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NeRF [25]
2.5k / 300k iterations

21.38dB / 29.31dB PSNR

Boosted NeRF (ours)
2.5k / 300k iterations

25.29dB / 31.56dB PSNR

NeX [42]
40 / 4,000 epochs

24.87dB / 31.24dB PSNR

Boosted NeX (ours)
40 / 4,000 epochs

29.00dB / 33.14dB PSNR

Figure 1. Boosting View Synthesis. We present a simple yet effective approach for injecting residual details (the difference between the

ground truth training views and their reconstruction) into the rendering procedure of pre-trained base view synthesis models to boost their

rendering quality.

Abstract

Volumetric view synthesis methods with neural represen-

tations, such as NeRF and NeX, have recently demonstrated

high-quality novel view synthesis. However, optimizing

these representations is slow, and even fully trained mod-

els cannot reproduce all fine details in the input views. We

present a simple but effective technique to boost the render-

ing quality, which can be easily integrated with most view

synthesis methods. The core idea is to transfer color resid-

uals (the difference between the input images and their re-

construction) from training views to novel views. We blend

the residuals from multiple views using a heuristic weight-

ing scheme depending on ray visibility and angular differ-

ences. We integrate our technique with several state-of-the-

art view synthesis methods and evaluate the Real Forward-

facing and the Shiny datasets. Our results show that at

about 1/10th the number of training iterations, we achieve

the same rendering quality as fully converged NeRF and

NeX models, and when applied to fully converged models,

we significantly improve their rendering quality.

1. Introduction

State-of-the-art neural view synthesis methods such as

NeRF [25] and NeX [42], to name just two, have re-

cently shown near-photorealistic novel view synthesis re-

sults. These methods model a scene using a 5D radiance

field (3 spatial and 2 view direction dimensions) of contin-

uous volumetric density and color. Novel views are syn-

thesized using numerical quadrature for approximating the

volume rendering integral. The radiance field is represented

using neural methods, particularly a multilayer perceptron

(MLP) in the case of NeRF and feature coefficients on a

multi-plane image in the case of NeX. Because volume ren-

dering is differentiable, it is straightforward to optimize

the parameters of these representations from a sparse set

of posed training images by minimizing the difference be-

tween these ground truth views and their reconstructions.

However, the training typically requires a long optimiza-

tion time on the order of several hours to achieve good

visual quality. Even a fully trained model struggles with

capturing high-frequency details in the training images for

complex scenes. Figure 2 shows an example highlighting
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Figure 2. Reconstructing training images with NeRF. The

training is computationally expensive. However, even a fully

trained NeRF model (up to 1 million iterations) cannot recover all

fine appearance details present in the training images. The bottom

row shows the scaled residual map (difference between the

ground truth and the rendered image). Results best viewed on a

monitor with zoom-in.

the challenges of reproducing fine details in an input image.

In this paper we present a method to boost the render-

ing quality of many view synthesis methods by injecting

these missing details into their volume rendering proce-

dure. Given a pre-trained model, we first render the scene

at the input training views and pre-compute residual color

images, i.e., the difference between the training views and

their reconstruction. We then transfer these residual col-

ors from the training views to refine the novel color pre-

diction when synthesizing novel views. More specifically,

we retrieve multiple residual colors for each sampled 3D

point during volume rendering by projecting it onto the im-

age planes of training views. We then blend them using a

heuristic weighting function that takes visibility and angu-

lar deviation into account and improves color prediction by

adding blended residuals. This results in perfect zero-error

reconstructions at training views and significantly improved

reconstructions at nearby unobserved views (See Figure 1).

We integrate our approach with several state-of-the-

art view synthesis methods, including NeRF and NeX.

We evaluate the effectiveness of our method on the Real

Forward-facing [25] and Shiny [42] datasets. For most view

synthesis methods, integrating our proposed approach re-

quires only a few lines of code changes with and negli-

gible runtime overhead compared to the baseline runtime.

Our results show that our approach improves the novel view

rendering quality of fully converged baseline methods. Al-

ternatively, it achieves the same quality as fully converged

baseline models at significantly reduced training times (e.g.,

about 1/10th number of iterations in the case of NeRF).

2. Related Work

Image-based rendering. Synthesizing novel views

of a scene is a long-standing problem in computer vi-

sion [35]. Early approaches using Light Fields [17] or

Lumigraphs [10] demonstrate photorealistic rendering by

blending and interpolating rays from the collection of cap-

tured images without explicit geometric reconstruction.

However, they often require capturing an excessive amount

of images. Leveraging geometric proxies helps to improve

the view synthesis quality without densely sampled cam-

era views [3, 4, 28]. The basic idea is to warp, stitch, and

blend the input views to produce the desired target view.

Recent work focuses on using learning-based methods for

improving blending [11], disparity estimation [8, 14], and

view-dependent color synthesis [30, 31].

Our method is inspired by classical image-based render-

ing techniques in the sense that we also transfer content

from the training views to the target view. Our work dif-

fers in two major aspects. First, instead of transferring color

or local image features from the training views, we transfer

residuals for refining a base view synthesis method. Sec-

ond, unlike existing methods that perform the warping on

surface models, our residual transfer integrates directly into

the 3D volume rendering procedure of modern view synthe-

sis methods.

Explicit scene representations. A line of recent research

reconstructs 3D (latent) representations from 2D image ob-

servations using differentiable renderers. These methods

differ in the types of explicit geometric proxies used, in-

cluding voxels [22, 37], textured mesh [40], multiplane im-

ages [7,24,42], layered depth images [16,33,34], and point

clouds [1, 32, 43]. Many of these methods learn latent fea-

tures in 3D in conjunction with a 2D neural renderer (e.g.,

a CNN model) that decodes the rendered 2D feature maps

to 2D color image. We refer the readers to the recent sur-

vey [39] for a thorough discussion.

Implicit scene representations. To overcome limitations

on the spatial resolution or additional dimensionalities such

as view-dependent appearance, recent work explores encod-

ing scenes with implicit representations [2, 15, 18, 19, 25–

27, 38]. The core idea is to map input coordinates (e.g.,

3D position and 2D viewing direction) to the desired scene

properties (e.g., color, density, signed distance function). In

particular, NeRF [25] combines implicit scene representa-

tion with volume rendering, demonstrating state-of-the-art

view synthesis results.

Our method is model-agnostic. We show that the pro-

posed residual transfer can significantly improve the ren-

dering quality of either for implicit representation methods

(NeRF [25]) or explicit or hybrid model (NeX [42]).

Extending NeRFs using local image features. To

avoid per-scene optimization, several methods extract lo-

cal features from training images and aggregate them us-

ing multi-view consistency to predict color and density

[5, 6, 20, 41, 45]. Similar to these methods, our approach

also explicitly uses the training images during rendering.
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(a) Classic IBR (b) Implicit-based (c) MPI-based

Figure 3. Example view synthesis methods. (a) Classic IBR

methods [3, 11, 28, 31] use a surface-based proxy such as a mesh

to aggregate the colors or local features from nearby source views

(orange) via reprojection to predict color. (b) Implicit scene

representation based methods [25] learns a continuous 5D

radiance field via an MLP. (c) MPI-based methods [7, 24, 42]

represent a 3D scene as a stack of fronto-parallel RGBα textures

(potentially augmented with view-dependent appearance [42]).

However, our goal is to improve the rendering quality of

a pre-trained NeRF (instead of addressing the generaliza-

tion issue). In contrast to transferring the original colors

(or local features) from the training views, we transfer the

residual to refine the color prediction of an existing view

synthesis method.

Residual detail transfer. Neural rendering methods for

decoding local image features back to color images often

lack fine details. Computing and adding the residual back to

the rendered results are simple yet effective techniques for

improving the quality [21, 23]. The computed residual can

be re-distributed to different layers [23] or different frames

in a video [21]. Our work also exploits the idea of residual

detail transfer in [21,23]. Unlike methods that warp/transfer

details on 2D image planes [21,23], our performs the resid-

ual transfer and blending directly in 3D.

3. Overview

3.1. View Synthesis

Many classic image-based rendering (IBR) algorithms

work by warping and blending input images on a surface-

based proxy of the scene geometry (Figure 3a). The blend-

ing uses a weighting function that takes factors such as vis-

ibility, angular deviation, etc. into account. It can be either

hand-crafted [3], or, more recently, learning-based [12, 31].

Since it is difficult to model complex or fuzzy scene de-

tails with surface-based models, many recent methods have

shifted to using volumetric scene models, typically a 5D ra-

diance field (3 spatial dimensions and 2 for view-dependent

appearance). At each position, the field stores RGB color

and volume density. Novel views are then synthesized by

volume rendering the field. The high dimensional radiance

field is typically represented using neural methods, which

differ in the machinery for recovering density and color, and

where they place samples. For example, NeRF [25] uses an

MLP that is adaptively sampled (Figure 3b), while NeX [42]

uses an MPI with neural coefficients that is sampled at the

fixed multi-planes (Figure 3c).

3.2. Residual Transfer

Because 5D radiance fields are very flexible due to the

view-dependent appearance variation, it is trivial to create a

radiance field that perfectly reproduces all training images.

However, a naı̈vely fitted radiance field would not general-

ize well to novel views. So, methods need to balance over-

fitting the training views and generalizing to novel views.

They achieve this through specific priors. For example,

the network design of NeRF favors explaining the training

views through triangulated geometric variation rather than

view-dependent appearance wherever possible. It does this

by restricting the density to be a function of only the spatial

dimensions and through the compressive force of limiting

the network capacity (favoring a “simpler” explanation of

the scene where possible). Overall, these methods achieve

very high-quality view synthesis. However, they do not

perfectly reproduce the training views due to the tradeoff

mentioned above. Typically this manifests in fine surface

texture details being smoothed out in rendered views (See

Figure 1).

The core idea of our method is to evaluate the residual

error of the baseline view synthesis method at the train-

ing views and then transfer these missing details to nearby

novel views. We achieve this by leveraging the blending

mechanism of classic IBR algorithms to inject the missing

residual into the baseline method. We call this boosting the

algorithm. This simple change to the underlying algorithm

typically causes negligible runtime overhead. The resulting

boosted view synthesis algorithm can perfectly reconstruct

all training views and significantly improve nearby novel

views. However, it does not suffer from overfitting artifacts

because it only applies the minimum change necessary (i.e.,

the residual error).

4. Method

As mentioned in the previous section, our goal is to

transfer residual details from training views to novel views.

We will first explain in Section 4.1 the blending mechanism

of classic IBR algorithms, which we use to blend residuals.

Then we will recap in Section 4.2 modern volumetric view

synthesis methods and make a connection to classic IBR.

Finally, we will explain in Section 4.3 how to boost view

synthesis algorithms by injecting blended residuals.

4.1. Classic Surface­based View Synthesis

Classic IBR methods transfer colors from the input

views to novel views by blending them on a surface-based

proxy of the scene. We will later use a similar mechanism
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Figure 4. Blending weights for residual transfer. Here we show

an example with just two training views for clarity. For rendering

a ray through pixel p for a virtual camera located at o, we sample

3D points along the ray. For each 3D point (e.g., x), we project it

onto the image planes of the training views to obtain the

corresponding 2D image coordinates πi(x) and π j(x).We retrieve

the residual colors from each view, Ri(πi(x)) and R j(π j(x)), and

blend these residual colors depending on their angular differences

φi and φ j.

for blending residuals, but it is helpful to discuss the classic

case with color transfer first because it allows us to establish

some useful notation and math.

The input is a set of images {Ik}
K
k=1 with camera poses

Pk = (Kk,Rk, tk), i.e., intrinsics, rotation, and translation, re-

spectively. Given a new pose P = (K,R, t), the goal is to

synthesize an image O that shows a view of the scene from

that viewpoint.

The output color at a pixel p is computed as a weighted

combination of pixels from the input views:

O(p) =
K

∑
k=1

wk(x) Ik

(
πk(x)

)
. (1)

Here, x is the point at which the ray through p intersects

with the surface proxy, and πk computes the projection into

the k-th input view:

πk(x) = µ
(

Kk(Rk x+ tk)
)
, (2)

with µ
(
[x,y,z]⊤

)
=
[

x
z
, y

z

]
.

The blending weights we use contain a visibility term ν
that disables input pixels that cannot see x and an angular

term φ that favors input views that observe x from a similar

direction as the novel view:

wk(x) =
1

W
·

νk(x)

φk(x)+ ε
. (3)

with W is for normalization so that ∑wk(x) = 1, and we

use Softmax to function as the 1/W term in experiments. A

very small positive ε avoids division by zero.

In practice, we observe that blending a small set of the

most relevant training views leads to better results than

blending all training views. Accordingly, we set all weights

among {wk} that are not in the top T = 5 to zero, and then

use W to renormalize the top T weights to sum to one.

The visibility term softly down weighs pixels where x is

occluded:

νk(x) = 1−S

(

(x−ok) · zk

Dk

(
πk(x)

) −1

)

. (4)

Here, zk = R⊤
k · [0,0,1]⊤ is the principal direction of the k-

th view, and ok = −R⊤
k tk is the camera center. The term in

the numerator is the z-depth and the denominator samples

a precomputed depth map Dk. S(t) =
(
1+ e−k(t−t0)

)−1
is

the logistic function (a sigmoid), k = 50 makes the sigmoid

steep and edge-like, and t0 = 0.1 shifts it slightly, so that

we include samples that are slightly occluded due to inac-

curately estimated depth (νk(x) fades from 1 to 0 for depth

ratios between approximately 1.0 and 1.2).

The angular term φk(x) measures the angle between the

novel view ray and the k-th input view ray:

φk(x) = ∡
(−⇀
xo,−⇀xok

)
. (5)

Note that when the output pose approaches one of the in-

put views, the respective angular term vanishes, and the

weights become one-hot, so the input view is perfectly re-

constructed. Figure 4 illustrates the notation in this section

on a schematic example.

4.2. Volumetric View Synthesis

It is difficult to accurately represent complex scene de-

tails with surface-based proxies because surfaces are hard

to estimate in smooth regions, complex surface topology

is challenging to optimize, and surface-based appearance

does not well support semi-transparency and reflections.

For this reason, more recent methods, such as NeRF [25] or

NeX [42], replace the surface-based models with volumet-

ric approaches where volume density varies continuously.

In this setting, the output image is obtained by volume

rendering. The output color at a pixel p is obtained by in-

tegrating color c and density σ along the corresponding ray

r(p, t) = o+ td(p):

O(p) =
∫ tf

tn

T(t)σ
(
r(p, t)

)

︸ ︷︷ ︸

Density

c
(
r(p, t), d(p)

)

︸ ︷︷ ︸

Emitted color

dt. (6)

The second and third term are the local density and emitted

color, respectively, at the depth t along the ray, and T(t) is

the accumulated transmittance to this point:

T(t) = exp

(

−
∫ t

tn

σ
(
r(p,s)

)
ds

)

. (7)
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In practice, the volume rendering integral in Equation 6

is approximated with a sum. To this end, we sample density

and color {σi, ci}
N
i=1 at depths {ti}

N
i=1 along the ray. The

discrete version of volume rendering then becomes:

O(p) =
N

∑
i=1

Ti αi ci , (8)

with:

Ti = exp

(

−
i−1

∑
j=1

σ jδ j

)

, and αi = 1− exp(−σiδi) . (9)

Here, δi = ti+1−ti is the distance between adjacent samples.

Evaluating Equation 8 boils down to simple alpha composit-

ing.

Different volumetric view synthesis methods vary in how

they represent density and color and how the volume is sam-

pled. For example, NeRF uses an MLP that is adaptively

sampled. NeX uses a multi-plane image (i.e., fixed sample

positions) and stores neural coefficients transformed into

color and density using a small network in rendering.

4.3. Boosting View Synthesis via Residual Transfer

We can combine classic blending (Section 4.1) and vol-

umetric view synthesis (Section 4.2) by injecting the color

blending from Equation 1 into the volume rendering in

Equation 8:

O(p) =
N

∑
i=1

Ti αi

K

∑
k=1

wk(xi) Ik

(
πk(xi)

)

︸ ︷︷ ︸

Blending (Equation 1)

, (10)

with xi = r(p, ti). This equation accumulates blended colors

from training views along the ray using the reconstructed

volume density of a baseline view synthesis method, for ex-

ample, NeRF or NeX. Like classic IBR, it reconstructs all

training views perfectly with zero error, but it provides su-

perior quality for novel views compared to classic IBR be-

cause the continuous volume density is a better scene proxy

than surface-based models.

On the other hand, the underlying baseline view synthe-

sis method does not reconstruct the training views perfectly,

for the reasons described in Section 3.2, which often mani-

fests in smoothed-out surface details. But it typically has

superior generalization ability than Equation 10 due to the

more sophisticated optimization that went into precomput-

ing the color volume.

This is where the core idea of this paper comes into play.

It is to combine the strengths of both approaches: the high

generalization ability of the baseline view synthesis method

and the ability to reconstruct most visible details in the

training views. We achieve this by splicing Equations 8 and

10:

O(p) =
N

∑
i=1

Ti αi

(

ci +
K

∑
k=1

wk(xi)Rk

(
πk(xi)

)

︸ ︷︷ ︸

Blended residual

)

, (11)

where instead of blending colors we blend the residual er-

rors,

Rk = Ik −O|P=Pk
. (12)

The blended residual adds in just the missing detail that

the baseline view synthesis method was not able to re-

construct by itself. This results in perfect reconstruction

of training views and significantly improved surrounding

novel views. We call this boosting the underlying view syn-

thesis method.

Ghosting is limited because boosting only adds in resid-

uals, i.e., the minimum change needed for a better recon-

struction. Since evaluating Equation 11 does not require

any additional network evaluation compared to the baseline

(Equation 8), the runtime overhead of boosting is often neg-

ligible compared to the baseline.

The full method has the following parameters: T = 5

(number of blended residuals), k = 50, t0 = 0.1 (sigmoid

shape parameters). Throughout all experiments, we use

these fixed values.

5. Experimental Results

This section validates the proposed residual transfer

method for boosting the rendering quality of existing view

synthesis methods. We first describe our experimental setup

(Section 5.1), and then report the quantitative evaluation of

applying our method to two state-of-the-art view synthesis

methods (Section 5.2). We show sample visual results to

highlight the perceptual improvement (Section 5.3) and val-

idate our core design choices (Section 5.4). We will release

the source code for the full reproducibility of our method.

We include sample visual results and report the main

quantitative evaluation on the datasets in the following.

Many visual improvements are most visible when viewed

at high resolution on a monitor. We encourage the readers

to see our supplementary material, where we include exten-

sive view synthesis results and visual comparisons.

5.1. Experimental Setup

Dataset. We evaluate our method on the Real Forward-

facing [25] and Shiny [42] datasets. Each dataset consists

of 8 scenes captured using a smartphone. Many of these

challenging scenes contain complex scene geometry (e.g.,

thin structures), semi-transparent surfaces (e.g., windows),

and strong view-dependent effects (e.g., shiny reflective ob-

jects). We use the default training and testing split from the

respective dataset to conduct our evaluation.
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Table 1. Quantitative comparisons. We report the results using the NeRF model trained with 300k steps and the NeX models trained for

16 hours on 4 NVIDIA V100 GPUs. We aggregate the metrics over all the scenes for the Real Forward-facing dataset [25] and the Shiny

dataset [42]. We use VGGNet [36] for computing the LPIPS [46] scores.

Methods
Real Forward-facing [24] Shiny dataset [42]

PSNR↑ SSIM↑ LPIPS ↓ PSNR↑ SSIM↑ LPIPS ↓

NeRF [25] 26.53 0.8038 0.1985 22.43 0.6360 0.3018

Boosted NeRF (ours) 27.08 0.8371 0.1383 23.22 0.7024 0.1975

NeX [42] 27.74 0.8702 0.1302 26.74 0.8321 0.1293

Boosted NeX (ours) 28.19 0.8723 0.1104 28.09 0.8642 0.0963

Table 2. Per-scene PSNR comparisons on the Real

Forward-Facing dataset [25]. We use NeRF model trained with

300k steps as our base model.

Scene NeRF [25] Boosted NeRF (ours)

Fern 25.07 25.18 (+0.11)

Flower 26.64 28.69 (+2.05)

Fortress 31.39 32.10 (+0.71)

Horns 27.68 28.52 (+0.84)

Leaves 20.98 21.14 (+0.16)

Orchids 20.34 20.41 (+0.07)

Room 32.20 32.94 (+0.74)

Trex 26.91 27.63 (+0.72)

Compared methods. As our method is model-agnostic,

we choose two representative volumetric view synthesis al-

gorithms, NeRF [25] and NeX [42], as our base models.

For NeRF, we use the PyTorch implementation1. For NeX,

we use the official implementation provided by the authors2.

Note that when using the NeX model, we follow the instruc-

tion and use the undistorted version of the Real Forward-

facing [25] dataset as provided by the authors of NeX [42].

We follow the default hyper-parameters in both methods for

all of our experiments. Following the respective papers,

the NeRF models were trained for 300k iterations and NeX

models were trained for 4,000 epochs (2,000 for cd and

lab due to the large size) on 4 NVIDIA V100 GPUs.

As our goal is not to develop a new view synthesis

method, in the following we do not include additional

comparisons with other view synthesis methods such as

LLFF [24], SRN [38], or NSVF [18]. Instead, we focus on

the evaluation of using our method to boost the two selected

base models.

5.2. Quantitative Comparison

Improvement over fully trained models. Table 1 sum-

marizes the quantitative comparisons on the test splits of

the two datasets. Adding the proposed residual transfer for

both base methods leads to clear improvement even for fully

trained models. Also, our method (trivially) achieves per-

1https://github.com/yenchenlin/nerf-pytorch
2https://github.com/nex-mpi/nex-code/

Table 3. Per-scene PSNR comparisons on the Shiny

dataset [42]. We use NeX model trained with 4,000 epochs

(2,000 for cd and lab) as our base model.

Scene NeX [25] Boosted NeX (ours)

Cd 30.38 32.49 (+2.11)

Crest 22.43 22.90 (+0.47)

Food 24.75 25.32 (+0.57)

Giants 27.48 28.41 (+0.93)

Lab 30.12 31.74 (+1.62)

Pasta 22.94 24.23 (+1.29)

Seasoning 29.99 30.40 (+0.41)

Tools 29.16 29.25 (+0.09)

Table 4. Ablation study on the Horns scene. Simply

transferring the blended colors from the training views performs

poorly. In contrast, transferring the blended residual substantially

improve the rendering quality of the baseline NeRF model.

Methods PSNR ↑ SSIM ↑ LPIPS ↓

Baseline NeRF [25] 27.68 0.8226 0.2142

Color transfer with Eqn. (10) 23.84 0.8477 0.1753

Residual transfer with Eqn. (11) 28.52 0.8801 0.1230

fect zero-error reconstruction at training views. In Table 2

and Table 3, we provide per-scene quantitative comparison

with the NeRF and NeX models.

Improvement at different training stages. Optimizing

these base models often involves long training time. Fig-

ure 6 shows the rendering quality improvement over the

base NeRF models with a different number of training it-

erations. Our results show that we can achieve the same

quality as fully converged NeRF models with about 1/10th

of the total training iterations.

5.3. Visual Comparison

Figure 5 shows several view synthesis results on the

Real Forward-facing and the Shiny datasets. Our method

provides substantial visual improvement by injecting the

missing high-frequency details from the training views into

novel views. Please refer to the supplementary material for

additional visual comparisons.
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Ground Truth NeRF [25] Boosted NeRF (ours)

Ground Truth NeRF [25] Boosted NeRF (ours)

Ground Truth NeRF [25] Boosted NeRF (ours)

Ground Truth NeX [42] Boosted NeX (ours)

Ground Truth NeX [42] Boosted NeX (ours)

Ground Truth NeX [42] Boosted NeX (ours)

Figure 5. Visual comparisons of the boosted results with the baseline NeRF [25] (top 3 rows) and NeX [42] (bottom 3 rows).
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Figure 6. Quantitative evaluation over the number of

iterations. We present the quantitative results on the test split of

the Real Forward-facing [25]. We report the averaged PSNR

values under different checkpoints during the course the training.

Our residual transfer achieves significant improvement over

NeRF at early stage of training and moderate improvement for

fully trained model. Rendering the boosted NeRF at training

views (trivially) produces perfect reconstruction.

5.4. Ablation Study

We show in Table 4 the ablation of using either color

transfer (similar to classical IBR approaches) or the pro-

posed residual transfer. Our results show that while using

the same density provided by a trained NeRF model, vol-

ume rendering using the transferred colors leads to substan-

tially inferior results than the baseline NeRF model. In con-

trast, our residual transfer approach results in a clear PSNR

improvement for the Horns scene.

5.5. Computational Overhead

Using a single NVIDIA V100 GPU, rendering a frame

of spatial resolution 1008×756 takes around 16 seconds

with NeRF [25] (measured by averaging over 15 runs), as

demonstrated in Table 5. In comparison, incorporating our

proposed residual transfer method incurs only a few per-

centages of the original computation time for rendering,

i.e. approximately two orders of magnitude smaller than

the baselines, when we properly factor the residual blending

out of the time-consuming volumetric rendering pipeline as

a post-processing scheme.

5.6. Memory allocation Overhead

Besides the trained weights of the baseline NeRF, our

method would require storing additional residuals of refer-

ence GT views for blending, and we conducted the abla-

tion study for the memory allocation in Table 5 on the same

GPU setup. The additional memory footprint for storing

the raw color information of reference residuals is propor-

tional to the count of utilized GT views, which is substantial

when uncompressed. We believe using a sparse set (e.g.,

via ranking) of the raw residual maps or corresponding fea-

tures, with a heuristic or learnable fusion mechanism can

Table 5. Ablation study on computational and memory

footprint overhead on the Horns scene. We logged the

computational time and memory allocation (average of 15 runs)

on rendering one 1008x756 novel view, to compute the

corresponding overhead in terms of utilizing increasing numbers

of reference GT views.

Methods Comp. time (sec) Memory (MB) PSNR ↑

Baseline NeRF [25] 16.34 4.79 27.68

Ours (1 ref. view) 16.56 (+1.35%) 7.08 (+47.81%) 27.94 (+0.26)

Ours (3 ref. view) 16.63 (+1.77%) 11.66 (+143.42%) 28.36 (+0.68)

Ours (5 ref. view) 16.68 (+2.08%) 16.24 (+239.04%) 28.52 (+0.84)

Ours (10 ref. view) 16.74 (+2.45%) 27.69 (+478.08%) 28.49 (+0.81)

potentially retain similar improvement while substantially

reducing the memory requirement.

6. Limitations

Memory. Compared to neural radiance field-based meth-

ods such as NeRF [25] that encode the scene compactly as

the weights of an MLP, our method incurs additional mem-

ory requirements because we need to store the residual im-

ages of the training views.

Computational overhead. Our method involves sim-

ple, easily parallelizable operations such as 3D point pro-

jection onto training views, interpolation to obtain residual

values, and addition to refining the estimated colors from

view synthesis methods. These additional computations are

negligible for NeRF rendering. However, there have been

many recent work to speedup the rendering via baking [13],

caching [9], or space partitioning [29, 44]. The computa-

tional overhead for our method (without careful engineer-

ing) may no longer be negligible for these fast methods.

Ghosting artifacts. Our method relies on the accurate

volume density or proxy geometry (estimated by view syn-

thesis methods) to properly transfer the residuals from the

training views. Our method may introduce ghosting arti-

facts when the density/geometry is erroneous (e.g., insuffi-

cient training or limited training views).

Potential negative societal impacts. Our method still re-

lies on base view synthesis models, often computationally

expensive and consume significant electricity.

7. Conclusions

We have presented a simple method for boosting the ren-

dering quality of view synthesis methods. Building upon

the basic idea in classic image-based rendering algorithms,

we adaptively transfer color residuals from the training

views to the target novel views. We show that our can be

easily integrated with state-of-the-art view synthesis algo-

rithms, including NeRF and NeX, and demonstrate clear

visual and quantitative improvement on the Real Forward-

facing and the Shiny datasets.
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