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Abstract

Deep Learning (DL) has shown great promise in the un-
supervised task of clustering. That said, while in classical
(i.e., non-deep) clustering the benefits of the nonparamet-
ric approach are well known, most deep-clustering meth-
ods are parametric: namely, they require a predefined and
fixed number of clusters, denoted by K. When K is un-
known, however, using model-selection criteria to choose
its optimal value might become computationally expensive,
especially in DL as the training process would have to be
repeated numerous times. In this work, we bridge this gap
by introducing an effective deep-clustering method that does
not require knowing the value of K as it infers it during
the learning. Using a split/merge framework, a dynamic
architecture that adapts to the changing K, and a novel
loss, our proposed method outperforms existing nonpara-
metric methods (both classical and deep ones). While the
very few existing deep nonparametric methods lack scal-
ability, we demonstrate ours by being the first to report
the performance of such a method on ImageNet. We also
demonstrate the importance of inferring K by showing how
methods that fix it deteriorate in performance when their
assumed K value gets further from the ground-truth one,
especially on imbalanced datasets. Our code is available
at https://github.com/BGU-CS-VIL/DeepDPM .

1. Introduction
Clustering is an important unsupervised-learning task

where, unlike in the supervised case of classification, class
labels are unavailable. Moreover, in the purely-unsupervised
(and more realistic) setting this work focuses on, the number
of classes, denoted by K, and their relative sizes (i.e., the
class weights) are unknown too.
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Figure 1. Mean clustering accuracy of 3 runs (± std. dev.) on
ImageNet50. The Ground Truth K is 50. Parametric methods such
as K-means, DCN++ (an improved variant of [71]) and SCAN [64],
require knowing K. When given a poor estimate of K, they deterio-
rate in performance in a balanced dataset (a) and even more so in an
imbalanced dataset (b). In contrast, the proposed DeepDPM does
not require knowing K (it infers its value; e.g., K = 55.3± 1.53
in (a) and 46.3± 2.52 in (b)) and yet yields comparable results.

The emergence of Deep Learning (DL) has not skipped
clustering tasks. DL methods usually cluster large and high-
dimensional datasets better and more efficiently than classi-
cal (i.e., non-deep) clustering methods [64, 71]. That said,
while in classical clustering it is well understood that non-
parametric methods (namely, methods that find K) have
advantages over parametric ones (namely, methods that re-
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quire a known K) [8,57], there are only a few nonparametric
deep clustering methods. Unfortunately, the latter are neither
scalable nor effective enough. Our work bridges this gap by
proposing an effective deep nonparametric method, called
DeepDPM. In fact, even when K is known, DeepDPM still
achieves results comparable to leading parametric methods
(especially in imbalanced cases) despite their “unfair” ad-
vantage; see, e.g., Figure 1 or § 5.

More generally, the ability to infer the latent K has prac-
tical benefits, including the following ones. 1) Without a
good estimate of K, parametric methods might suffer in per-
formance. Figure 1 shows that using the wrong K can have
a significant negative effect on parametric methods in both
balanced and imbalanced datasets. When the value of K
becomes more and more inaccurate, even a State-Of-The-Art
(SOTA) parametric deep clustering method, SCAN [64], de-
teriorates in performance significantly. 2) Changing K dur-
ing training has positive optimization-related implications;
e.g., by splitting a single cluster into two, multiple data labels
are changed simultaneously. This often translates to large
moves on the optimization surface which may lead to conver-
gence to better local optima and performance gains [10]; e.g.,
in § 5 we demonstrate cases where nonparametric methods,
ours included, outperform parametric ones even when the
latter are given the true K. 3) A common workaround to not
knowing K is to use model selection: namely, run a paramet-
ric method numerous times, using different K values over
a wide range, and then choose the “best” K via an unsuper-
vised criterion. That approach, however, besides missing the
aforementioned potential gains (not being able to make large
moves), does not scale and is usually infeasible for large
datasets, especially in DL. Moreover, the negative societal
impact of the model-selection approach must be noted as
well: training a deep net tens or hundreds of times on a large
dataset consumes prohibitively-large amounts of energy. 4)
K itself may be a sought-after quantity of importance.

Bayesian nonparametric (BNP) mixture models, exempli-
fied by the Dirichlet Process Mixture (DPM) model, offer an
elegant, data-adaptive, and mathematically-principled solu-
tion for clustering when K is unknown. However, the high
computational cost typically associated with DPM inference
is arguably why only a few works tried to use it in conjunc-
tion with deep clustering (e.g., [11,66,74]). Here we propose
to combine the benefits of DL and the DPM effectively. The
proposed method, DeepDPM, uses splits and merges of clus-
ters to change K together with a dynamic architecture to ac-
commodate for such changes. It also uses a novel amortized
inference for Expectation-Maximization (EM) algorithms
in mixture models. DeepDPM can be incorporated in deep
pipelines that rely on clustering (e.g., for feature learning).
Unlike an offline clustering step (e.g., K-means), DeepDPM
is differentiable during most of the training (the exception
is during the discrete splits/merges) and thus supports gradi-

ent propagation through it. DeepDPM outperforms existing
nonparametric clustering methods (both classical and deep
ones) across several datasets and metrics. It also handles
class imbalance gracefully and scales well to large datasets.
While we focus on clustering and not feature learning, we
also show examples of clustering on pretrained features as
well as jointly learning features and clustering in an end-
to-end fashion. To summarize, our key contributions are:
1) A deep clustering method that infers the number of clus-
ters. 2) A novel loss that enables a new amortized inference
in mixture models. 3) A demonstration of the importance,
in deep clustering, of inferring K. 4) Our method outper-
forms existing nonparametric clustering methods and we are
the first to report results of a deep nonparametric clustering
method on a large dataset such as ImageNet [17].

2. Related Work
Parametric Deep Clustering methods. Recent such

works can be divided into two types: two-step approaches
and end-to-end ones. In the former, clustering is performed
on features extracted in a pretext task. For instance, Mc-
Conville et al. [47] run K-means on the embeddings, trans-
formed by UMAP [48], of a pretrained Autoencoder (AE).
While not scalable, [47] achieves competitive results when
it is applicable. Another example is SCAN [64] which uses
unsupervised pretrained feature extractors (e.g., MoCo [13]
and SimCLR [12]). While reaching SOTA results, SCAN,
being parametric, depends on having an estimate of K and,
as we show, deteriorates in performance when the estimate
is too inaccurate. Moreover, SCAN assumes uniform class
weights (i.e. a balanced dataset) and that is often unrealistic
in purely-unsupervised cases.

End-to-end deep methods jointly learn features and clus-
tering, possibly by alternation. Several works use an AE,
or a Variational AE (VAE), with an additional clustering
loss [40, 68, 70–72]; e.g., DCN [71] runs K-means on the
embeddings of a pretrained AE, and retrains it with a loss
consisting of a reconstruction term and a clustering-based
term, to simultaneously update the features, clusters’ centers,
and assignments. Other works, e.g. [5, 6], use convolutional
neural nets to alternately learn features and clustering.

While our work focuses on clustering, not feature learn-
ing, we demonstrate how it can also be incorporated with
the two approaches above. Moreover, all the methods above
assume a predefined and fixed K and, at least the more effec-
tive ones among them, take substantial time and resources to
train (so searching for the “right” K using model selection
is costly and/or inapplicable).

Nonparametric Classical Clustering. Closely related
to our work is BNP clustering and, more specifically, the
DPM model [1, 24]. While many computer-vision works
rely on BNP clustering [4, 9, 14, 25–28, 30, 32, 33, 38, 39,
41, 44–46, 49, 53–59, 62], it has yet to become a mainstream
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choice, partly due to the lack of efficient large-scale inference
tools. Fortunately, this is starting to change; see, e.g., the
highly-effective DPM sampler from [21] (a modern and
scalable implementation of the DPM sampler from [10])
or the scalable streaming DPM inference in [20]. Of note,
an important alternative to sampling is variational DPM
inference [3, 31, 34, 36, 42]. A non-Bayesian example of
a popular nonparametric method is DBSCAN [23] which
is density-based and groups together closely-packed points.
While DBSCAN has efficient implementations, it is highly
sensitive to its hyperparameters which are hard to tune.

Nonparametric Deep Clustering. Among the very few
examples of deep methods that also find K are [11,52,66,74].
Some of them use an offline DPM inference for pseudo-
labels for fine-tuning a deep belief network [11], or an
AE [66] (similarly to the parametric methods in [5, 6, 71]).
As the methods in [66] and [11] rely on slow DPM samplers,
they do not scale to large datasets. AdapVAE [74] uses a
DPM prior for a VAE. In DCC [52], feature learning and clus-
tering are performed simultaneously like in [74]; however,
instead of ELBO minimization, DCC uses a nearest-neighbor
graph to group points that are close in the latent space of an
AE. Our method is empirically more effective than [52, 74]
and also scales much better. While not a clustering method
per-se, and similarly to [47], [65] uses an AE and t-SNE [63]
to find K. Like [47], however, [65] does not scale. In [22],
a deep net is simultaneously trained on a family of losses
instead of a single one. At least in theory, that approach may
be adapted to nonparametric clustering but this direction
has yet to be explored. Both [60] and [50] do not assume a
known K, where the former focuses on clustering faces and
the latter on generating posterior samples of cluster labels
for any new dataset. Unlike our method, however, [50, 60]
are supervised. Similarly, [2] iteratively forms clusters by
sequentially examining each sample against the members
of existing clusters. The clustering criterion is based on a
supervised evaluation net. Lastly, while [73] relies on a BNP
mixture, their method (and code) still uses a fixed K.

3. Preliminaries: DPGMM-based Clustering
Let X = (xi)

N
i=1 denote N data points in Rd. The clus-

tering task aims to partition X into K disjoint groups, where
zi is the point-to-cluster assignment, known as the cluster
label, of xi. Cluster k consists of all the points labeled as k;
i.e., (xi)i:zi=k. The number of clusters, K ≜ |{k : k ∈ z}|,
is thus the number of unique elements in z = (zi)

N
i=1.

The classical Gaussian Mixture Model (GMM) has a BNP
extension: the Dirichlet Process GMM (DPGMM) [1, 24].
Informally, the DPGMM (a specific case of the DPM) enter-
tains the notion of a mixture with infinitely-many Gaussians:

p(x|(µk,Σk, πk)
∞
k=1) =

∑∞

k=1
πkN (x;µk,Σk) (1)

where N (x;µk,Σk) is a Gaussian probability density func-
tion (pdf) (of mean µk ∈ Rd and a d-by-d covariance matrix
Σk) evaluated at x ∈ Rd, πk > 0 ∀k, and

∑∞
k=1 πk = 1.

For a gentle introduction to the DPGMM with a computer-
vision audience in mind, see [8, 57]. Let θk = (µk,Σk)
denote the parameters of Gaussian k. Note the distinction
between component k (namely, the k-th Gaussian, identi-
fied with its parameter, θk) and cluster k. The components,
θ = (θk)

∞
k=1, and weights, π = (πk)

∞
k=1, are assumed to be

drawn (independently) from their own prior distributions: the
weights, π, are drawn using the Griffiths-Engen-McCloskey
stick-breaking process (GEM) [51] with a concentration
parameter α > 0, while the parameters, (θk)

∞
k=1, are inde-

pendent and identically-distributed (i.i.d.) draws from their
prior p(θk), typically a Normal-Inverse Wishart (NIW) dis-
tribution. While there are infinitely-many components, note
that there are still finitely-many clusters as the latent random
variable K is bounded above by N . By possibly renaming
cluster indices, we may assume without loss of generality
that {k : k ∈ z} = {1, 2, . . . ,K}.

The DPGMM is often used in clustering when K is un-
known. DPGMM inference methods typically seek to find
z = (zi)

N
i=1 (which implies K) and (θk, πk)

K
k=1. As ex-

plained in our supplementary material (Supmat), the in-
ferred value of K is affected by the following factors: X , α,
and the NIW hyperparameters. Our method (§ 4) is inspired
in part by Chang and Fisher III’s DPM sampler [10] which
consists of a split/merge framework [37] (which we adopt)
and a restricted sampler (which is less relevant to our work).

The split/merge framework augments the latent variables,
(θk)

∞
k=1, π, and (zi)

N
i=1, with auxiliary variables. To each zi,

an additional subcluster label, z̃i ∈ {1, 2}, is added. To each
θk, two subcomponents are added, θ̃k,1, θ̃k,2, with nonneg-
ative weights π̃k = (π̃k,j)j∈{1,2} (where π̃k,1 + π̃k,2 = 1),
forming a 2-component GMM. Next, splits and merges allow
changing K via the Metropolis-Hastings framework [29].
That is, during the inference, every certain amount of iter-
ations the split of cluster k into its subclusters is proposed.
That split is accepted with probability min(1, Hs) where

Hs =
αΓ(Nk,1)fx(Xk,1;λ)Γ(Nk,2)fx(Xk,2;λ)

Γ(Nk)fx(Xk;λ)
(2)

is the Hastings ratio, Γ is the Gamma function, Xk =
(xi)i:zi=k stands for the points in cluster k, Nk = |Xk|,
Xk,j = (xi)i:(zi,z̃i)=(k,j) denotes the points in subcluster
j (j ∈ {1, 2}), Nk,j = |Xk,j |, and fx(·;λ) is the marginal
likelihood where λ represents the NIW hyperparameters.
See our Supmat for more details. Upon a split proposal
acceptance, each of the newly-born clusters is augmented
with two subclusters. This ratio, Hs, can be interpreted as
comparing the marginal likelihood of the data under the two
subclusters with its marginal likelihood under the cluster.
Merge proposals are handled similarly (see Supmat).
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——–Figure 2. DeepDPM’s pipeline: given features X , the clustering net outputs cluster assignments, R, while the subclustering nets generate
subcluster assignments, R̃. Upon the acceptance of split/merge proposals, all those nets are updated during the learning.

4. The Proposed Method: DeepDPM
DeepDPM can be viewed as a DPM inference algorithm.

Inspired by [10], we use splits and merges to change K
where for every cluster we maintain a subcluster pair. For
a nominal value of K, rather than resorting to sampling
as in [10], we use a deep net trained by a novel amortized
inference for EM [16] in a mixture model. DeepDPM has
two main parts. The first is a clustering net, while the second
consists of K subclustering nets (one for each cluster k, k ∈
{1, . . . ,K}). In § 4.1 we describe how DeepDPM operates
given a nominal value of K and in § 4.2 how K is changed
and how our architecture adapts accordingly. We discuss the
amortized-inference aspects of our approach in § 4.3, our
weak prior in § 4.4, and how DeepDPM may be combined
with feature learning in § 4.5. Figure 2 depicts the overall
pipeline.

4.1. DeepDPM Under a Fixed K

We start by describing DeepDPM’s forward pass during
the training. Given a current value of K, the data is first
passed to the clustering net, fcl, which generates, for each
data point xi, K soft cluster assignments:

fcl(X ) = R = (ri)
N
i=1 ri = (ri,k)

K
k=1 (3)

where ri,k ∈ [0, 1] is the soft assignment of xi to cluster
k (also called the responsibility of cluster k to data point
xi) and

∑K
k=1 ri,k = 1. From (ri)

N
i=1 we compute the hard

assignments z = (zi)
N
i=1 by zi = argmaxk ri,k. Next, each

subclustering net, fk
sub (where k ∈ {1, . . . ,K}), is fed with

the data (hard-) assigned to its respective cluster (i.e., fk
sub

is fed with Xk = (xi)i:zi=k) and generates soft subcluster
assignments:

fk
sub(Xk) = R̃k = (r̃i)i:zi=k r̃i = (r̃i,j)

2
j=1 (4)

where r̃i,j ∈ [0, 1] is the soft assignment of xi to subcluster
j (j ∈ {1, 2}), and r̃i,1 + r̃i,2 = 1 ∀k ∈ {1, . . . ,K}. As
detailed in § 4.2, the subclusters learned by (fk

sub)
K
k=1 are

used in split proposals. Each of the K + 1 nets (fcl and
(fk

sub)
K
k=1) is a simple multilayer perceptron with a single

hidden layer. The last layer of fcl has K neurons while the
last layer of each fk

sub has two.
We now introduce a new loss motivated by EM in the

Bayesian GMM (though the idea, in fact, also holds in the

non-Bayesian GMM case, as well as for EM in parametric
mixtures with non-Gaussian components). Concretely, in
each epoch, our clustering net is optimized to generate soft
assignments that would resemble those obtained by an E step
of the EM-GMM algorithm (recall that the E steps of the
Bayesian and non-Bayesian EM-GMM coincide). Each E
step is followed by a standard M step in a Bayesian GMM,
except that the soft assignments used in the Maximum-a-
Posterior (MAP) estimates are those produced by our clus-
tering net. We now provide the details. For each xi and
each k ∈ {1, . . . ,K} we compute the (standard) E-step
probabilities, rEi = (rEi,k)

K
k=1, where

rEi,k =
πkN (xi;µk,Σk)∑K

k′=1 πk′N (xi;µk′ ,Σk′)
k ∈ {1, . . . ,K} (5)

is computed using (πk,µk,Σk)
K
k=1 from the previous epoch.

Note that
∑K

k=1 r
E
i,k = 1. We then encourage fcl to generate

similar soft assignments using the following new loss:

Lcl =
∑N

i=1
KL(ri∥rEi ) (6)

where KL is the Kullback-Leibler divergence. Next, after
every epoch we perform a Bayesian M step but with a twist.
Recall that in this step, one uses the weighted versions of
the MAP estimates of (πk,µk,Σk)

K
k=1 (computed using

standard formulas; see Supmat) where the weights are the
rEi,k values (Eq. (5)). We apply the same formulas but in-
stead of rEi,k we use the ri,k values (i.e., the output of fcl).
Note that unlike methods (e.g. K-means or SCAN) that en-
force/assume uniformity of the weights, our inferred cluster
weights, (πk)

K
k=1, are allowed to deviate from uniformity.

In principle, for (fk
sub)

K
k=1 we could have used a loss

similar to Lcl. However, here we prefer an isotropic loss:

Lsub =
∑K

k=1

∑Nk

i=1

∑2

j=1
r̃i,j∥xi − µ̃k,j∥2ℓ2 (7)

where Nk = |Xk| and µ̃k,j is the mean of subcluster j
of cluster k, computed after every epoch, alongside with
subcluster weights and covariances, using weighted MAP
estimates similarly to the clusters’ case (see Supmat). This
loss is more efficient than the KL loss while the latter (only
in the subcluster case) did not yield improvement. The
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iterative process described above needs to be initialized. We
do this using K-means (using some initial value of K for
the clustering and K = 2 for the subclustering). DeepDPM
is fairly robust to the initial K so the latter can be chosen
arbitrarily (see, e.g., § 5.2).

4.2. Changing K via Splits and Merges

During training, we use splits and merges to change K
(as in [10]). Every few epochs, we propose either splits or
merges. Since K is changing, the architecture, and more
specifically, the last layer of the clustering net and the num-
ber of subclustering nets, must change too. Of note, the
splits/merges facilitate not only changing the value of K but
also large moves, escaping many poor local optima [10].

Splits. In every split step, we propose to split each of the
clusters into its two subclusters. A split proposal is accepted
stochastically (as in [10]) with probability min(1, Hs); see
Eq. (2). To accommodate for the increase in K, if a split pro-
posal is accepted for cluster k, the k-th unit in the last layer
of the clustering net, together with the weights connecting it
to the previous hidden layer, is duplicated, and we initialize
the parameters of the two new clusters using the parameters
learned via the subcluster nets:

µk1 ← µ̃k,1 , Σk1 ← Σ̃k,1 , πk1 ← πk × π̃k,1

µk2 ← µ̃k,2 , Σk2 ← Σ̃k,2 , πk2 ← πk × π̃k,2 (8)

where k1 and k2 denote the indices of the new clusters. We
then also add, to each new cluster, a new subclustering net
(dynamically allocating the memory).

Merges. When considering merges we must ensure we
never simultaneously accept the proposals of, e.g., merging
clusters k1 and k2 and the merging of clusters k2 and k3,
thereby mistakenly merging three clusters together. Thus,
unlike split proposals which are done in parallel, not all pos-
sible merges can be considered simultaneously. To avoid
sequentially considering all possible merges, we consider
(sequentially) the merges of each cluster with only its 3 near-
est neighbors. Merge proposals are accepted/rejected using
a Hastings ratio, Hm = 1/Hs (as in [10]). If a proposal is
accepted, the two clusters are merged and a new subcluster-
ing network is initialized. Technically, one of the merged
clusters’ last layer’s units, together with the net’s weights
connecting it to the previous hidden layer, is removed from
fcl, and the parameters and the weight of the newly-born
cluster are initialized using the weighted MAP estimates.

4.3. Amortized EM Inference

Suppose we turn off splits/merges and use the Ground
Truth (GT) K. Seemingly, this reduces each training epoch
to mimicking a single EM iteration. Remarkably, however,
and as shown in § 5, even then our method still yields results
that are usually better than the standard EM. We hypothe-
size that this stems from the fact that we amortize the EM

inference; by the virtue of the smoothness of the function
learned by the deep net, we improve the prediction for the
points in not only the current batch but also other batches.
Moreover, the smoothness also serves as an inductive bias
such that points which are close in the observation space
should have similar labels.

In principle, instead of using our variational loss we could
have also used the GMM negative log likelihood (or log
posterior). However, empirically that led to unstable op-
timization and/or poor results. Moreover, basing our loss
on matching soft labels rather than likelihood/posterior ele-
gantly makes the method more general: fcl and Lcl can be
used as they are for any component type, not just Gaussians.

4.4. A Weak Prior: Letting the Data Speak for Itself

Recall that the inferred K depends on X , α, and the
NIW hyperparameters. We intentionally choose the prior
to be very weak. Meaning, we choose α as well as the so-
called pseudocounts (two of the NIW hyperparameters) to
be very low numbers, dwarfed by N , the number of points
(see Supmat for details). Thus, we let the data, X , to be the
most dominant factor in determining K. The weak prior also
means that the Bayesian EM-GMM nearly coincides with
the non-Bayesian EM-GMM but still helps in the presence
of a degenerate sample covariance or very small clusters.

4.5. Feature extraction

To show the effectiveness of our clustering method, we
used two types of feature-extraction paradigms: an end-
to-end approach, where features and clustering are learned
jointly (using alternate optimization), and a two-step ap-
proach in which features are learned once (before the clus-
tering) and then held fixed. For the two-step approach, we
follow SCAN [64] and use MoCo [13] for (unsupervised)
feature extraction. For more details, as well as the scheme
we use for an end-to-end feature extraction, see Supmat.

5. Results
In this section we evaluate DeepDPM and compare it

with several key methods on popular image and text datasets
at varying scales. In our evaluations we use three common
metrics: clustering accuracy (ACC); Normalized Mutual In-
formation (NMI); Adjusted Rand Index (ARI). The higher
the better in all three, and they can accommodate for differ-
ences between the inferred K and its GT value. See Supmat
for more details on the experimental setup and the values of
the hyperparameters that we used. Due to space limits, we
omit here the NMI and ARI values in several comparisons
but these appear in the Supmat. We round the results to 2
decimal places so, e.g., a standard deviation (std. dev.) of
.00 may still represent a positive (albeit small) number.

Comparing with Classical Methods. We compared
DeepDPM with classical parametric methods (K-means;

9865



NMI ARI ACC NMI ARI ACC NMI ARI ACC

MNIST [18] USPS [35] Fashion-MNIST [69]

K-meansp .90± .02 .84± .05 .85±.06 .86±.01 .79±.05 .80±.06 .67±.01 .50±.03 .60±.04
GMMp .94±.00 .95±.00 .98±.00 .86±.02 .79±.05 .81±.06 .66±.01 .49±.02 .58±.03
DBSCAN .92±0 .86±0 .89±0 .72±0 .46±0 .57±0 .63±0 -.32±0 .39±0
DPM Sampler .92±.01 .91±.04 .93±.05 .87±.01 .82±.02 .83±.03 .67±.01 .49± .02 .59±.03
moVB .93±.00 .94±.00 .97±.00 .87±.02 .86±.04 .90±.04 .66±.02 .47±.03 .55±.03
DeepDPM (Ours) .94±.00 .95±.00 .98±.00 .88±.00 .86±.01 .89±.2 .68±.01 .51±.02 .62±.03

MNISTimb USPSimb Fashion-MNISTimb

K-meansp .89± .03 .84± .06 .83±.06 .82±.02 .71±.05 .71±.05 .62±.01 .46±.02 .56±.03
GMMp .94±.02 .95±.03 .96±.04 .83±.01 .74±.05 .76±.05 .62±.01 .46±.02 .57±.03
DBSCAN .93±0 .92±0 .94±0 .84±0 .79±0 .80±0 .62±0 .35±0 .46±0
DPM Sampler .93±.01 .94±.02 .96±.02 .89±.02 .89±.06 .91±.04 .66±.01 .50± .01 .61±.01
moVB .94±.00 .95±.00 .96±.00 .88±.01 .89±.02 .91±.02 .63±.01 .44±.02 .53±.02
DeepDPM (Ours) .95±.01 .97±.01 .98±.01 .90±.00 .92±.00 .94±.00 .65±.00 .50±.00 .61±.00

Table 1. Comparing the mean results (±std. dev.) of DeepDPM with classical clustering methods. The results are the mean of 10
independent runs. Methods marked with p are parametric (require K). Datasets marked with imb are imbalanced ones.

Method Inferred K

MNIST USPS Fashion-MNIST

DBSCAN 9.0±0.00 6.0±0.00 4.0±0.00
DPM Sampler 11.3±0.82 8.5±0.85 12.4±0.97
moVB 14±1.00 11.2±1.08 16.9±2.30
DeepDPM (Ours) 10±0.00 9.2±0.42 10.2±0.79

Table 2. Comparing the mean inferred value (±std. dev.) for K of
10 runs among nonparametric methods. GT K = 10.

GMM) and nonparametric ones (DBSCAN [23], moVB [34];
the SOTA DPM sampler from [21]). For feature extraction,
we performed the process suggested in [47]. We performed
the evaluation on the MNIST, USPS, and Fashion-MNIST
datasets, as well their imbalanced versions (the latter are
defined in the Supmat). All the methods used the same
(and fixed) data embeddings as input, and the parametric
ones were given the GT K, given them an unfair advantage.
Table 1 shows that DeepDPM almost uniformly dominates
across all datasets and metrics, and its performance gain
only increases in the imbalanced cases. It is also observable
that, compared with the parametric methods, the nonparamet-
ric ones (ours included) are less affected by the imbalance.
Moreover, Table 2 shows that among the nonparametric
methods, DeepDPM’s inferred K is the closest to the GT K
(see Supmat for similar results in the imbalanced case).

Comparing with Deep Nonparametric Methods. As
there exist very few deep nonparametric methods, and
some of them reported results only on extremely-small toy
datasets [11, 66] (e.g., one of them stated they could not pro-

cess even MNIST’s train dataset as it was too large for them),
we compared DeepDPM with DCC [52] and AdapVAE [74],
the only unsupervised deep nonparametric methods that can
at least handle the MNIST [18], USPS [35], and STL-10 [15]
datasets. As both those methods jointly learn features and
clustering, and to show the flexible nature of DeepDPM,
we demonstrate its integration with two feature-extraction
techniques (described in § 4.5): an end-to-end pipeline (for
MNIST and REUTERS-10k [43]) and a two-step approach
using features pretrained by MoCo [13] (for STL-10). Un-
fortunately, we could not run AdapVAE’s published code,
and thus resort to including the results reported by them. For
DCC, using their code we could reproduce their results only
on MNIST, so we compare with both the results we managed
to obtain using their code and the ones reported by them.
Due to these reproducibility issues, we could compare with
those methods only on the original (i.e., balanced) datasets.
Table 3 shows that DeepDPM outperforms both DCC and
AdapVAE. Note we could not find other unsupervised deep
nonparametric methods (let alone with available code) that
scale to even these fairly-small datasets.

Clustering the Entire ImageNet Dataset. On ImageNet,
we obtained the following results: ACC: 0.25, NMI: 0.65,
ARI: 0.14. Our method was initialized with K = 200 and
converged into 707 clusters (GT=1000). These are first
results on ImageNet reported for deep nonparametric cluster-
ing. Figure 3 shows examples of images clustered together.

5.1. The Value of Deep Nonparametric Methods

When Parametric Methods Break. We study the effect
of not knowing K on parametric methods, with and without
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MNIST [18] STL-10 [15] Reuters10k [43]

Method NMI ARI ACC NMI ARI ACC NMI ARI ACC

AdapVAE† [74] avg .86±1.02 .84±2.35 N/A .75±0.53 .71±0.81 N/A .45±1.79 .43±5.73 N/A
DCC† [52] best .912 N/A .96 N/A N/A N/A .59 N/A .60
DCC‡ [52] avg .90±.02 .89±.07 .91±.07 .22±.00 .01±.00 .04±.00 .25±.00 .00±.00 .00±.00

DeepDPM (ours) avg .90±.01 .91±.02 .93±.03 .78±.004 .70±.01 .84±.01 .61±.00 .64±.01 .83±.00
DeepDPM (ours) best .92 .93 .96 .79 .71 .85 .61 .64 .83

Table 3. Comparing deep nonparametric methods. †: reported in the papers. ‡: obtained using their code. avg: mean (±std. dev.) of 5 runs.

Figure 3. Examples of ImageNet images clustered together by DeepDPM. Each panel stands for a different cluster.

Method NMI ARI ACC

ImageNet-50: Balanced

DBSCAN .52±.00 .09±.00 .24±.00
moVB .70±.01 .38±.01 .55±.02
DPM Sampler .72±.00 .43±.01 .57±.01
DeepDPM (ours) .75±.00 .49±.01 .64±.00
DeepDPM (ours)∗ .77±.00 .54±.01 .66±.01

ImageNet-50: Imbalanced

DBSCAN .33±.00 .04±.00 .24±.00
moVB .68±.01 .44±.03 .52±.03
DPM Sampler .70±.00 .40±.01 .51±.00
DeepDPM (ours) .74±.01 .48±.02 .58±.01
DeepDPM (ours)∗ .75±.00 .51±.01 .60±.01

Table 4. Comparison of nonparametric methods on ImageNet-50
and its imbalanced version. ∗ marks results with AE alternation.

class imbalance. We evaluate each method with a wide
range of different K values on ImageNet-50. The latter,
curated in [64], consists of 50 randomly-selected classes of
ImageNet [17]. To generate an imbalanced version of it, we
sampled a normalized nonuniform histogram from a uniform
distribution over the 50-dimensional probability simplex (i.e.,
all histograms were equally probable) and then sampled
examples from the 50 classes in proportions according to
that nonuniform histogram. We compared with 3 parametric
methods: 1) K-means; 2) the SOTA method SCAN [64];
3) an improved version of DCN [71], self-coined DCN++,
where instead of training an AE on the raw data, we trained
it on top of the embeddings SCAN uses (MoCo [13]) where,
following [64], we froze those embeddings during training.
For DeepDPM, we used the same features.

Method Final/best K:
balanced

Final/best K:
imbalanced

K-meansp 40 20
DCN++p 60 40
SCANp 70 40

DBSCAN 16 13
moVB 46.2±1.3 46.4±1.1
DPM Sampler 72.0±2.6 70.3±4.6
DeepDPM (ours) 52.0±1.0 43.67±1.2
DeepDPM (ours)∗ 55.3±1.5 46.3±2.5

Table 5. Comparing the mean (±std. dev.) value for K found on
ImageNet-50 of 3 runs. For the parametric methods (marked with

p) we use the K value with the best silhouette score. ∗ marks
results obtained with AE alternation.

Since SCAN requires large amounts of memory (e.g., we
could only run it on 2 RTX-3090 GPU cards with 24GB
memory each, compared with DeepDPM for which a single
RTX-2080 (or even GTX-1080) with 8GB sufficed), and due
to resource constraints, we were limited in how many K
values we could run SCAN with and in the number of times
each experiment could run (this high computational cost
is one of the problems with model selection in parametric
methods). Thus, we collected the results of the parametric
methods with K values ranging from 5 to 350. For both the
balanced and imbalanced cases, we initialized DeepDPM
with K = 10. Figure 1 summarizes the ACC results (see
Supmat for ARI/NMI). As the K value used by the paramet-
ric methods diverges from the GT (i.e., K = 50), their results
deteriorate. Unsurprisingly, when using the GT K, or suf-
ficiently close to it, the parametric methods outperform our
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ACC

Kinit=3 Kinit=10 Kinit=30

No splits/merges .29±.01 .59±.03 .46±.01
No splits .29±.01 .59±.02 .45±.03
No merges .46±.00 .58±.01 .47±.01
2-means instead of fsub .61±.00 .59±.02 .56±.02
No priors in the M step .58±.01 .57±.02 .58±.01
Isotropic loss instead ofLcl .58±.00 .58±.00 .58±.02
DeepDPM (full method) .62±.03 .61±.00 .62±.01

Table 6. DeepDPM’s performance under different ablations.

nonparametric one, confirming our claim that having a good
estimate of K is important for good clustering. Figure 1a,
however, shows that even with fairly-moderate deviates from
the GT K, DeepDPM’s result (0.66±.01) surpasses the lead-
ing parametric method. Moreover, Figure 1 shows that the
parametric SCAN is sensitive to class imbalance; e.g., in Fig-
ure 1b, SCAN performs best when K = 30 suggesting it is
due to ignoring many small classes. In contrast, DeepDPM
(scoring 0.60± .01) is fairly robust to these changes and is
comparable in results to SCAN when the latter was given the
GT K. In addition, we also show in Table 4 the performance
of other nonparametric methods (3 runs on the same features
as ours: MoCo+AE). We include DeepDPM’s results with
alternation (between clustering and feature learning) and
without (i.e., holding the features frozen and training Deep-
DPM only once). Table 5 compares the K values found by
the nonparametric methods. DeepDPM inferred a K value
close to the GT in both the balanced and imbalanced cases.
In the imbalanced case, moVB scored a slightly better K
but its results (see Table 4) were worse. For the parametric
methods, Table 5 also shows the K value of the best silhou-
ette score. The unsupervised silhouette metric is commonly
used for model selection (NMI/ACC/ARI are supervised,
hence inapplicable for model selection). As Table 5 shows,
DeepDPM yielded a more accurate K than that approach.

Running Times. Our running time is comparable with
a single run of SCAN (the SOTA deep parametric method);
e.g., on ImageNet-50, SCAN (with 2 NVIDIA 3090 GPUs)
trains for ∼8 [hr] while ours (with 1 weaker NVIDIA 2080
GPU) takes ∼11 [hr]. However, training SCAN multiple
times with a different K each time (as needed for model
selection) took more than 3 days. Thus, DeepDPM’s value
and positive environmental impact are clear.

5.2. Ablation Study and Robustness to the Initial K

Table 6 quantifies the performance gains due to the dif-
ferent parts of DeepDPM through an ablation study done on
Fashion-MNIST (in the setting described earlier). It shows
the effect of disabling splits, merges and both; e.g., merges
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Figure 4. Robustness to the initial K. GT K = 10 in all datasets.

help even when initializing with K = 3. In fact, the large
moves made by splits/merges help even when Kinit = 10.
Also, replacing the subclustering nets with K-means (using
K = 2) results in deterioration. Likewise, either turning
off the priors when computing the cluster parameters, or
using an isotropic loss instead of Lcl, hurts performance and
(while not shown here) often destabilizes the optimization.
Finally, Figure 4 demonstrates, on three different datasets,
DeepDPM’s robustness to the initial K.

6. Conclusion
Limitations. As with most clustering methods, if Deep-

DPM’s input features are poor it would struggle to recover.
Also, if K is known and the dataset is balanced, parametric
methods (e.g., SCAN) may be a slightly better choice.

Future work. An interesting direction is adapting Deep-
DPM to streaming data (e.g., similarly to how [20] handled
streaming DPM inference) or hierarchical settings [7,19,61].
Moreover, our results may improve given a more sophisti-
cated framework for building split proposals (e.g., see [67]).

Broader impact. We hope our work will inspire the deep-
clustering community to adopt the nonparametric approach
as well as raise awareness to issues with the parametric one.
Nonparametrics also has an environmental positive impact:
obviating the need to repeatedly train deep parametric meth-
ods for model selection drastically reduces resource usage.

Summary. We presented a deep nonparametric clustering
method, a dynamic architecture that adapts to the varying
K values, and a novel loss based on new amortized infer-
ence in mixture models. Our method outperforms deep and
non-deep nonparametric methods and achieves SOTA results.
We demonstrated the issues with parametric clustering, espe-
cially the sensitivity to the assumed K, and the added value
the nonparametric approach brings to deep clustering. We
showed the robustness of our method to both class imbalance
and the initial K. Finally, we demonstrated the scalability
of DeepDPM by being the first method of its kind to report
results on ImageNet. Our code is publicly available.
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