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Abstract

In this work, we present a solution to the challenging
problem of reconstructing liquids from image data. The
challenges in reconstructing liquids, which is not faced in
previous reconstruction works on rigid and deforming sur-
faces, lies in the inability to use depth sensing and color
features due the variable index of refraction, opacity, and
environmental reflections. Therefore, we limit ourselves to
only surface detections (i.e. binary mask) of liquids as ob-
servations and do not assume any prior knowledge on the
liquids properties. A novel optimization problem is posed
which reconstructs the liquid as particles by minimizing the
error between a rendered surface from the particles and the
surface detections while satisfying liquid constraints. Our
solvers to this optimization problem are presented and no
training data is required to apply them. We also propose a
dynamic prediction to seed the reconstruction optimization
from the previous time-step. We test our proposed meth-
ods in simulation and on two new liquid datasets which we
open source1 so the broader research community can con-
tinue developing in this under explored area.

1. Introduction

To successfully navigate in and interact with the 3D
world we live in, a 3D geometric understanding is required.
The importance of this requirement can be seen by the
numerous advancements in reconstruction methods from
cameras, which is the ideal sensor due to its information
richness and cheap cost. Solutions for surface based re-
construction have been proposed for a variety of scenarios
such as rigid, unknown environments [31] with dynamic ob-
jects [21]. The rigidness assumption has also been lifted to
handle deformable surfaces [17, 30]. Breakthrough devel-
opments from the reconstruction community have fed into
downstream applications such as robotic manipulation [43]
and surgical tissue tracking [23].

Reconstruction of more complex scenes, such as fluids
however remains an under explored area. Fluids, unlike

1https://github.com/ucsdarclab/liquid_reconstruction

Figure 1. The top and bottom row figures shows the output of
our proposed method for reconstructing liquid from an endoscopic
camera and a human pouring chocolate milk into a cup respec-
tively. Our reconstruction approach minimizes the 2D surface
detection loss while simultaneously satisfying liquid constraints
without the need for any prior training data. The result is an effec-
tive reconstruction technique for liquids that has been validated on
simulated and real-life data as shown here.

rigid and deforming objects, are typically turbulent and can
exhibit translating, shearing, and rotation motions [33]. The
well established Navier-Stokes equations which describe
fluid motion have been applied to generate effective graphic
renderings of fluids [4]. The motions of fluids also differs
depending on if it is a gas or liquid. Gasses are compress-
ible and reconstruction from images has been explored [9].
Liquids, unlike gasses, are in-compressible and for every-
day human interactions, rely on a container and gravity to
form their shape (e.g. a mug holding coffee). By fully re-
constructing liquids in 3D, automation efforts which repli-
cate human tasks interacting with liquids can be signifi-
cantly improved such as robot bar tending [44], autonomous
blood suction during surgeries [16], and sewage service
[42]. However, the challenge of reconstructing liquids from
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images remained unexplored and simplifying heuristics or
end-to-end models were used to guide these automation ef-
forts.

We propose an approach to reconstruct and track liquids
from videos using minimal information. This results in the
first technique to reconstruct liquids with only knowledge
of the collision environment, gravity direction, and 2D sur-
face detections. The observations are limited to 2D surface
detections (i.e. binary mask) because a liquids color varies
widely based on their refraction index, opacity, and envi-
ronment. Furthermore, common depth sensors (e.g. Mi-
crosoft’s Kinect or Intel’s RealSense) will behave incon-
sistently due to the unknown refraction index. By limiting
the observation data to only 2D surface detections, our pro-
posed reconstruction method can be directly applied to any
detected liquid and does not require any prior information
on the liquid (e.g. no training data is required). To this end,
our contributions are:

1. a novel optimization problem for reconstructing liq-
uids with a particle representation which accounts for
liquid constraints,

2. seeding the optimization with a dynamics prediction
based on the previous time-step,

3. and a branching strategy to dynamically adjust the
number of particles in the reconstructed liquid.

The complete solution only relies on sequential data and
was extended with a source estimation technique to show its
adaptability for future applications with liquids. To baseline
our proposed method, new liquid datasets are collected and
open sourced so future researchers can further develop in
this under-explored area.

2. Related Works

2.1. Fluid Reconstruction

Several sensor modalities have been used historically to
capture fluid flow in science and engineering. Schlieren
imaging [1, 2, 6], Particle Image Velocimetry [12], laser
scanners [15], and structured light [13] have all been devel-
oped for capturing fluids. These specialized sensors how-
ever are not common place and often expensive, hence mak-
ing them less ideal than visible spectrum sensors. This lead
to a lot of developement in the field of visible light tomogra-
phy where a combination of 2D image projections of a fluid
are used to reconstruct it in 3D. Recent developments in the
field have effectively registered fluids with simulation based
fluid dynamics [7] and require only a few camera perspec-
tives for effective reconstruction [9, 48]. These approaches
however do not consider in-compressible fluids, liquids, and
only focus on gasses in free space (i.e. no collision).

2.2. Liquid Detection and Simulation Registration

While direct reconstruction of liquids has not been done
before, there has been work in detecting liquids in the im-
age frame and registering with a simulation. Pools of water
have been detected for unmanned ground vehicles [34, 35],
and flowing blood has been detected during surgeries for
autonomous, robotic suction [37]. Liquids during a pour-
ing task have also been detected using optical flow [45]
and Deep Neural Networks [40]. The scope of this paper
is on reconstructing liquids, and these detection methods
could be utilized to feed into our proposed method by sup-
plying the observations of the liquids surface. Mottaghi et
al. were able to estimate a liquid’s volume in a container
from images directly [27]. Registration of a liquid simula-
tion with the real world has also been conducted for robot
pouring [14, 39, 41]. However, these techniques require
prior information about the liquid being reconstructed, such
as knowing the volume of the liquid before hand. Mean-
while in this work, we only assume prior knowledge of the
gravity direction and collision environment and use a novel
branching strategy to dynamically adjust the volume of the
reconstructed liquid. Nevertheless, we integrated Schenck
and Fox’s most recent simulation registration work [41] to
the best of our ability into our reconstruction approach for
comparison.

3. Methods

Let pt = {pi
t}Ni=1 be the set of particles in R3 represent-

ing the reconstructed liquid at time t. To estimate the par-
ticle locations, and hence reconstruct the liquid, we assume
only knowledge of a binary masked image which identi-
fied the liquids surface, It. The estimation for the particles
is done by minimizing a loss between the detected surface
and a reconstruction of the liquid surface from the particles,
Î(·). Written explicitly, the optimization problem is:

argmin
pt

L
⇣
It, Î(pt)

⌘
s.t. C(pt) = 0 (1)

where liquid constraints, C(·) , are applied to the parti-
cles positions so they behave like a liquid. The position
constraints considered here are density and collision, and
a visual explanation is shown in Fig. 2. Solving posi-
tion constraints and deriving velocities from them has pro-
duced stable, particle based simulations for large time-step
sizes [25, 29]. Similarly, we leverage the liquid-like dy-
namics induced by position constraints for effective liquid
reconstruction from video sequences (i.e. going from t to
t+ 1).

The following methods detail our solution to the opti-
mization problem shown in (1) and an outline is shown in
Algorithm 1. First, the position constraints, C(·), and their
respective solvers are described. Second, the rendered sur-
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Collision Constraint Density Constraint

Image Loss

Figure 2. A visualization of solving (1) in order of top-left, top-
right, and bottom where the particle locations are drawn in red.
The collision constraint pushes particles out of collision (drawn
in light grey), the density constraints ensures incompressibility for
liquids by maintaining a constant density, and finally the image
loss between the detected surface (drawn in black) and a surface
rendering (drawn in semi-transparent blue) is minimized.

face, Î(·) and its gradient with respective to the particle po-
sitions to minimize the loss is explained. The constraint
solvers and surface loss gradient are applied in a projective
gradient descent scheme to solve (1) as shown in lines 4 to
11 of Algorithm 1. Third, finding the number of particles,
N , to reconstruct the liquid and a strategy of where to add
or remove the particles is detailed. Lastly, prediction of the
particles from time-step t to t + 1 is defined to reconstruct
from videos of detected liquids, I1, . . . , IT .

3.1. Position Constraints for Liquid Particles

The two position constraints used to reconstruct the liq-
uid when optimizing (1) are collision and density. The col-
lision constraint ensures that none of the particles represent-
ing the reconstructed liquid are in collision with the scene.
Let Cc(·) be the collision constraint for a particle, and it is
expressed as:

Cc(p
i) = relu(�SDF (pi)) (2)

where relu(·) is the rectified linear unit function and
SDF (·) is the signed distance function of the scene. The
collision constraint is satisfied when it is at 0, which occurs
by having all of the particles out of collision (i.e. no more
negative SDF values at the particle positions).

To push the particles out of collision and satisfy the col-
lision constraint, finite difference is used to approximate a

Algorithm 1: Reconstruct Liquid at time t

Input : Previous liquid particle positions and
velocities, pt�1,vt�1, and image, It

Output: Updated liquid particle positions and
velocities pt,vt

// Particle Prediction
1 pt  pt�1 + vt�1�t+ 1

2g�t
2

2 for no iterations do

3 for nj iterations do

// Apply Position Constraints
4 for nc iterations do

5 �pc  solveCollision(pt)
6 pt  pt +�pc

7 �p⇢  solveDensity(pt)
8 pt  pt +�p⇢

// Minimize Image Loss
9 for ni iterations do

10 Î(pt) renderSurface(pt)

11 pt  pt + ↵I
⇣
@L

⇣
It, Î(pt)

⌘
/@pt

⌘

// Adjust Particle Count
12 if local minima conditions then

13 pt  duplicateOrRemoveParticle(pt)

// Update Particle Velocities
14 vt  (pt � pt�1) /�t

15 vt  dampV elocityAndApplyV iscocity(pt,vt)
16 return pt,vt

gradient of (2) and the particles are moved along the gradi-
ent step. This is computed for particle pi as follows:

�pi
c = Cc(p

i)
X

k2K

wkSDF (pi + dk) (3)

where K is the set of finite sample directions (e.g. [±1, 0,
0], [0, ±1, 0], [0, 0, ±1]), wk is the finite difference weight,
and d is the steps size for the sample directions. The finite
difference weights are computed optimally [8] and scaled
such that the resulting vector from the summation is normal-
ized. The normalization is done so the particles are moved
up to the current collision depth, Cc(pi), and not in colli-
sion free space. The collision constraint is iteratively solved
and applied to the particles as shown in lines 5 and 6 in Al-
gorithm 1.

The second constraint, density, ensures that the liquid
is in-compressible. The density of particle based represen-
tations for liquids can be expressed using the same tech-
nique as Smoothed Particle Hydrodynamics (SPH) [11,24].
SPH simulations compute physical properties from hydro-
dynamics, such as density, using interpolation techniques
with kernel operators centered about the particle locations.
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Similarly, we compute the density at particle pi

⇢
i(p) =

NX

j=1

W (||pi � pj ||, h) (4)

where W (·, h) is a smoothing kernel operator with radius
h. This is the same as SPH simulations except without the
mass term because each particle is set to represent an equal
amount of mass in the reconstructed liquid. A density con-
straint for the i-th particle using (5) can be written as:

C
i
⇢(p) =

⇢i(p)

⇢0
� 1 (5)

where ⇢0 is the resting density of the liquid being recon-
structed [3]. This density constraint is satisfied at 0 which
occurs when the reconstructed liquid is achieves resting
density at each of the particle locations.

Newton steps along the constraint’s gradient are itera-
tively taken to satisfy the density constraint in (5). Each
Newton step, �p⇢, is calculated as:

�p⇢ = �rC⇢(p)
�
rC>

⇢ (p)rC⇢(p) + ✏⇢I
��1

C⇢(p)
(6)

where C⇢(·) = [C1
⇢(·), . . . , CN

⇢ (·)]>, the partials are

@C
i
⇢(p)

@pi
=

1

⇢0

NX

j=1

(pi � pj)

||pi � pj ||W
0(||pi � pj ||, h)

@C
i
⇢(p)

@pj
=

(pi � pj)

⇢0||pi � pj ||W
0(||pi � pj ||, h)

(7)

where W
0(·, h) is the derivative of smoothing kernel oper-

ator in (4), and ✏⇢I 2 RN⇥N stabilizes the inversion with
a damping factor ✏⇢. Enforcing incompressibility in SPH
simulations, similar to the proposed density constraint here,
when particles have a small number of neighbors is known
to cause particle clustering [26]. Therefore, we use Mon-
aghan’s solution by adding the following artificial pressure
term to �p⇢:

sicorr = ��s

⇢0

NX

j=1

✓
W (||pi � pj ||, h)

W (�p, h)

◆�n
@C

i
⇢(p)

@pj
(8)

for the i-th particle where �s,�p,�n are set according to
the original work [26]. The density constraint is iteratively
solved with the artificial pressure term and applied to the
particles as shown in lines 7 and 8 in Algorithm 1.

3.2. Differentiable Liquid Surface Rendering

The loss being minimized in (1) to reconstruct the liquid
is between the detected surface, I, and the reconstructed sur-
face, Î(·). This is equivalent to the differentiable rendering

problem formulation, which multiple solutions have been
proposed for [18]. The differentiable renderer we employ is
Pulsar which renders each particle as a sphere [22] because
it is currently state-of-the-art for point-based geometry ren-
dering and requires no training data to get a gradient of the
rendered image with respect to the particle locations when
not using its shader. The loss used to minimize the differ-
ence between the detected surface and rendered surface is
the Symmetric Mean Absolute Percentage Error (SMAPE):

L
⇣
I, Î(p)

⌘
=

1

Np

X

u,v2I

|Iu,v � Îu,v(p)|
|Iu,v|+ |̂Iu,v(p)|+ ✏s

(9)

where Np is the number of pixels on the image and ✏s is
used to stabilize the division. SMAPE was chosen because
the `-1 loss was used in the original Pulsar work [22] and
SMAPE is a symmetric version of an `-1 loss. In Algorithm
1, lines 10 and 11 are where the differentiable renderer is
integrated into our reconstruction technique with a gradient
step size of ↵I.

3.3. Adding and Removal of Particles

The number of particles N must be found to solve (1),
hence making this a mixed-integer optimization problem.
To solve for N , we use a branching strategy based on the
following heuristic: if the rendered surface area is smaller
than the detected surface area, duplicate a particle, N + 1,
and vice-versa to remove a particle, N � 1. The branching
strategy is enabled after confirming a local-minima has been
reached with the current number of particles. This is deter-
mined by taking the mean image loss gradient and checking
if it less than a threshold:

1

N

NX

k=1

������

������

@L
⇣
I, Î(p)

⌘

@pk

������

������
 �s (10)

where �s is the threshold and if the Intersection over Union
(IoU) is less than a threshold:

I [ Î(p)
I \ Î(p)

 �I (11)

where �I is the threshold. IoU is chosen over the SMAPE
loss because Pulsar renders each sphere with a blending
value so the rendered image will have values from [0, 1]
hence increasing the SMAPE loss as more spheres are ren-
dered even when the spheres make a perfect silhouette fit.
Meanwhile IoU directly measures silhouette fit which is in
line with our heuristic for the branching strategy. If these
two criteria are satisfied, a local-minima due to the number
of particles is assumed, and the branching decision of du-
plicating or removing a particle is triggered. This branching
logic is handled in lines 12 and 13 in Algorithm 1.
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When duplicating or removing a particle, the collision
constraint will remain unchanged and the density constraint
will be increased when duplicating a particle and decreased
when removing a particle. Therefore, the particle selected
to duplicate or remove is chosen to best satisfy the density
constraint so the initial particle locations when solving (1)
after adjusting the particle count remains closest to the den-
sity constraint manifold. Written explicitly and using the
`-1 loss to describe closeness to the constraint manifold, the
index of the particle to duplicate or remove is found by solv-
ing

argmin
i

NX

k=1

|Ck+
⇢ (p)|+ |Ci+

⇢ (p)| argmin
i

NX

k 6=i

|Ck�
⇢ (p)|

(12)
for duplication and removal respectively and C

k+
⇢ (·),

C
k�
⇢ (·) are the density constraint evaluated at particle k af-

ter duplicating and removing the i-th particle respectively.
The new density constraints are evaluated as:

C
k+
⇢ (p) =

1

⇢0

N+1X

j=1

W (||pk � pj ||, h)� 1 (13)

C
k+
⇢ (p) = C

k
⇢ (p) +

1

⇢0
W (||pk � pN+1||, h) (14)

for duplicating the i-th particle (so pN+1 = pi) and

C
k�
⇢ (p) =

1

⇢0

NX

j 6=i

W (||pk � pj ||, h)� 1 (15)

C
k�
⇢ (p) = C

k
⇢ (p)�

1

⇢0
W (||pk � pi||, h) (16)

for removing the i-th particle where C
k
⇢ (p) is the density

constraint evaluated at particle k before duplicating or re-
moving a particle. Finally, (12) is solved by explicitly com-
puting the loss for every potential i (i.e. computing loss
after duplicating or removing every particle) and choosing i

that yields the smallest loss, hence duplicating or removing
particles that best satisfy the density constraint. Note that
this can be efficiently computed due to the simplifications
derived in (14) and (16).

3.4. Liquid Prediction

In Position Based Fluid simulations, the constraints at
every time step update the positions of the particles which
in turn induces a velocity for the particles [25]. These
constraint induced velocities combined with other external
forces such as gravity are used to move the particles for-
ward in time for liquid-like motion of the particles. A sim-
ilar approach is used here to recreate the liquid-like motion
through time and hence enable reconstruction from a video

of observations, I1 . . . , IT . Let pi⇤
t and pi⇤

t�1 be the opti-
mized particles from solving (1) at time t and t� 1 respec-
tively. Then the induced velocity for time t is:

vi
t = (1� �d)(p

i⇤
t � pi⇤

t�1)/�t (17)

where �d 2 [0, 1] is the velocity dampening factor and �t

is the time-step size. For consistent motion, XSPH viscosity
[38] is applied:

v̄i
t = vi

t + �v

NX

j=1

vj
t � vi

t

⇢j(p)
W (||pi⇤

t � pj⇤
t ||, h) (18)

where �v dictates the amount of viscosity applied. The in-
duced velocity is computed after every timestep of liquid
reconstruction as shown in lines 14 and 15 in Algorithm 1.
The induced velocity and gravity are used to forward pre-
dicts the particles to t+ 1 using equations of motion:

pi
t+1 = pi⇤

t + v̄i
t�t+

1

2
g�t

2 (19)

where g is the gravity vector. This forward prediction is
done in line 1 of Algorithm 1. The dampening and viscos-
ity not only represent physical properties, but also provide
tuning parameters to stabilize the initialization for the next
timestep. Dampening, �d, dictates how much to rely on the
prediction and viscosity, �v , adjusts the consistency of the
velocity.

4. Experiments

To show the effectiveness of our proposed liquid recon-
struction method, we test on a simulated and two real-life
datasets with a comparative study. These experiments are
explained in the coming sections, and first implementation
details are given. Secondly, a description of our datasets
and how they are collected is presented. Lastly, we explain
our comparative study and the results of it on the datasets.

4.1. Implementation Details

All the arithmetic, e.g. Newton’s density constraint
step in (6), are implemented with PyTorch for its GPU
integration [32]. The collision constraint, (2), and its
solution, (3), are implemented with SPNet’s ConvSP
operator and its PyTorch wrapper [41], Kernel K =
{[±1, 0, 0], [0,±1, 0], [0, 0,±1]}, and step size d is equal
to the resolution of the SDF (·). The resting density ⇢0

is generated by setting a resting distance between particles
because that is more intuitive to adjust. The resting dis-
tance between particles is converted to the resting density
by packing 1000 particles in a sphere and computing the
particle density of the sphere. Then the density constraint
parameters to solve (5) and (6) are set to a resting distance
of 0.6h, ✏p = 102, and W (·) is set to Poly6 and Spiky
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Source
Step 1

Step 2

Step 3

Figure 3. The sequence of figures (top-left, top-right, bottom-left,
bottom-right) shows how liquid fills the simulated fountain. Take
note how the first step fills in a consistent shape, but significant
turbulence occurs when dropping to the second step making this a
challenging component of the scene. Another challenge is by the
time the third and final step of the fountain fills, a significant num-
ber of particles must be used for reconstruction due to the large
volume, hence testing the scalability of the reconstruction method.

Kernels for density estimation and gradient steps respec-
tively [28]. Differentiable rendering is done with the Py-
Torch3D framework [36] and ✏s = 10�2. The thresholds
for adding/removing particles are �s = 10�3 and �I = 0.9
respectively. Velocity dampening and viscosity coefficients
are set to �d = 0.2 and �v = 0.75 respectively. The param-
eters in Algorithm (1) are set to no = 30, nj = 2, nc = 5,
ni = 5, and ↵I = 0.02. All datasets are stereo so an ini-
tial four particles can be placed at a stereo-computed, 3D
location from the first liquid detections. The last parame-
ters, SDF (·) resolution and particle interaction radius, h,
are set depending on the dataset as they need to be adjusted
depending on the scale of the reconstruction.

4.2. Datasets

Simulated Fountain: The first dataset is generated on a
three step fountain, shown in Fig. 3, with Blender [5]. The
liquid simulation uses all default values except the viscosity
is set to 0.001. The SDF (·) is generated from the foun-
tain with a resolution of 1cm and the particle interaction
radius, h, is set to 1cm. The scene is rendered with 1080p
at 24fps stereo cameras, and a mask of the rendered liquid is
directly outputted from Blender. For this simulated dataset,
the ground-truth liquid mesh is available to evaluate our re-
contruction with. The metric of 3D IoU is used to capture
the shape accuracy of our reconstruction and computed as:

IoU3D =
V [ V̂(p)
V \ V̂(p)

(20)

where V and V̂(p) are voxel representation of the simulated
and reconstructed liquid respectively. The reconstructed liq-

ArUco
Marker

Trail 1

Trail 2

Trail 3

ArUco 
Marker

Figure 4. The left figure shows a top down view of the silicon
cavity used for the Endoscopic Liquid dataset, and the liquid is
injected with a syringe at the labelled points for three trials. The
right figure shows a camera image from our Pouring Milk experi-
ment set up. Notice that the milk is partially blocked by the mug,
hence testing the reconstructions ability to handle occlusions.

uid in voxel representation, V̂(p), is generated with the
color field, shown in equation (21) in the supplementary
material. The voxel grid is computed at a resolution of 3cm.

Endoscopic Liquid: The second dataset uses a custom
silicon cavity that was molded with a 3D printed negative
so a SDF (·) for it can be generated. The cavity is 11cm by
9.5cm, SDF (·) resolution is set to 1mm, and particle inter-
action radius, h, is set to 5mm. To transform the SDF (·) to
the camera frame, which is the coordinate frame the parti-
cles are being optimized in, an ArUco Marker [10] is placed
on the cavity in a known location. Roughly 50ml of water is
injected with a syringe at three different locations for three
trails as depicted in Fig. 4. The water is mixed with red-
coloring dye so color segmentation can be applied to de-
tect the liquid surface. The liquid video is recorded using a
da Vinci Research Kit stereo-endoscope which is 1080p at
30fps [19].

Pouring Milk: The third dataset is pouring chocolate
milk by a human into a mug as shown in Fig. 4. The
mug is 9cm high and has a 7cm diameter, the SDF (·)
resolution is set to 1mm, and particle interaction radius,
h, is set to 6.5mm. The mug is placed on a sheet of pa-
per with an ArUco Marker [10] in a marked location. The
Aruco Marker and known geometry of the paper provides
the transformation to take the SDF (·) to the camera frame.
Color segmentation is used to detect the chocolate milk’s
liquid surface. The liquid video is recorded at 720p 15fps
using a ZED Stereo Camera from Stereo Labs.

4.3. Comparative Study

We show the effectiveness of our proposed method
through a comparative study. The configurations being
compared are:

• No Constraints [22] (i.e. no density or collision con-
straints) and only image loss

• No Density constraint

• No Collision constraint
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Step 1 Step 2 Step 3

Figure 5. The plot on the left shows IoU3D results from the Simulated Fountain datasets along with time-marked points when the liquid
reaches different steps in the scene. Note how our proposed methods and the uniform comparison are able to reach 70% IoU3D in the first
step, and retain a good reconstruction as the very long, and turbulent simulation continues. An example of our reconstruction approach
during the turbulent period of the scene is shown on the right-hand figure. Meanwhile the compared approaches ran into memory limitations
and crashed (required greater than 24GB of memory) or were unable to converge effectively.

Figure 6. From left to right the image columns are an endoscopic image of liquid being reconstruction with: no constraints, no collision
constraint, no prediction, our approach, and our source estimation technique. The first row of renderings have the virtual camera positioned
similar to the real endoscope showing how from that perspective, the particles in red line up with the real image of the liquid. The second
row shows another rendered perspective and how our proposed approaches properly reconstruct the liquid in 3D. The first three comparisons
are unable to properly reconstruct because they do not leverage a liquids dynamics (i.e. falling to gravity and colliding with the cavity).

• Schenck & Fox [41] constraints instead of the density
constraint we presented

• DSS [46] for rendering gradients rather than Pulsar

• Uniform random selection for duplication or removal
of particles instead of solving (12)

• No Prediction of particles (line 1 in Algorithm 1)

• Our complete approach

• Our Source estimation which adds particles at a source
location and detailed in the next sub-section

When removing the collision constraint (i.e. No Con-
straints and No Collision comparisions), the particle pre-
diction also had to be turned off otherwise the particles will
fall forever due to gravity. Without the density or colli-
sion constraint, the method is equivalent to differentiable
rendering [22] thus giving a baseline comparison. Schenck
& Fox proposed their own position-based liquid constraints
for constant density [41] (i.e. replacing C⇢) which were

integrated into this method for comparison. We also com-
pared with another recently developed differentiable ren-
derer for point-based geometry called Differentiable Sur-
face Splatting (DSS) [46]. Lastly, a source estimation tech-
nique is implemented to highlight how the proposed method
can be extended. Implementation details for the Schenk &
Fox, DSS, and Our Source comparisons are given the sup-
plementary material.

Videos and convergence statistics of the comparison
study on all the datasets are in the supplementary materi-
als, and a few highlights are given here. Quantitative results
from the Simulated Fountain dataset are shown in Fig. 5,
and it shows how effective our proposed approach is in a
turbulent, long scene. Fig. 6 shows results from the Endo-
scopic Trails and how our proposed methods leverage liq-
uid dynamics to fit the cavity shape correctly. From the
Milk Pouring experiments, results are shown in Fig. 7 and 8
which indicate that our proposed method is able to infer liq-
uid in occluded regions and reconstruct the falling stream.
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Figure 7. From left to right the image columns are an image from the Pouring Milk dataset being reconstructed with: no density constraint,
Schenck & Fox constraints [41], DSS [46], our approach, and our source estimation technique. The first row of renderings have the virtual
camera positioned similar to the raw image showing how from that perspective, the particles in red line up with the real image of the liquid.
The second row shows a birds-eye-view perspective and how our proposed approaches properly reconstruct the liquid in 3D. The no density
constraint and DSS [46] comparisons are unable to properly reconstruct due to over-fitting on the image loss and fail to make inferences in
the occluded region. Meanwhile Schenck & Fox constraints [41] constraints went unstable and splashed particles outside the mug.

Figure 8. The left-most image is from the Pouring Milk dataset
being reconstructed with the uniform comparison (middle) and
our method (right). Our method is able to reconstruct the falling
stream, unlike the uniform comparison, due to the novel particle
insertion and removal approach.

5. Discussion and Conclusion

Our method is the first approach to reconstructing liquids
with only knowledge of the collision environment, grav-
ity direction, and 2D surface detections. We limited the
scope to 2D surface detections because a liquids color is too
variable from reflections and refractions. Our experiments
highlight the generalizability of our approach through the
wide range of liquids (simulated, water, and milk) and cam-
eras (narrow & wide field of view and 15, 24 & 30 fps). In
the supplementary material video, consistent particle flow is
observed when using the source estimation extension. We
envision that the source estimation extension will be bene-
ficial in downstream robotic automation applications such
as robotic bar tending [44] and managing hemostasis in
surgery [37] where prediction of the liquid is required.

We found that the density constraint, collision constraint,
and prediction are crucial to inferring beyond the 2D im-
age loss as seen in Fig. 6 and 7. Furthermore in longer
and more turbulent scenes, the lack of liquid properties can

cause instabilities and blow up the mixed-integer optimizer
(greater than 10,000 particles). The density constraint can
be switched with other constraints that reflect a liquid in-
compressibility and other liquid properties, such as Schenck
& Fox’s constraints [41]. However, we were unable to stabi-
lize Schenck & Fox’s constraints and found the constraint in
(5) and its solver to be stable on all of our datasets. Similar
is true for the differentiable rendering, and we found Pulsar
to be more robust than DSS in our application since DSS
requires normals which we observed are not consistently
generated. Our particle insertion and removal strategy was
effective and even able to insert particles to reconstruct a
falling stream as seen in Fig. 8.

There is a large quantity of hyper-parameters in our
method, but this is expected when solving a mixed-integer,
optimization problem. Nevertheless, we found a set that
generalizes over our diverse datasets, and the interaction ra-
dius, h, adjusts the effective resolution of our reconstruction
(i.e. smaller h gives a denser reconstruction). An artifact
that we observed in our reconstruction approach is the am-
biguity of depth due to our observations being limited to
only 2D surface detections of the liquid. The incorporation
of liquid dynamics does help overcome this challenge in
the Endoscopic Liquid experiment as seen in Fig. 6. How-
ever, in the Pouring Milk experiment the top layer of milk is
slightly lopsided which is best seen in Fig. 9 in the supple-
mental materials. In future work, we intend on solving the
ambiguity better by modifying (1) to incorporate multiple
timesteps, and hence optimizing with the dynamics.
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