 1.15 | ECCV18
IRL2[18] 901.43  292.36 4.92 1.35 | CVPR20
TWISE [12] 840.20  195.58 2.08 0.82 | CVPR21
NConv [8] 829.98  233.26 2.60 1.03 PAMI20
S2D [19] 814.73  249.95 2.80 1.21 ICRA19
DepthNormal [36] 777.05  235.17 2.42 1.13 ICCV19
FusionNet [31] 772.87  215.02 2.19 0.93 MVA19
DeepLiDAR [23] 758.38  226.50 2.56 1.15 | CVPRI9
FuseNet [2] 752.88  221.19 2.34 1.14 ICCV19
CSPN++ [3] 743.69  209.28 2.07 0.90 | AAAI20
NLSPN [20] 741.68  199.59 1.99 0.84 | ECCV20
GuideNet [29] 736.24  218.83 2.25 0.99 TIP20
FCFR-Net [15] 735.81  217.15 2.20 0.98 AAAI21
ACMNet [40] 732.99  206.80 2.08 0.90 TIP21
PENet [10] 730.08  210.55 2.17 0.94 ICRA21
GuideFormer (ours) | 721.48 207.76 2.14 0.97 -

Table 4. Quantitative comparisons with state-of-the-art methods
on KITTI test set. Best results are shown in bold. The results of
other methods are obtained from the KITTI online leaderboard,
ranked by the RMSE.

gle branch architecture with the same model size. It ver-
ifies that dual-branch encoder-decoder architecture is opti-
mal for extracting features from multi-modal inputs. Also
as shown in Figure 5, depth-branch depth map contributes
more to the final prediction in most regions. This implies
that the information from color images is effectively de-
livered to the depth features through the guided-attention
model. However, since complementary information re-
mains in the color-branch depth map, it is needed to im-
prove performance by the fusion module.

4.3. Comparison with State-of-the-Art

Quantitative Analysis Taking the results of ablation
studies into account, we compare our best GuideFormer,
which adopts the sequential guidance architecture consist-
ing of pre-guide GAMs, with the current state-of-the-art
methods on the KITTI benchmark. As shown in Table 4, the
proposed method outperforms all the peer-reviewed meth-
ods for the RMSE metric, which is considered as the pri-
mary metric for depth completion task. Although it is not on
the top of the list for the other metrics, it still shows the com-
petitive performance on these metrics. We discuss that the
performance in terms of RMSE or MAE is highly related
to the training loss. For example, NLSPN [20] used the
combination of L; and Ly losses. TWISE [12] applied the
generalized L, loss, called asymmetric linear error. ACM-
Net [40] included the edge-aware smoothness using L; loss.
As a result, these methods achieved lower MAE. However,
it is non-trivial to balance RMSE and MAE. Thus, follow-
ing the literature [10, 15,29], we used only Lo loss to train
our model. We also want to emphasize that inverse metrics
are inherently unstable at close objects, i.e., for very large
disparity values.
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Qualitative Analysis Figure 6 shows a visualization of
several examples from the KITTI test set for evaluating the
quality of our depth completion results. The state-of-the-
art methods selected for comparison are FCFR-Net [15],
ACMNet [40], and PENet [10]. We pick a variety of ob-
jects in the images for detailed analysis such as bikes, poles,
trees, and cars. The zoomed-in patches show the consid-
erable improvement of our method over existing state-of-
the-art methods, especially at object boundaries. ACM-
Net [40] and PENet [10] have blurred depth prediction
around boundaries, resulting in mixed depth pixels and bro-
ken edges. FCFR-Net [15] has relatively clear edges but ig-
nores the details of objects. On the other hand, our method
preserves clear edges and object details while predicting
more precise depth values.

|

-
-
-

Figure 6. Qualitative comparison with state-of-the-art depth completion methods on KITTI test set. (a) color images, (b) FCFR-Net [15],
(c) ACMNet [40], (d) PENet [10] and (e) GuideFormer (ours). We select two patches from each image to compare the quality of predicted
depth for a variety of objects in detail.

5. Conclusion

In this paper, we present GuideFormer, a dual-branch
transformer architecture for color image-guided depth com-
pletion. GuideFormer consists of three main parts: (1) a
fully transformer-based encoder-decoder architecture, (2)
guided-attention module (GAM), and (3) the depth fusion
module. Unlike existing CNN-based methods, our model
utilizes the self-attention mechanism to extract internal to-
ken representations of the color and sparse depth images.
Then the GAMs help fusing the information of two differ-
ent modalities. By stacking GAMs to form the sequential
guidance architecture, GuideFormer achieves an outstand-
ing performance on the KITTI benchmark. We expect that
our method serves as a new baseline for color image-guided
depth completion and motivates further research.
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