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3IMATI-CNR, Milan, Italy

Figure 1. Monocular 3D shape and pose regression of 3D dogs from 2D images. Since 3D training data is limited, BARC uses breed

information at training time via triplet and classification losses to learn how to regress realistic 3D shapes at test time.

Abstract

Our goal is to recover the 3D shape and pose of dogs

from a single image. This is a challenging task because

dogs exhibit a wide range of shapes and appearances, and

are highly articulated. Recent work has proposed to di-

rectly regress the SMAL animal model, with additional limb

scale parameters, from images. Our method, called BARC

(Breed-Augmented Regression using Classification), goes

beyond prior work in several important ways. First, we

modify the SMAL shape space to be more appropriate for

representing dog shape. But, even with a better shape

model, the problem of regressing dog shape from an image

is still challenging because we lack paired images with 3D

ground truth. To compensate for the lack of paired data,

we formulate novel losses that exploit information about

dog breeds. In particular, we exploit the fact that dogs of

the same breed have similar body shapes. We formulate

a novel breed similarity loss consisting of two parts: One

term encourages the shape of dogs from the same breed

to be more similar than dogs of different breeds. The sec-

ond one, a breed classification loss, helps to produce rec-

ognizable breed-specific shapes. Through ablation studies,

we find that our breed losses significantly improve shape

accuracy over a baseline without them. We also com-

pare BARC qualitatively to WLDO with a perceptual study

and find that our approach produces dogs that are signif-

icantly more realistic. This work shows that a-priori in-

formation about genetic similarity can help to compensate

for the lack of 3D training data. This concept may be

applicable to other animal species or groups of species.

Our code is publicly available for research purposes at

https://barc.is.tue.mpg.de/.

1. Introduction

Learning to infer 3D models of articulated and non-rigid

objects from 2D images is challenging. For the case of hu-

mans, recent methods leverage detailed parametric models

of human body shape and pose, like SMPL [10]. Such mod-

els have been learned from thousands of high-resolution 3D

scans of people in varied poses. This approach cannot be
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replicated for most animal species because they are diffi-

cult, or even impossible, to scan in a controlled environ-

ment. Moreover, paired training data of animals with known

3D shape is even rarer. To make progress, we must leverage

side information that can be easily obtained, yet constrains

the task of 3D shape and pose estimation.

The 3D reconstruction of animal shape and pose has

many real-life applications, ranging from biology and

biomechanics to conservation. Specifically, the non-

invasive capture of 3D body shape supports morphology

and health-from-shape analysis. Markerless motion capture

allows 3D motion analysis for animals that it is not possi-

ble to capture in a lab setting. Here we focus on dogs as a

rich, representative, test case. Dogs exhibit a wide range of

shapes, are non-rigid, and have complex articulation. Con-

sequently, dogs are challenging and representative of many

other animals.

Here, our goal is to learn to estimate a dog’s 3D shape

and pose from a monocular, uncontrolled image. Given the

lack of 3D training data, we train a regression network with

2D supervision, in the form of keypoints and silhouettes.

With only such 2D information, the problem is, however,

heavily under-constrained: many 3D shapes can explain the

2D image evidence equally well. To make the task well-

posed, we need additional, prior information. Here we ex-

plore a novel source of a-priori knowledge: a dog’s shape

is determined, in part, by its breed. Even a trained amateur

can recognize the breed by looking at a dog’s shape (and

appearance).

Dogs are a particularly interesting case to explore the

role of breeds because of their large variety. Dogs have been

domesticated and bred for a long time, for diverse purposes

such as companionship, hunting, or herding, but also racing,

pulling sleds, finding truffles, etc. Consequently, breeders

have selected for a range of traits including body shape (as

well as temperament, appearance, etc.) which has led to a

large number of breeds with very different characteristics.

A recent analysis of the dog genome illustrates the relation-

ship between different breeds that exist today [5]. Breeds

are grouped into clades, often with high shape similarity

within a clade. Figure 2 shows a cladogram of 161 domes-

tic dog breeds [5].

Here, we explore the use of genetic side information, in

the form of breed labels, to train a regressor that infers 3D

dog shape from 2D images. Specifically, we train a novel

neural network called BARC, for “Breed-Augmented Re-

gression using Classification.” We follow the approach of

regressing a parametric 3D shape model directly from im-

age pixels, which is common in human pose and shape es-

timation. Here, we use the SMAL animal model [32] to

define the kinematic chain and mesh template. We extend

SMAL in several ways to be a better foundation for learning

about dog shape, this includes adding limb scale factors and

Figure 2. Cladogram of domestic dog breeds. The diagram rep-

resents clustering according to genetic similarity. Reproduced

from [5].

extending its shape space with additional 3D dog shapes.

To solve the problem of estimating dog shape from im-

ages, we make several contributions. (1) We propose a

novel neural network architecture to regress 3D dog shape

and 3D pose from images. (2) To make training feasi-

ble from 2D silhouettes and keypoints, we exploit the fact

that 2D images of the same breed should produce similar

3D shapes, while different breeds (mostly) have different

shapes. With this assumption, we impose classification and

triplet losses on the training images, which come with breed

labels. (3) As a result, we learn a breed-aware latent shape

space, in which we can identify breed clusters and relation-

ships in agreement with the cladogram in Fig. 2. (4) Op-

tionally, we show how to exploit 3D models, if available for

some breeds.

Although we use one of the largest dog datasets in the

literature, the large number of dog breeds (in our case 120)

means there are only a few images per breed. One can inter-

pret our method as learning a common shape manifold for

all dogs (as not enough examples are available per breed),

while using the breed labels to locally regularize it. To our

knowledge, this is the first method that exploits breed infor-

mation to regress the 3D shape of animals from images.

We train the network on the Stanford Extra (StanExt) [1,

9] training set, which we extend with eye, withers and throat

keypoints, and test our approach on the StanExt test set.

We evaluate on this dataset of 120 different dog breeds and

show that we learn a latent shape space for dogs in which

more closely related dogs are in closer proximity (Fig. 3).
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Through ablation studies, we evaluate the impact of differ-

ent types of breed information and find that each loss leads

to a significant improvement in shape accuracy. We evalu-

ate accuracy with standard 2D measures like PCK and IOU,

but these do not necessarily reflect 3D accuracy. Conse-

quently, we create a dataset of 3D dogs to evaluate shape of

corresponding breeds. This allows a quantitative evaluation,

and we significantly outperform the prior art (WLDO [1]).

Finally, to evaluate shape estimates for in-the-wild images,

we use a perceptual study to compare methods. We find

that our final model is more realistic than ablated versions

or WLDO.

2. Related Work

While many approaches focus on 3D reconstruction of

humans from images, there is comparably little work on

animal 3D pose and shape estimation. Animal reconstruc-

tion from images has been approached in two main ways:

model-free and model-based.

Model-free 3D Reconstruction. These methods do not

exploit an existing 3D shape model. Ntouskos et al. [14]

create 3D animal shapes by assembling 3D primitives ob-

tained by fitting manually segmented parts in multiple im-

ages of different animals from the same class. Vicente and

Agapito [24] deform a template extracted from a reference

image to fit a new image using keypoints and the silhouette,

without addressing articulation. Kanazawa et al. [7] learn

to regress 3D bird shape, given keypoints and silhouettes;

birds exhibit rather limited articulation. Recent work obvi-

ates the need for 2D keypoints [6, 22, 26].

Model-based 3D Reconstruction. In one of the first 3D

animal reconstruction methods from images, Cashman and

Fitzgibbon [4] deform a 3D dolphin template, learning

a low-dimensional deformation model from hand-clicked

keypoints and manual segmentation. They also apply their

method to a pigeon and a polar bear. A limitation of this

approach is that articulation is not explicitly modeled. In

contrast, Zuffi et al. introduce SMAL [32], a deformable 3D

articulated quadruped animal model. Similar to the widely

adopted human body model, SMPL [10], SMAL represents

3D articulated shapes with a low-dimensional linear shape

space. Due to the lack of real 3D animal scans, SMAL is

learned from scanned toy figurines of different quadruped

species. Since dogs are not well represented by SMAL,

Biggs et al. [1] extend the SMAL model by adding scale pa-

rameters for limb lengths. In [25], an articulated 3D model

of birds is defined in terms of limb scale variations and

used to learn shape from images; it is unclear whether this

method easily extends to more complex animals.

The early work using SMAL uses an optimization-based

approach to fit the model to image evidence [32] and to

refine the animal shapes [31]. In other methods, Biggs et

al. [2] show how to extract accurate animal shape and pose

from videos, while Kearney et al. [8] estimate dog shape

and pose from RGBD-images. More relevant to BARC are

learning-based methods that regress animal pose and shape

directly. Biggs et al. [1] estimate dog pose and shape from

single images by regressing pose and shape parameters of

their model to training images of the StanExt dataset. Their

initial pose prior is improved using expectation maximiza-

tion with respect to fits of their model to the images. Zuffi

et al. [30] regress a zebra SMAL model from images by

exploiting a texture map and learn a shape space for the

Grevy’s zebra. They train on synthetic data. In contrast

to these methods, Sanakoyeu et al. [18] neither predict 3D

directly from the image nor rely on sparsely annotated key-

points. Rather they show how to transfer DensePose from

humans to a non-human primate. This approach does not

recover 3D shape or pose.

Supervision without 3D Ground Truth. All 3D ap-

proaches rely on certain 2D features such as keypoints, seg-

mentation masks or DensePose annotations as a supervision

signal. Sometimes those 2D signals are used as an interme-

diate representation before the model is lifted to 3D. Mu et

al. [12] exploit synthetic 3D data to predict 2D keypoints

and a coarse body part segmentation map. They introduce

a new dataset for animal 2D keypoint prediction and show

how to transfer knowledge between domains, particularly

from seen quadruped species to unseen ones. Still other

work [6, 7, 22] encourages similarity between objects of

similar shape, with small intra-class variability. They nei-

ther exploit breed information nor use contrastive learning

to construct a structured latent space.

3. Approach

The present work explores how known breed informa-

tion at training time can be leveraged to learn to regress a

high-quality 3D model of dogs. To that end, we combine a

parametric dog model with a neural network that maps im-

ages to model instances. In the following, we describe the

model we use, the network architecture in which it is em-

bedded, and the loss functions used to train the architecture,

including the novel breed losses.

3.1. Dog Model

For the parametric representation of a dog’s shape and

pose, we employ a variant of SMAL. We start from 41

scanned animal toy figurines of several different species (al-

ready used as part of the original SMAL model) as well

as 3D Unity canine models in the animal equivalent of the

canonical T-pose; i.e., standing with straight legs and tail

pointing backwards. We purchased the same pack of Unity

models1 as was exploited by [1] to initialize their mixture

1https : / / assetstore . unity . com / packages / 3d /

characters/dog-big-pack-105660
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Figure 3. Learned latent space. t-SNE [23] visualization of the 64-dimensional latent shape variable for dogs in the test set. Large markers

indicate average values within each of the clades in Fig. 2. Left. Latent space of the network trained without breed similarity loss. Note

that the clade means are all near the population mean, indicating poor clustering. Center and right: With breed similarity loss. For each

clade, colors with different saturation indicate different breeds within the clade.

of Gaussian shape prior and use them to relearn the SMAL

shape space for our task. To that end, we fit a mesh with the

same topology as SMAL (and WLDO) to the new dogs, add

these to the original SMAL training set and recompute the

mean shape and the PCA shape space. The resulting model

differs from the original SMAL in three respects: (1) differ-

ent input data; (2) reweighting of the inputs such that 50%

of the total weight is assigned to dogs; and (3) rescaling of

the meshes such that the torso always has length 1. We fur-

ther adapt an idea from WLDO and extend the model with

scaling parameters κ (where the actual scale is exp (κ)) for

the limbs, plus an additional scale for the head length. The

scaling is applied to the bone lengths, and propagated to the

surface mesh via their corresponding linear blend skinning

(LBS) weights. For compactness, we collect the PCA shape

coefficients βpca and limb scales κ into a shape vector β.

3.2. Architecture

Similar to [15, 28], we use separate shape and pose

branches. Figure 4 shows the overall architecture of BARC,

consisting of a joint stacked hourglass encoder, a shape

branch, a pose branch, and a 3D prediction and reprojec-

tion module.

Stacked Hourglass: First, the input image is encoded and

2D keypoint heatmaps, as well as a segmentation map, are

predicted with a pre-trained stacked hourglass network. 2D

keypoint locations are extracted from the heatmaps with

“numerical coordinate regression” (NCR, [13]). The seg-

mentation map is encoded with a scheme similar to “basis

point sets” (BPS, [16]) for 3D point cloud encoding. To our

knowledge, we are the first to apply BSP in 2D. Compared

to the full segmentation map, this encoding is lightweight,

easy to compute for silhouettes, and has a similar format as

the NCR keypoints. We find that, despite the reduction to a

small number of sample points, the silhouette encoding still

improves the 3D prediction over 2D keypoints alone.

Shape-branch: The input image and the predicted segmen-

tation map are concatenated and fed to a ResNet34 that pre-

dicts a latent encoding z of the dog’s shape. z is decoded

into both a breed (class) score and a vector of body shape

coefficients β. We have experimented with different sub-

networks between z and β and find that the breed similarity

loss is most effective when the connection is as direct as

possible, with only single, fully-connected layers between

z and each of the shape vectors κ and βpca. These shape

coefficients are applied to the 3D dog template to obtain a

shape, whose bone lengths are passed on to the pose branch.

Pose-branch: The predicted 2D keypoints, the BPS encod-

ing of the silhouette and the bone lengths from the shape

network form the input to estimate the dog’s 3D pose, its

translation w.r.t. the camera coordinate system and the cam-

era’s focal length. The pose is represented as a 6D rota-

tion [29] for each joint, including a root rotation. Instead of

predicting all rotations directly, we predict root rotation and

a latent pose representation y. Following recent work on

human pose estimation, we implement an invertible neural

network (INN) that maps each latent variable y to a pose.

This INN is used in the context of a normalizing flow pose

prior trained on the RGBD-Dog dataset [8]. Similar to [27],

we build this network consisting of Real-NVP blocks, but

because of the smaller size of the RGBD-Dog dataset, as

compared to AMASS [11], our network is much smaller

than in previous work on human pose estimation. The aim

of the INN is to map the distribution of 3D dog poses to a

simple and tractable density function, i.e. a spherical mul-

tivariate Gaussian distribution. To train the pose prior, we

exploit the RGBD-Dog dataset [8], which contains walk-

ing, trotting and jumping sequences, but no sitting or lying

poses. Note that the INN is pretrained to serve as a pose

prior and kept fixed during final network training.

3D Prediction and Reprojection Module: As a last step,

BARC poses the model according to the predicted shape,

pose and translation, and reprojects the keypoints and sil-

houette to image space, using the predicted focal length.

To minimize the silhouette and keypoint reprojection errors,

we employ the Pytorch3D differentiable renderer [17].
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Figure 4. BARC Architecture. The model consists of a stacked hour glass network followed by two separate branches for shape and pose

prediction. Pink boxes illustrate where losses are applied. The pink boxes with black boundaries are our new breed losses.

3.3. Training Procedure

The complexity of articulated, deformable 3D model fit-

ting requires a number of different loss functions, as well as

careful pretraining.

Stacked Hourglass Pretraining: The stacked hourglass is

pretrained to predict keypoints and the segmentation map.

The StanExt dog dataset [1] provides labels for both. The

keypoint loss consists of two parts, a mean squared error

(MSE) between the predicted and true heatmaps, and an

L2-distance between the predicted and true keypoint coordi-

nates. For the silhouette, we use the cross-entropy between

ground truth and predicted masks. As usual for stacked

hourglasses, we calculate the losses after every stage.

Pose-branch Pretraining: We use the same dataset

(RGBD-Dog) that is used to train the pose prior to also pre-

train the pose branch. We sample poses and random shapes

and project them to a 256×256 image with a random trans-

lation and focal length. The projected keypoints and sil-

houette serve as input to the network. MSE losses are used

to penalize deviations between the predicted values and the

ground truth. In addition, we use an MSE error between the

predicted pose latent representation y and its ground truth.

Main Training: The stacked hourglass is kept fixed, while

all other network parameters are jointly optimized. We

point out that we do not have access to 3D ground truth,

and, based on 2D keypoints, the true shape and pose is am-

biguous. To regularize the solution, we therefore combine

reprojection losses with suitable priors. These loss terms

are described below.

3.4. Standard Losses

Keypoint Reprojection Loss Lkp is the weighted mean

squared error between predicted kpred
n and ground truth 2D

keypoint locations kgt
n :

Lkp = (

Nkp
∑

n=1

wnd(k
pred
n , kgt

n )
2)/(

Nkp
∑

n=1

wn), (1)

where d(kpred
n , kgt

n ) is the 2D Euclidean distance between the

predicted and ground truth location of the n-th keypoint.

The weights, wn, balance the influence of keypoints; see

Sup. Mat.

Silhouette Reprojection Loss Lsil is the squared pixel error

between the rendered spred and ground truth silhouette sgt:

Lsil =

{

∑

256

x=1

∑

256

y=1
(spred

xy − sgt
xy)2 Lkp,m < T

0 otherwise.
(2)

This is used only for images where the mean keypoint re-

projection error Lkp,m is below a threshold T .

Shape Prior: This is a weighted sum of two parts, Lsh =
wβL

sh
β + wκL

sh
κ . The first penalises deviations from a mul-

tivariate Gaussian with mean µpca and covariance Σpca:

Lsh
β = (βpca − µpca)

⊤Σ−1

pca(βpca − µpca). (3)

Additionally, we penalise deviations from scale 1 with an

element-wise squared loss on the scale factors κ,

Lsh
κ =

7
∑

i=1

κ2

i . (4)

The shape prior loss is assigned a low weight and serves

only to stabilise the shape against missing evidence.

Pose Prior: Lp penalises 3D poses that have low likeli-

hood. Again, it consists of two terms, a normalizing flow

pose prior as well as a regularization regarding lateral leg

movements. The normalizing flow pose prior penalizes the

negative log-likelihood of a given pose sample. Since the
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learned latent representation y follows a multivariate nor-

mal distribution, the pose prior reduces to:

Lp
nf ∝ y⊤y. (5)

The normalizing flow prior is trained on the RGBD-Dog

dataset which has a limited set of poses compared to the

natural poses in the StanExt dataset. Consequently, with

only this prior, the network can infer 3D poses where the

legs move unnaturally sideways. Thus, we add a second

term Lp
side that penalizes sideways poses of the three joints

in each leg. The final pose prior is:

Lp = wnfL
p
nf + wsideL

p
side , (6)

with weights wnf and wside, the latter set to a low value.

Camera Prior Lcam: Since focal length f pred is heavily cor-

related with depth (object-to-camera distance), we find it

useful to penalise the squared deviation from a reasonably

predefined target focal length f target:

Lcam = (f pred
− f target)2. (7)

3.5. Novel Breed Losses

The losses described so far do not depend on the breed.

To exploit breed labels for the training images, we intro-

duce an additional breed triplet loss, as well as an auxiliary

breed classification loss. We summarize those two losses

as breed similarity loss. Given the dog meshes used during

3D model learning (Sec. 3.1) we moreover define a specific

shape prior for those particular breeds.

Breed Triplet Loss LB
triplet: Dogs of the same breed usually

are somewhat similar in shape. However, this does not im-

ply that there is no intra-class variation, nor that different

breeds necessarily have dissimilar shape. Hence, we imple-

ment this with a triplet loss. We have experimented with

different metric learning losses, but found that they all ex-

hibit similar behaviour. Triplet losses are commonly used

in person re-identification (ReID) methods, where the goal

is to learn features that are discriminative for person iden-

tity [20, 21]. RingNet used a similar idea to learn 3D head

shape from images without 3D supervision [19].

Applying the loss directly to the shape β does not work

well. Shape changes along different principal directions

may have different scales, moreover shape changes due to

limb scaling are not orthogonal to the PCA coefficients βpca.

We find it better to apply the triplet loss to the latent encod-

ings z. Given a batch with an anchor sample za, a positive

sample zp of the same breed and a negative sample zn from

a different breed, we calculate the triplet loss, LB
triplet =

Ntriplets
∑

i=1

max(d(za,i, zp,i)− d(zn,i, za,i) +m, 0) , (8)

where m is the margin and d denotes the distance between

the two samples.

Breed Classification Loss LB
cs: We further bias the esti-

mation towards recognisable, breed-specific shapes with an

auxiliary breed classification task, supervised with a stan-

dard cross-entropy loss on the breed labels:

LB
cs = −

Nclasses
∑

c=1

yo,c log(po,c) , (9)

where po,c is the predicted probability that observation o is

of class c and y is a binary indicator if label c is the correct

class for observation o. The full similarity loss reads:

LB
sim = wtripletL

B
triplet + wcsL

B
cs , (10)

where wtriplet and wcs are weights.

3D Model Loss LB
3D: We have access to a small number of

3D dogs (Unity models) and a few 3D scans of toy figurines.

These models encompass 11 of the 120 breeds in StanExt.

For these breeds, we optionally enforce similarity between

the prediction and the available 3D ground truth shape, via

a component-wise loss on the shape coefficients β:

LB
3D = (βpred

pca − βbreed
pca )2 + (κpred

− κbreed)2. (11)

4. Experiments

We evaluate our approach on the Stanford Extra Dog

dataset (StanExt) [1]. StanExt provides labels for 20 key-

points, silhouette annotations and dog breed labels. We ex-

tend the 20 keypoints in the training set with withers, throat

and eyes. These predictions are obtained by training a sep-

arate stacked hourglass on the Animal Pose dataset [3].

4.1. Evaluation Methods

2D Reprojection Error: In the absence of 3D ground truth,

it is common to evaluate 3D shape and pose predictions in

terms of reprojection errors in image space. We provide

results for intersection over union (IoU) on the silhouette as

well as percentage of correct keypoints (PCK).

Perceptual Shape Evaluation: Many implausible 3D

shapes have low 2D reprojection errors, but for in-the-wild

images we do not have access to ground-truth 3D shapes

that would allow a meaningful comparison. Instead, we run

a study to evaluate relative perceptual correctness where

humans visually assess the 3D shapes regressed from in-

the-wild images. Using Amazon Mechanical Turk (AMT),

qualified workers judge which of two rendered 3D body

shapes better corresponds to a query dog image. To focus

the workers on shape, we render the dogs in the T-pose. For

an example and details of the task see Sup. Mat.

Breed Prototype Consistency: Quantitative evaluation of

3D error for uncontrolled images is challenging. To ad-

dress this, we exploit the fact that dogs of the same breed
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Method IoU PCK @ 0.15

Avg Legs Tail Ears Face

3D-M 69.9 69.7 68.3 68.0 57.8 93.7

CGAS 63.5 28.6 30.7 34.5 25.9 24.1

WLDO 74.2 78.8 76.4 63.9 78.1 92.1

Ours 75.7 83.7 83.9 64.1 82.8 91.3

Table 1. Comparison to SOTA. Numbers for 3D-M [32], CGAS

[2], WLDO [1] reproduced from [1].

have similar shapes. We define prototype shapes for several

breeds with the help of toy figurines that are scanned, reg-

istered to the SMAL template, and reposed to the canonical

T-pose. Then, for all StanExt images of the corresponding

breeds, we regress their shape using various methods. These

predictions are then also transferred to T-pose and aligned

to the matching prototype with the Procrustes method. The

vertex-to-vertex error and variance between the estimate

and the prototype serve as indicators of how well a given

prediction method captures the breed shape.

4.2. Comparison to Baselines

In terms of 2D error metrics (IoU and PCK) BARC out-

performs prior art, i.e., WLDO [1], CGAS [2] and 3D-M

[32]. Tab. 1 summarizes the results. In the perceptual com-

parison, BARC is also judged to represent the depicted dog

better than its closest competitor WLDO, in an overwhelm-

ing 90.6% of all cases. See last line of Tab. 2. The marked

gap in visual realism is evident in Fig. 5. More BARC re-

sults, for different breeds, are displayed in Fig. 6.

4.3. Ablation Study

Our key contribution is the addition of breed losses to

improve 3D shape regression. To ablate the impact of in-

dividual loss terms, 2D errors are not meaningful, so we

again report results in terms of relative perceptual correct-

ness (Tab. 2) and in terms of consistency with the prototype

breed shape (Tab. 3). We compare three versions of our

method: (i) our network, trained without any breed losses;

(ii) the same network with the breed similarity losses LB
sim,

i.e., classification and triplet loss; (iii) with all breed losses,

including the 3D model loss LB
3D. The results, on both

metrics, show consistent improvements with the addition of

each breed loss. In terms of perceptual agreement, the two

parts of our loss have similar impact. The triplet and classi-

fication losses bring a clear improvement, even though they

do not explicitly constrain 3D shape. Breed-specific 3D

shape information can further improve the prediction, but

may be difficult to collect at large scale. Note that adding

3D CG models as additional supervision leads to a small im-

provement (on average) across all breeds, even though they

are only available for 11 out of 120 breeds. All differences

in votes are highly significant (χ2-test, p<0.0001).

Figure 5. Comparison to SOTA. Qualitative comparison of BARC

(left half) with WLDO [1] (right half). For each method we show

input image, the 3D reconstruction projected on the input image,

the 3D reconstruction, and a 90◦ rotated view.

Experiment Settings AMT Results

Votes Percentage

L
B
sim vs. no breed losses 556 : 434 56.2% : 43.8%

{LB
sim , LB

3D} vs. LB
sim 678 : 522 56.5% : 43.5%

{LB
sim,L

B
3D} vs. WLDO 1033 : 107 90.6% : 9.4%

Table 2. Perceptual Studies. Ablation of breed losses and compar-

ison with WLDO. See text.

We complement the perceptual study with a quantitative

evaluation w.r.t. breed prototypes (Tab. 3). For 20 different

breeds we evaluate WLDO, as well as our method with-

out any breed losses, with only LB
sim, and with both LB

sim

and LB
3D. Already without breed information, our model

outperforms WLDO by a clear margin in terms of 3D er-

ror, presumably due to technical choices like details of the

dog model and network architecture, and the new pose prior.

Adding the breed similarity losses decreases the error fur-

ther. The additional 3D breed loss brings another reduc-

tion by a similar margin, which is consistent with the per-

ceptual study. Again, all pairwise differences are highly

significant (paired t-test, p < 0.0001). Furthermore, the

gains are consistent across breeds: For 19 out of 20 breeds

we get the same order, WLDO >BARCnobreed >BARCsim

>BARCsim+3D.

Breed Similarity Loss: So far we have considered the two

parts of the breed similarity loss LB
sim in conjunction. To

show the separate contributions of breed classification (LB
cs )

and breed triplet affinity (LB
triplet) we evaluate consistency
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Figure 6. BARC results. Each row shows the input image with the projected 3D shape. Below that is a rendering of the posed 3D shape.

Method WLDO BARC

no breed loss LB
sim {LB

sim, LB
3D}

Error [m] 0.1155 0.0891 0.0805 0.0716

Table 3. 3D Shape Evaluation. Average over 20 breeds.

with a breed prototype using different weights for the two

terms, Tab. 4. wB
cs, wB

triplet, w
B
3D denote the weights for the

classification, triplet and 3D-CG model loss, respectively.

All other loss terms (regularizers, reprojection losses) re-

main fixed. Too a high weight on 3D shape similarity de-

grades the fit to the 2D image evidence (IoU, PCK). A good

trade-off is wB
triplet = 5.

Loss weights wB
cs - 1 1 1 1 1

wB
triplet - - 5 10 5 10

wB
3D - - - - 1 1

Error [m] 0.089 0.082 0.081 0.074 0.072 0.067

Table 4. Ablation study. Breed prototype consistency error for

different setting

To make the influence of the breed information more

tangible, we also visualize the effect of the breed similar-

ity loss. Figure 3 shows a t-SNE visualization of the latent

feature spaces learned by (left) a network without LB
sim and

(middle, right) an identical network trained with LB
sim. The

breed similarity pulls dogs of the same breed closer together

in the latent space z, which is closely linked to the body

shape parameters β. Different saturation levels of the same

color indicate breeds within the clade. Even though the no-

tion of clades is not imposed or made explicit anywhere in

our network, breeds of the same clade tend to cluster. This

suggests that not only within breeds, but also above breed

level, shape knowledge can be transferred.

5. Conclusion

We present a method to reconstruct 3D pose and shape

of dogs from images. Monocular 3D reconstruction of ar-

ticulated objects is an unconstrained problem that requires

strong priors on 3D shape and pose. We overcome the

limitation of current 3D shape models of animals by train-

ing for model-based shape prediction with a novel breed-

aware loss. We obtain state-of-the-art estimates of 3D dog

shape and pose from images while also producing con-

sistent, breed-specific 3D shape reconstructions. Our re-

sults outperform previous work metrically and perceptu-

ally. Combining visual appearance and genetic information

through breed labels, we obtain a latent space that expresses

relations between different breeds in accordance with recent

studies on the dog breed genome. We believe this is the first

work that combines breed information for learning to recon-

struct 3D animal shape, and we hope it will be the basis of

further investigation for other species.

Limitations and Ethics. BARC is limited by its shape

space and is not able to go outside it. Given the high-quality

regression results, future work should explore learning an

improved shape space from images by exploiting breed con-

straints. We focused mainly on shape, but pose and motion

are also important, and learning models of these from image

data may be possible using our methods. Our research uses

public image sources of dogs, and no animal experiments

were conducted. While we focus on dogs, our method

should be applicable to other animals and may eventually

find positive uses in conservation, animal science, veteri-

nary medicine, etc.
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