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Abstract

Reconstruction of geometric structures from images
using supervised learning suffers from limited available
amount of accurate data. One type of such data is accu-
rate real-world RGB-D images. A major challenge in ac-
quiring such ground truth data is the accurate alignment
between RGB images and the point cloud measured by a
depth scanner. To overcome this difficulty, we consider a
differential optimization method that aligns a colored point
cloud with a given color image through iterative geomet-
ric and color matching. In the proposed framework, the
optimization minimizes the photometric difference between
the colors of the point cloud and the corresponding colors
of the image pixels. Unlike other methods that try to re-
duce this photometric error, we analyze the computation of
the gradient on the image plane and propose a different di-
rect scheme. We assume that the colors produced by the
geometric scanner camera and the color camera sensor are
different and therefore characterized by different chromatic
acquisition properties. Under these multimodal conditions,
we find the transformation between the camera image and
the point cloud colors. We alternately optimize for align-
ing the position of the point cloud and matching the differ-
ent color spaces. The alignments produced by the proposed
method are demonstrated on both synthetic data with quan-
titative evaluation and real scenes with qualitative results.

1. Introduction
In recent years, research in 3D shape reconstruction

has made tremendous progress. Much of the research
in the field focused on shape reconstruction from IR or
RGB images. Multiple approaches have been proposed in-
cluding amongst others, shape from stereo and monocular
depth estimation. More recently, the focus of the com-
munity shifted towards supervised deep learning methods
[9, 12, 13, 19, 31, 44, 48, 59, 60]. Deep Learning relies heav-
ily on large and accurate datasets. Since such datasets are
difficult to obtain, most works use synthetic datasets to train

and validate their models. However, these datasets are lim-
ited since they do not capture real-world properties such as
distortions and noise. In addition, the use of deep learning
methods may require specific training data for each camera
model, as the shape reconstruction algorithms are sensitive
to model properties and artifacts.

One solution to acquire accurate ground-truth depth is to
use precise, yet, often slow, depth measuring devices such
as 3D laser scanners. Using such a device to acquire ex-
act depth values for a desired camera model requires regis-
tering the device pose relative to the camera one. Placing
the device at a fixed and calibrated position relative to the
camera is often unsuitable for this task. Such a setup suf-
fers from technical difficulties and requires constant main-
tenance [20]. Accurate laser scanners usually require a long
scanning time for a given scene. Consequently, in order to
create a large-scale dataset, multiple images should be ac-
quired for each depth scan. This means that a 3D Euclidean
transformation must be found between each image coordi-
nate system and the scanner coordinate system.

The geometric information and color texture provided by
some of these devices can be combined to produce a col-
ored point cloud that can be used for registration. How-
ever, such registration faces the challenge of multimodality.
More specifically, with the comparison of two images taken
with different devices - one with the scanner and one with
the camera. Different devices have different color proper-
ties, often referred to as color gamut. When two devices
capture the same scene, the captured color space of each
device is different. This defines the problem that our work
attempts to solve. How to accurately align a colored point
cloud with a colored image under multimodal conditions.

The multimodal alignment task, which is critical to pro-
duce accurate and reliable geometric data, has not yet been
directly explored. While a rough alignment can be easily
found, a precise alignment is required for a proper geomet-
ric dataset construction. Therefore, in this paper, we fo-
cus on refining such an alignment. Direct visual odome-
try methods can be modified to be used for our task. Such
methods have been mainly used in SLAM, Optical Flow
and Color Mapping. These approaches attempt to minimize

6656



Camera

(a) (b) (c) (d)          (e)

															Image
Color

Point
Color

! + Γ.

															

$%/	
1

/2. 	

! +$Γ/
1

/2.

															Point
Color

&

Point
Color

Image
Color

Image
Color

…

…

%.	

0

…

point

Image
plane

Figure 1. The proposed framework operating, for simplicity, on a single point under a single modality setting. (a) Project the point onto
the image plane. (b) Examine the photometric difference between the point color and the image color at the projected location. Unlike
projection, color on the image plane is not straightforward differentiable. Create a differential surface on the image plane. (c) Use the
differentiation to compute the gradient of the translation parameters and perform a step in the direction of the gradient. (d) Move the point
iteratively to optimize the photometric difference. (e) Stop when the photometric error between the point color and the image color at the
projected point location is minimal. In the case of many points in our point cloud, the update is also applied to the rotation parameters.

the photometric error between corresponding pixels based
on the estimated scene geometry. However, unlike our task,
these approaches align images acquired by the same device.

In contrast to previous methods, the proposed pipeline
uses a direct numerical sub-pixel scheme to approximate the
gradients in the image plane. We prove that the commonly
used method for computing such gradients is equivalent to
evaluating the gradients on a blurred image. To overcome
multimodality, we also propose a second-order polynomial
color transformation between the point cloud colors and the
image colors. Such an approach has rarely been used for
color transformations. The proposed approach produces
state-of-the-art results for multimodal colored point cloud
to image alignment.

2. Related Efforts

Alignment and registration have been studied inten-
sively in many different directions and setups. One of
the most fundamental tasks is 3D-to-3D alignment between
two point clouds. The most common solution is the It-
erative closest point algorithm (ICP) [4, 10]. Many im-
provements and variations of this algorithm have been pro-
posed [5, 27, 47, 52]. Other studies proposed to align the
colored 3D point cloud using the additional RGB color in-
formation [26, 38, 50] or hue values [46].

The task of 2D-to-2D image registration has also been
widely explored and used in many applications. The most
popular approach is to find corresponding points in both im-
ages and then determine the transformation between them
[11]. The two leading methods for finding corresponding
points are intensity-based methods and feature-based meth-

ods. Intensity-based alignment methods compare intensity
patterns in images and image patches [21, 49]. Feature-
based methods extract features in each image [1, 3, 42, 54]
and then match them. Mapping between the image coordi-
nates is then derived from the corresponding matches.

While 3D-to-3D and 2D-to-2D tasks have been thor-
oughly explored, we address a different challenge. We are
interested in fitting the colors of the 3D geometry to the
2D image. Such a procedure [28], aligns 3D point clouds
to overhead images using edge costs and free space costs.
Visual-based localization (VBL), is a domain that attempts
to approximate camera pose relative to known 3D models
[51]. The most common method is to use image feature de-
scriptors. Features are extracted on a query image and com-
pared to features coupled with 3D coordinates. Then, reg-
istration is performed using the Perspective-n-Point (PnP)
algorithm [40, 43]. In contrast to our task, which focuses
on accurate registration, most VBL papers and benchmarks
focus on efficient and fast matching between image features
and features of large-scale geometric models [18, 41, 55].

There are some approaches that can be associated with
the proposed method for pose optimization. Zhou and
Koltun proposed to align multiple images to an uncolored
point cloud [61]. As opposed to the method we present,
they require a few images, optimize a large number of pa-
rameters to find the colors of the points, and operate un-
der a single modality setup. Pulli et al. align two colored
point clouds by minimizing color and range on two image
planes [53], also under single modality assumptions. These
methods can be classified as direct visual odometry (DVO).
They optimize the geometry directly on the image intensi-
ties by minimizing the photometric reprojection error be-
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tween images. These techniques are used for camera local-
ization [15, 33, 57], simultaneous localization and mapping
(SLAM) with RGB-D cameras [2, 32], SLAM with stereo
cameras [17], and SLAM with monocular cameras [16].
Some of the algorithms used for SLAM estimate the geo-
metric model to perform registration. Thus, although these
algorithms attempt to register 2D images, their process can
be related to our task. A key difference between SLAM and
the problem addressed is the multimodal configuration of
the former. In addition, we use a different direct numerical
gradient approximation scheme that leads to a significant
improvement in the alignment. Other SLAM methods at-
tempt to match between features in images in conjunction
with their 3D coordinates [6]. Unlike these methods, which
optimize the geometric model while aligning images, we
benefit from an accurate geometric model that can be used
in our favor.

Some DVO methods attempt to perform affine lighting
corrections [17] or optimize gamma correction [15] while
performing alignment. However, these methods first con-
vert the RGB values to grayscale. We aim to operate in
a multimodal environment and compare color values from
different devices. This comparison requires a color manipu-
lation. Such manipulations have been widely explored, but
have not yet been used for pose estimation. The problem
can be viewed as the gamut mapping problem, where the
task is to find a transformation of color images from input
to output devices. Examples of such solutions are space-
dependent gamut mappings [37, 45]. Sochen et al. show
how different models of color perception, interpreted as ge-
ometries of the color space, lead to different enhanced pro-
cessing schemes [56]. Much of the work in this area fo-
cuses on the perceptual relationship between colors rather
than their precise values. For our concern, these solutions
are not appropriate, since our problem requires the quan-
titative comparison of their values. A classical approach
to color manipulation of images is histogram equalization.
Caselles et al. try to overcome the fact that histogram mod-
ification sometimes does not produce good contrast by per-
forming it locally on connected components of the image
[8]. These methods succeed in improving image contrast,
but were not designed for analytical comparison of color
values. Specifically, they do not consider color relations
between corresponding pixels in different images. Many
papers attempt to perform color matching for value com-
parison when converting RGB signals to standard CIE tris-
timulus values. Typical methods include three-dimensional
lookup tables with interpolation [25], neural networks [30],
and polynomial regression models [29]. Lookup tables lack
the differentiability necessary for our task. In the method
we propose, the corresponding colors to be matched are
computed per iteration, so training a neural network each
time is not a feasible solution. On the contrary, polyno-

mial regression models satisfy the necessary requirements
for our goal. Several experiments have investigated the in-
fluence of polynomial order on the success of color trans-
formation [24, 58]. From these experiments, it can be con-
cluded that the higher the order used, the better the results.
Practically, second order models proved to provide accurate
transformations at low computational cost.

3. Rigid Alignment and Color Matching
In this section, we show how to directly align a colored

point cloud to the perspective image of a given scene. We
assume a pinhole camera model with known intrinsic pa-
rameters. Our model takes advantage of the fact that nearby
pixels in natural images tend to have similar colors and that
the color change is slow and gradual. We leverage this prop-
erty in an optimization scheme by moving the point cloud so
that its colors and the colors of the image on the projected
points locations match. For simplicity, we first consider a
case where the colors of the point cloud and the colors of the
image were captured by the same device and share the same
color gamut. We denote the point cloud {xj}nj=1 ∈ Rn×3

in the XYZ space, and its colors {cj}nj=1 ∈ Rn×3, in the
RGB space. The 2D coordinates of a point projected onto
the image plane are denoted by pj ∈ R2. The colors of the
image I : R2 → R3 at pj are given by I(pj). Using the
former notations, when a point is aligned, cj ≈ I(pj). Note
that unlike the image plane, the perspective projection of
the point cloud onto the plane is a straightforward differen-
tiable operation. To obtain a fully differentiable procedure,
we define a differentiable surface. This surface is discussed
and analyzed in Section 3.2. In the proposed procedure, the
discrepancy depends on the 3D point coordinates. For a one
point scenario, we compute a 3D translation Γ ∈ R3 where
the coordinates of the point in R3 are xj + Γ. Thus, the
discrepancy is differentiable by Γ. We use an iterative opti-
mization procedure to find the translation Γ that minimizes
|I(pj + γ) − cj | where γ ∈ R2 is the projected location of
xj + Γ on the plane (see Fig 1).

Given a point cloud containing n points, we repeat this
operation for each point and move the point cloud as a
whole to minimize the total color difference of the points.
To translate the points, we apply a 3D Euclidean transfor-
mation, namely translation and rotation. The last transfor-
mation, denoted T θ, has six parameters (θ ∈ R6) that are
iteratively updated during the optimization process.

In the former simple case described, we assumed that
the point cloud and image had identical color gamut. This
assumption generally does not hold and images and point
clouds captured with two distinct cameras sensing the same
scene have different color values. To get a meaningful
and accurate alignment, we need to compensate for such
color discrepancies between the two different types of sen-
sors we are using. Various DVO methods convert colors to
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grayscale and work with a single color channel. In contrast,
we propose to use the three-dimensional RGB space. We
attempt to compensate for color discrepancies without prior
color manipulation or color calibration. At each iteration,
we have a correspondence between the colors of the point
cloud and the colors of the image. That is, we have 3 × n
values to match. One effective solution is to use this corre-
spondence to find a linear transformation Dlinear ∈ R3×4

in the 3D color space. This transformation fits between the
two sets of colors. However, in practice, a linear mapping
of the colors cannot capture the complexity of color dis-
crepancies [24] (see Fig 3). To this end, we propose the
linear transformation D ∈ R3×10 that minimizes the dif-
ference between second-order polynomials from one set of
RGB colors to the other. Although choosing a higher order
polynomial provides higher accuracy, the marginal error be-
tween the second and higher order is small [58]. Therefore,
using second order provides the required accuracy while
maintaining computational efficiency.

3.1. Sub-Pixel Color

A digital RGB image can be viewed as a discrete func-
tion

J(a, b) ∈ [0, 1]3 a, b ∈ Z. (1)

Therefore, sub-pixel u, v ∈ R color values require interpo-
lation. We opt for the classical bilinear interpolation (BL),

I(u, v) = BL(J)(u, v). (2)

3.2. Sub-Pixel Color Gradient

Besides the gradient calculation in the image plane, our
pipeline consists of straightforward differential steps. Given
the discrete image J , we need to estimate the gradients
between the pixel points. Similar to the different defini-
tions of pixel gradients [34], one can also use different def-
initions for sub-pixel gradients. In this section we study
two different definitions for such a calculation. Strategy
A, which is used in our method, and Strategy B, which is
the the common calculation method in DVO implementa-
tions [2, 16, 17, 32, 33, 61].

1. Strategy A- The sub-pixel color values I(u, v) can be
viewed as a differential function of u, v. To obtain the
gradient, this function is differentiated directly by u,

IAu (u, v) = Iu(u, v) = BL(J)u(u, v), (3)

and similarly by v.

2. Strategy B- First, the central finite difference approx-
imation image of J is computed,

Ja(a, b) =
J(a+ 1, b)− J(a− 1, b)

2
, (4)

and similarly for b. Then, the sub-pixel accuracy is
computed, by bilinear interpolation of the discrete gra-
dient images,

IBu (u, v) = BL(Ja)(u, v), (5)

and similarly for v.

Thus, the difference can be explained as follows, In strategy
A a continuous representation of the image is constructed
and then differentiated, while in strategy B a discrete gradi-
ent image is computed and then interpolated. Let us analyze
the two strategies using a 1-D example with linear interpo-
lation of a discrete function h(a), a ∈ Z. The sub-integer
continuous interpolated values of the function at x ∈ R are,

f(x) = (1− δ) · h(xj) + δ · h(xj+1). (6)

Where f is the continuous function estimate, xj = ⌊x⌋,
xj+1 = ⌈x⌉ and δ = x − ⌊x⌋. In strategy A, as shown in
Equation (3), the differentiation is done directly by x and
thus by δ,

fA
x (x) = h(xj+1)− h(xj) ≜ ∆hj . (7)

Let us examine strategy B. First, the gradients of the dis-
crete function are computed according to Equation (4),

ha(a) =
h(a+ 1)− h(a− 1)

2
. (8)

Similar to Equation (5), linear interpolation is used to cal-
culate the sub-pixel gradient:

fB
x (x) = (1− δ) · ha(xj) + δ · ha(xj+1) = (9)

=
(1− δ) ·∆hj−1 +∆hj + δ ·∆hj+1

2
.

The proof of the last transition and an extension to the 2D
image domain is provided in the supplementary material.
Equations (7, 9) can be used to relate the two strategies by
the following convolution,

fB
x (x) = fA

x ∗ w(x). (10)

Where w is a rectangular window function,

w(x) =

{
0.5, −1 ≤ x ≤ 1

0, otherwise.
(11)

We conclude that the popular strategy B for gradient com-
putation is actually a smoothed version of the gradient com-
puted by strategy A. It is equivalent to applying the gradient
proposed in strategy A to a blurred image. This, in turn, im-
plies loss of high frequency information and gradients that
are affected by values of distant pixels. This simple, yet cru-
cial, distinction between strategy A and the commonly used
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Figure 2. A visualization of the color difference during optimization iterations between an image and an image rendered from the point
cloud. Blue corresponds to small values, while yellow corresponds to large values. One can see a significant difference in the initial
non-aligned phase and the decrease of the difference as the optimization progresses.

strategy B has a significant impact on the accuracy of the
alignment. The ablation study in Section 4.3 demonstrates
this important observation both empirically and quantita-
tively.

Our numerical approximation preferred strategy can be
viewed from a different perspective. The comparison be-
tween strategy A and strategy B relates to the difference
between central finite difference approximations and for-
ward or backward approximations. See, for example, [34].
The reason for choosing central difference approximations
lies in a numerical error evaluation derived from a truncated
Taylor expansion. The approximation is relevant assuming
that ∆x ≪ 1 , where ∆x is the sampling interval of the con-
tinuous image function. However, if the information in the
image involves high frequencies, this assumption may be
misleading. In such a case, the approximation error in de-
riving the numerical approximations of the derivatives is of
an order of the change in the function they approximate. We
argue that high frequencies are crucial for accurate align-
ment and therefore tight numerical stencils are better suited
for the task. In most of our scenarios, we could assume that
∆x ≫ 1, in which the approximation would fail to prop-
erly capture the relevant numerical error. For this particular
case, there are better options than the central differentiation
strategy B. Indeed, a preferred option would be a tight nu-
merical stencil that uses only xj and xj+1 as in strategy A.

3.3. Color Transformation
The colors of the point cloud c and the corresponding in-

terpolated image colors Ip of its points p are obtained from
different camera sensors. Therefore, to compare them, we
would like to find the proper color relation between them.
We assume that we can write each color of the image as a
function of the colors of the corresponding point in the point
cloud. To approximate this unknown function, we apply a
second-order polynomial kernel to the colors {Ip},

K(Ip) = K(Rp, Gp, Bp) (12)

= [1, R,G,B,RG,GB,RB,R2, G2, B2] ∈ R10×n.

In contrast to the framework of Hong et al. [24] for camera
colorimetric characterization, we do not add the 3rd order

term RGB as an additional dimension. The reason is that
the experimental results have shown no significant advan-
tage when this dimension is added. The point cloud align-
ment improves in each iteration. Therefore, the correspon-
dence between the color values of the point cloud and the
color values of the image improves as well. To exploit this,
we find the color transformation repeatedly for each itera-
tion i. Then, the transformation is applied to compute the
transformed colors derived from the image

IDi = Di K(Ip). (13)

3.3.1 Color Transformation Optimization

To avoid outliers affecting the color transformation, a
scheme for affine illumination correction [17] is used. An
inlier point is defined as a point that holds,∥∥∥IDi

j − cj

∥∥∥ < βmax. (14)

The series of coefficients Di ∈ R3×10 of the polynomial
terms that minimizes the sum of the color differences of the
inliers is computed by the least squares method,

Di = argD min ∥I − c∥2 . (15)

The combined optimization problem for finding the inliers
and computing Di is solved alternatively and iteratively. In
the supplementary, we show how to handle color values ex-
ceeding [0, 1] while preserving differentiability.

3.4. Proposed Scheme

The complete procedure for each iteration i can be de-
scribed by the following steps.

1. Transform the coordinates x with the current transfor-
mation T θi .

2. Apply a Z-buffer E to mask out occluded points.

3. Project the 3D coordinates onto the image plane using
perspective projection Proj.

6660



4. Calculate the interpolated image colors of the pro-
jected points using I .

5. Lift interpolated image colors with a second order
polynomial kernel K.

6. Find the color transformation Di between kernel ap-
plied colors and point cloud colors and transform col-
ors.

The computed color values depend on θi,

I∗i = DiK
(
I
(
Proj

(
E
(
T θi(x)

))))
∈ R3×n. (16)

3.5. Alignment Optimization

We can define the photometric error for each point and
for each color channel l,

rjl = I∗i

jl − cjl. (17)

Using the above definitions, the loss function can be calcu-
lated. A weighted nonlinear least squares approach is cho-
sen,

L(θi) = ∥I∗i − c∥2W =

n∑
j=1

3∑
l=1

wjlr
2
jl. (18)

The weights wjl are computed according to the proposed
non-Gaussian error models [33], which assume t-distributed
errors with ν = 5 degrees of freedom,

wjl =
ν + 1

ν +
r2jl
σ2

. (19)

The value of σ is computed iteratively,

σ =
1

3n

n∑
j=1

3∑
l=1

r2jl
ν + 1

ν +
r2jl
σ2

. (20)

We implemented and optimized the proposed algorithm
with Pytorch and Pytorch Autograd and used the Adam
algorithm for optimization. Since the angle and transla-
tion parameters are of different units and orders of mag-
nitude, we initialize their learning rate accordingly. For a
megapixel image, the method converges in a few hundred
iterations (see Fig 2), which takes about 30 seconds on a
single GeForce GTX 2080ti GPU. Since runtime or mem-
ory constraints are not critical to dataset construction, we
do not focus on an efficient implementation.

4. Experiment setups
In this section we show how the proposed method per-

forms in two scenarios. The first, involves a synthetic
database. By controlling the image generation process, we

Figure 3. Top row - an RGB image captured by an Intel RealSense
Depth Camera D435. Middle row - a rendered image from a point
cloud scanned with a FARO 3D Focus Laser Scanner (left), the
rendered image after a linear color transformation (middle), and
the rendered image after a second-order polynomial transforma-
tion (right). The bottom row shows the absolute difference be-
tween the transformed modified image and the original image.
Blue corresponds to small values, while yellow corresponds to
large values. One can see that the color discrepancies of the linear
transformation are reduced when using the second order polyno-
mial transformation.

can accurately quantify the accuracy of the method. Next,
we apply the proposed method to real images. We demon-
strate success in aligning a FARO laser scanner point cloud
with an image captured by an RGB camera. The alignment
is evaluated qualitatively by projecting the intensity edges
of the rendered point cloud onto the edges of the given im-
age.

4.1. Synthetic Data

To demonstrate the proposed method, a photorealistic
dataset is needed. We use the synthetic dataset ICL-NUIM
[22], which contains significant synthetic depth and RGB
noise models representing a realistic environment. From
the dataset, 2000 images and their corresponding consecu-
tive images are randomly sampled. A corresponding point
cloud of the images is created using their corresponding
depth values. These point clouds are misaligned with the
successive images. To simulate multimodality, we apply
a series of effects to each of the RGB images. Many ef-
fects can be applied, such as effects that take into account
spatial color configuration [37] or perform retinex modifi-
cations [14, 36, 39]. To simplify the experiment, a set of
elementary effects was chosen Their numerical values with
an example are discussed in the supplementary material,

1. Apply random color transformation of brightness, con-
trast, saturation, and hue.

2. Apply gamma correction with a random gamma value.
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Figure 4. Cumulative normalized histograms of translation and rotation errors for synthetic data experiment. The proposed method with
second-order polynomial color alignment outperforms the rest of the methods.

3. Simulate different point spread functions and sensor
properties by applying a Gaussian blur to the image.

Point cloud to image alignment has no direct comparison.
Therefore, we study the use of modifications of different
works,

1. ORB - Feature-based camera localization with Ori-
ented FAST and Rotated BRIEF (ORB) [54] features
is one of the most popular approaches for SLAM [6].
This approach is based on frame-to-frame registration
in conjunction with coupled depth values. To modify
it for our task, an image is rendered from the point
cloud. ORB features are found on the original image
and the rendered image. The point cloud 3D coordi-
nates are used to determine the 3D coordinates of the
features found on the rendered image. After matching
the feature descriptors between the images, the Ransac
algorithm is applied together with the PnP algorithm
to compute the Euclidean transformation.

2. SIFT - A common methodology in VBL implemen-
tations is to use Root Sift features [1, 42]. After the
features are found and matched, the alignment is per-
formed as in using ORB features.

3. Greyscale -DVO methods commonly use grayscale
images [33, 57] instead of RGB images. In this setup,
we convert the colors to grayscale and then perform
the alignment.

4. Affine Lighting Correction (ALC) - Engel et al. [17]
propose to first convert the colors to grayscale. Then,
an affine lighting Correction is performed by alter-
nately optimizing two parameters. These parameters
form an affine intensity transform that corrects the
grayscale values.

5. Zero Order (ZO) - Our pipeline used with no color
transformation with direct comparison of the RGB
color values.

6. First Order (FO) - Our pipeline used with first-order
color transformation instead of second order.

It is important to note that methods 3, 4, 5, 6 have been
modified to use our scheme for computing gradients. This
scheme is tested separately in Section 4.3.

The error is captured by two measures, the translation
error and the rotation error. The translation error is the Eu-
clidean distance between the original translation and the de-
rived translation. To calculate the rotation error, the com-
bined rotation axis is found using the rotation error about
each axis. The error is calculated by computing the rota-
tion about each axis. We present the cumulative normalized
histogram of these errors under the different configurations
in Fig. 4. Our approach clearly outperforms the other con-
figurations. Linear color transformations (FO and ALC),
while beneficial, are inferior to the second-order color trans-
formation. Feature-based approaches (ORB and SIFT) and
approaches that do not perform color transformation (ZO
and Greyscale) achieve worse results compared to the al-
ternatives. We speculate that accurate geometry leads DVO
methods with color modifications to significantly surpass
feature-based approaches. We denote that with the ICL-
NUIM dataset and our method, we achieve a median sub-
millimeter translation error of 0.58mm and a median rota-
tion error of 0.014◦.

4.2. Real Data

To show that the proposed method works on real data,
we used a FARO 3D Focus Laser Scanner and an Intel Re-
alSense Depth Camera D435. We only use the RGB image
from this camera and not its depth sensing capabilities. Af-
ter each scan is completed, we place a camera near the scan-
ner position. As mentioned earlier, the method relies on a
coarse estimate of the camera pose. We place a checker-
board in the scene and use it to roughly estimate the camera
pose relative to the scanner. This will be the initial transfor-
mation we use before applying the proposed method.

For simplicity, we use a checkerboard pattern. Such
an initialization can also be found using one of the meth-
ods described in Section 2. For example, by applying a
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Figure 5. A comparison between edges from camera images and
edges extracted from rendered point cloud images. Left is at ini-
tialization, right - proposed refinement. The colors denote the ori-
gin of the edges: red- camera image, blue- rendered image from
point cloud, white- overlap. In the initial rough alignment, the cor-
responding edges do not overlap.

coarse-to-fine scheme [57]. Unlike the scenario with the
synthetic data, we do not have the ground truth transforma-
tion. Therefore, we estimate the success of the proposed
method by visually comparing the RGB image and the ren-
dered image from the point cloud after applying the com-
puted transformation. Since different cameras are used, a
simple color difference is not a good visual measure. Image
edges are less affected by the camera characteristics and re-
flect whether the images are aligned correctly. Therefore,
we find the edges of each image using the Canny-Haralick
edge detector [7,23,35] and compare the edge images. Fig.
5, shows the edges extracted from both rendered and camera
images, see the supplementary material for more examples.
Due to the imperfect extraction of edges, not all edges in
each image are detected. We can see that the edges in both
images are aligned. As we can observe, this is in contrast to
the edge comparison of the first misalignment of the edges.
Although we cannot quantify the exact error in the real data
scenario, the edge representation shows how accurate the
proposed method is.

4.3. Ablation Study

We demonstrate the impact of our sub-pixel gradient
computation using the synthetic experiment setup. We per-
form a test of our method with a single difference. The
calculation of the sub-gradient is changed. The alternative
configuration uses the usual gradient calculation in DVO
implementations as described in Section 3.2. From the ex-
perimental results (Fig. 6), such a configuration leads to
inferior alignment compared to our method. The median
translation error increases by 13.2% and the median rota-
tion error increases by 18.4%.

Figure 6. Cumulative normalized histograms of translation and
rotation errors for the ablation study experiment. The proposed
method for computing sub-pixel gradients on the image plane out-
performs the common approach.

5. Limitations

As shown, our sub-pixel gradient computation benefits
from high-frequency detail and improves alignment accu-
racy in the ICL-NUIM dataset. Although the dataset con-
tains a simulation of real world noise, we speculate that
extremely noisy scenarios may benefit from blurring and
loss of such detail. However, we believe that such blurring
should be intentional. The presented method may suffer
from additional limitations common to DVO methods. For
example, if the camera is distant from the scanner, the point
cloud may contain missing parts that do not appear on the
image, or vice versa. This could potentially degrade the
alignment results.

6. Conclusions

We introduced an iterative differential method that
aligns a colored point cloud to an image in a multimodal
environment using geometric and second-order polynomial
color matching and gradient-based optimization. The
proposed framework introduces an algorithmic pipeline
that uses the entire point cloud and image information to
minimize the discrepancy between the point cloud colors
and projected image colors. We analyze the computation of
the gradient on the image plane and show an efficient and
direct form of computing it. We explain and numerically
support the advantages of using second- order polynomials
for color transformation between different camera devices.
We believe that the proposed concepts could facilitate and
improve the creation of real 3D datasets in the future and
could be applied to any camera model.
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