
Simulated Adversarial Testing of Face Recognition Models

Nataniel Ruiz
Boston University
nruiz9@bu.edu

Adam Kortylewski
Johns Hopkins University

akortyl1@jhu.edu

Weichao Qiu
Huawei

qiuwch@gmail.com

Cihang Xie
UC Santa Cruz
cixie@ucsc.edu

Sarah Adel Bargal
Boston University
sbargal@bu.edu

Alan Yuille*

Johns Hopkins University
ayuille1@jhu.edu

Stan Sclaroff*

Boston University
sclaroff@bu.edu

Abstract

Most machine learning models are validated and tested
on fixed datasets. This can give an incomplete picture of the
capabilities and weaknesses of the model. Such weaknesses
can be revealed at test time in the real world. The risks in-
volved in such failures can be loss of profits, loss of time or
even loss of life in certain critical applications. In order to
alleviate this issue, simulators can be controlled in a fine-
grained manner using interpretable parameters to explore
the semantic image manifold. In this work, we propose a
framework for learning how to test machine learning algo-
rithms using simulators in an adversarial manner in order
to find weaknesses in the model before deploying it in crit-
ical scenarios. We apply this method in a face recognition
setup. We show that certain weaknesses of models trained
on real data can be discovered using simulated samples.
Using our proposed method, we can find adversarial syn-
thetic faces that fool contemporary face recognition mod-
els. This demonstrates the fact that these models have weak-
nesses that are not measured by commonly used validation
datasets. We hypothesize that this type of adversarial exam-
ples are not isolated, but usually lie in connected spaces in
the latent space of the simulator. We present a method to
find these adversarial regions as opposed to the typical ad-
versarial points found in the adversarial example literature.

1. Introduction

Evaluating a machine learning model can have many pit-
falls. Ideally, we would like to know (1) when the model
will fail (2) in which way it will fail and (3) how badly it
will fail. In other words, we would like to be able to accu-
rately estimate the model’s risk on the true test data distribu-

*Equal senior contribution.

tion as well as know what specific factors induce the model
to failure. We would like to know how these failures will
manifest themselves. For example, whether a face verifica-
tion model will generate a false-positive or false-negative
error. And finally, when this failure happens, we would
like to know how confident was the incorrect decision by
the model. Testing models is no longer a purely academic
endeavour [60], with many high profile bad societal conse-
quences being revealed in recent years due to insufficient
testing particularly with respect to racial and gender bias in
face analysis systems [5, 15, 19].

These three desiderata are very hard to achieve in prac-
tice. There are major philosophical and theoretical obsta-
cles to achieve perfect knowledge of model failures a priori.
Nevertheless, partial knowledge of model weaknesses and
predictions of model failures are possible. Yet, there are
still major hurdles that stand in our way.

One such hurdle is the fact that testing data is limited,
due to the fact that it is expensive to gather and label. It is
not uncommon for a model to perform well on an assigned
test set and fail to generalize to specific obscure examples
when it is deployed. A second important hurdle is the fact
that testing data is unruly. There are latent factors that gen-
erate the testing data, which are hard to control or even to
fully understand. For example, a known factor that is hard
to control is the lighting of a scene. Most datasets have
been captured without controlling for this variable, and thus
present an insufficient amount of variability in this respect.
Testing a model in one environment could yield perfect per-
formance, yet fail on an environment with more lighting
variability. Even if a test dataset with carefully controlled
lighting were assembled, the dataset would be very expen-
sive and time-consuming to collect and there is no guarantee
that the full variability would be explored.

A way to tackle these problems is to use simulators to
generate test data. Such an approach can cheaply generate a
large quantity of data spanning a large spectrum. Also, sim-

4145

ulators are fully controllable and the generative parameters
are known. This allows for careful exploration of situations
where models fail. This includes the possibility to find in-
tepretable factors that generate failures, to study the way
these failures manifest themselves (is the model classifying
a cat as a jaguar when there is green in the background?)
and to examine the degrees of certainty of the model in these
failure modes.

When simulating test data, we have full control over sim-
ulator parameters. Thus, we are able to explore the mani-
fold generated by the simulator in the space of the simula-
tor parameters. We call this manifold the semantic image
manifold, in contrast to the adversarial image manifold that
is explored in the traditional adversarial attack literature.
A random exploration of this manifold is both inefficient
and not the most informative approach. In this work we
propose to test machine learning models using simulation
in an adversarial manner by finding simulator parameters
that generate samples that fool the model. We are inspired
by the literature on adversarial examples that fool machine
learning models, yet in contrast to this body of work, the
adversarial examples that our simulator generates are se-
mantically realistic in the sense that we are not adding low
magnitude noise to an image in order to fool the model but
finding semantically sensible image configurations that gen-
erate model failure. In this way, we are not investigating the
well-known weakness of gradient-based models to unrealis-
tic targeted noise but to plausible scenes that might be rare,
yet mislead the model. We present a method that finds ad-
versarial samples efficiently using a continuous policy that
searches the high-dimensional space of possibilities.

A limitation of this type of work is that, in general there
exists domain shift between the distribution described by
the simulator and the real world distribution [7,14,20,39,54,
55]. Nevertheless, in our work we are able to show that in
some situations, real model weaknesses can be found using
simulated data. This gives credence to the hypothesis that,
even though there is domain shift, simulated samples can
be informative. Also, simulators are rapidly improving in
terms of realism [11, 30, 36, 48]. This allows for greater
opportunities to use these ideas in the future as simulated
and real data distributions become more and more aligned.

We hypothesize that these adversarial examples are not
isolated points in space, but instead are regions of this man-
ifold. In prior work on traditional adversarial examples,
optimization procedures find adversarial samples that are
points in image space [6, 18, 33, 37, 49, 53]. In contrast to
this body of work we propose a method to find these adver-
sarial regions instead. This is valuable because ideally we
would like to be able to fully describe the machine learning
model’s regions of reliability, where model predictions will
tend to be correct. With this knowledge a user would be
able to avoid performing inference on a model outside of its

scope in order to minimize failures.
Contributions of this work are three-fold. We summarize

them as follows:

• We show that weaknesses of models trained on real
data can be discovered using simulated samples. We
perform experiments on face recognition networks
showing that we can diagnose the weakness of a model
trained on biased data.

• We present a method to find adversarial simulated sam-
ples in the semantic image manifold by finding adver-
sarial simulator parameters that generate such samples.
We present experiments on contemporary face recog-
nition networks showing that we can efficiently find
faces that are incorrectly recognized by the network.

• We present a method to find regions that are adversar-
ial, in order to locate danger zones where a model’s
predictions are more liable to be incorrect. To the best
of our knowledge, we are the first to explore the exis-
tence of these adversarial regions in the interpretable
latent space of a simulator.

2. A Framework for Simulated Adversarial
Testing

Here we formalize adversarial testing using a simulator.
We postulate some assumptions on the data generation pro-
cess in the real and simulator world. Then we give the risks
for a machine learning model and the mathematical formu-
lation to find adversarial parameters that yield samples that
fool machine learning models. We then present some par-
allels between our scenario and the literature on learning
across domains. Finally, we describe our proposed algo-
rithm to find such adversarial simulator parameters and ad-
versarial samples.

Let us assume the real world data (x, y) (where x is
the data and y is the label) is generated by the distribution
p(x, y|ψ) where ψ is a latent variable that causally controls
the data generation process. For example, ψ includes the
object type in the image and the angle of view of such an ob-
ject, as well as all other parameters that generate the scene
and image. The risk for a discriminative model f is:

Eψ∼a[E(x,y)∼p(x,y|ψ)[L(f(x), y)]], (1)

where a is the distribution of ψ and L is the loss. We can
search for ψ∗ that maximizes this risk:

max
ψ∈A

[E(x,y)∼p(x,y|ψ)[L(f(x), y)]] (2)

where A is the set of all possible ψ. Let us assume that we
have ψ = (ψu, ψk), a decomposition of ψ into two latent
variables ψu and ψk. Furthermore, let us assume that ψu

4146

Figure 1. Our method applied to the face verification scenario. The simulator is conditioned on parameters generated by the policy. An
image pair of the same identity is generated. Face verification is run on this image pair using the face recognition network that is to be
diagnosed. A reward is computed based on the correct or incorrect prediction of the network and policy parameters are updated accordingly.

controls for unknown features of the image, and ψk controls
for known features of the image such as the camera pose, or
the object position with respect to the camera. We can write
the average risk as:

Eψu∼a[Eψk∼b[E(x,y)∼p(x,y|ψu,ψk)[L(f(x), y)]]], (3)

where b is the distribution of ψk. In most scenarios, we do
not have access to the real data distribution p and cannot
sample from it at will. Additionally, it is very difficult to
control the known latent variable ψk when generating data,
and we do not even know what factors are hidden in the
variable ψu, much less how to control it. Using simulated
data we are able to fully control the generative process.

A simulator samples data (x, y) ∼ q(x, y|ρ), where q
is the simulated data distribution and we have complete
knowledge over the latent variable ρ. We are able to search
for adversarial examples and compute estimates of the mean
and worst-case risks using this simulator. For example, the
parameter ρ∗ that maximizes the risk is written as follows:

max
ρ∈C

[E(x,y)∼q(x,y|ρ)[L(f(x), y)]] (4)

where C is the set of all possible ρ. We can find ρ̂∗, an
estimate of ρ∗, by sampling (albeit inefficiently). In our
case we are working in a less restrictive scenario since we
do not try to find the global maximum ρ∗, instead we try
to find any ρ where E(x,y)∼q(x,y|ρ)[L(f(x), y)] is above the
misclassification threshold.

If we assume that the distributions p and q are similar
enough we can use the knowledge gathered in simulation
to understand the possibilities of failure in the real world.
Essentially, this is a different kind of domain shift prob-
lem. In a traditional setting of transfer learning between
domains, we are concerned about minimizing the risk on a
target domain by training on a source domain. In the binary
classification case, let us define a domain as a pair consist-
ing of a distribution p on inputs X and a labeling function
gp : X → [0, 1]. We consider the real domain and the sim-
ulated domain denoted by (p, gp) and (q, gq) respectively.

We also introduce a hypothesis that is a function h :
X → {0, 1}. We can write the risk of this hypothesis on
p as:

ϵp(h, gp) = Ex∼p[|h(x)− gp(x)|] (5)

In traditional domain adaptation from simulation to re-
ality, we seek to learn on distribution q and generalize to
distribution p. We want to find a hypothesis that minimizes
the risk on the target real world distribution ϵp(h, gp) by
training on samples from q.

In our setting, we do not train on synthetic samples. In-
stead we want to find a relationship between testing a hy-
pothesis h on samples from distribution q and testing h on
samples from p. There exist bound results for the risks
ϵp(h, gp) and ϵq(h, gq) in the work of Ben-David et al. [4]:

ϵp(h, gp) < ϵq(h, gq) + d1(q, p)+

min{Ep[|gq(x)− gp(x)|],Eq[|gq(x)− gp(x)|]}, (6)

where d1 is the variation divergence. The second term of
the right hand side quantifies the difference between distri-
butions q and p, and the third term of the right hand side
is the difference between the labeling functions across do-
mains, which is expected to be small.

Since this bound characterizes the cross-domain general-
ization error and ϵq(h, gq) will usually be minimized by the
learning algorithm, it is useful for studying transfer learning
between domains. There are some differences in our sce-
nario since for us h is a fixed function that has been trained
on the target domain and we would like to talk about in-
dividual examples instead of overall risk over distributions.
Also, the bound is proven for a binary classification prob-
lem, whereas our target scenario can be multi-class classifi-
cation or regression.

Assume there exists a mapping τ : C → A, that
maps the simulated latent variables to real latent variables
ψ = τ(ρ). In order for adversarial examples in the simula-
tor domain to be informative in the real domain, we want to

4147

have a simulator such that:

P(xs,ys)∼q,(xr,yr)∼p[|L(xs, ys)−L(xr, yr)| < ϵ] > θ. (7)

We denote p(xr, yr|τ(ρ)) as p and q(xs, ys|ρ) as q in the
equation above for succinctness. Here ϵ is small and θ ∈
[0, 1] is large. This way, high-loss examples found in the se-
mantic image manifold using simulation have a high prob-
ability of transferring to the real world. Since the simulator
and real domain are different, this is a moderately strong as-
sumption. Nevertheless, we show cases where this assump-
tion holds in our experimental evaluations in Section 4.3.

Finding Adversarial Parameters Our task is then to find
ρ such that the loss over samples generated with this la-
tent variable is above the misclasification threshold T . One
main difficulty in searching for latent variables that fulfill
this condition is that in general the simulator q is non-
differentiable. Thus, we turn to black-box optimization
methods to search for adversarial parameters. Specifically,
we use a policy gradient method [57].

We define a policy πω parameterized by ω that can sam-
ple simulator parameters ρ ∼ πω(ρ). We train this policy
to generate simulator parameters that generate samples that
obtain high loss when fed to the machine learning model f .
For this we define a reward R that is equal to the negative
loss L and we want to find the parameters ω that maximize
J(ω) = Eρ∼πω

[R]. Following the REINFORCE rule we
obtain gradients for updating ω as

∇ωJ(ω) = Eρ∼πω

[
∇ω log(πω)R(ρ)

]
. (8)

An unbiased, empirical estimate of the above quantity is

L(ω) = 1

K

K∑
k=1

∇ω log(πω)Âk , (9)

where Âk = R(ωk) − β is the advantage estimate, β is a
baseline,K is the number of different parameters ρ sampled
in one policy forward pass andR(ρk) designates the reward
obtained by evaluating f on (xk, yk) ∼ q(xk, yk|ρk). We
show all of the steps of our method in Algorithm 1 and we
show an illustration of our method applied to the face veri-
fication scenario in Figure 1.

3. Finding Adversarial Regions
Here we describe our method to find adversarial regions.

Once an adversarial simulator latent vector ρadv ∈ Rn have
been found using Algorithm 1 we define a graph G =
(V,E). V are the vertices of the graph, obtained by dis-
cretizing the space around the adversarial point in grid with
spacing ν between vertices. The edges E of the graph con-
nect neighboring vectors, with each vector having 2n neigh-
bors. We find the connected space of adversarial examples
Radv that is seeded by ρadv by following Algorithm 2.

Algorithm 1: Our adversarial testing approach us-
ing a policy gradient method.

Result: adversarial simulator parameters ρk and
adversarial sample xk

for iteration=1,2,... do
Generate K simulator parameters ρk ∼ πω(ρk);
Generate K samples (xk, yk) ∼ q(xk, yk|ρk)

Test the discriminative model and obtain K
losses L(f(xk), yk)

if ∃k ∈ {1, ...,K};L(f(xk), yk) > T then
Terminate and yield adversarial sample xk

and adversarial simulator parameters ρk
end
Compute rewards R(ρk)
Compute the advantage estimate
Âk = R(ρk)− β

Update ω via equation 9
end

In essence, our method follows the general idea of
an area flooding algorithm [31, 52] with two main differ-
ences. First, that we discretize a continuous space that is
n-dimensional instead of working on binary 2-dimensional
image, and second, that we check for sample membership
of Radv by testing whether the model loss is higher than the
adversarial threshold L(f(x), y) > T .

Algorithm 2: Finding connected spaces of adver-
sarial examples.

Result: connected space of adversarial examples
Radv

Data: seed adversarial simulator parameters ρadv
Radv = {ρadv}
Initialize a stack χ.
Push 2n neighbors of ρadv to χ.
for i=1,2,... do

Pop ρi from χ
Sample (xi, yi) ∼ q(xi, yi|ρi)
Test the discriminative model and obtain loss
L(f(xk), yk)

if L(f(xk), yk) > T then
Radv = Radv ∪ {ρi}
Push all neighbors of ρi that have not been

visited to χ
end

end

4148

4. Experimental Results
4.1. Controllable Face Simulation

We use the FLAME face model [29] as a controllable
face simulator with the Basel texture model [38]. FLAME
uses a linear shape space trained from 3,800 3D scans of
human heads and combines this linear shape space with an
articulated jaw, neck, and eyeballs, pose-dependent correc-
tive blendshapes, and additional global expression blend-
shapes. In this way, using shape and texture components
we can generate faces with different identities. The syn-
thetic faces that are generated in our work are new and do
not mimic any existing person’s features. By changing the
pose and expression components we can add variability to
these faces. Moreover, we have full control over the scene
lighting and the head and camera pose and position. In or-
der to render our scene we use the PyTorch3D rendering
framework [41]. We extract the corresponding shape, tex-
ture and expression components from the real faces of the
CASIA WebFace dataset using DECA [10].

4.2. Models, Datasets and Infrastructure

In our experiments we use the CASIA WebFace [59]
dataset for training the face recognition models and the
LFW [23] dataset for real-world data testing. We use a Con-
volutional Block Attention Module (CBAM) [58] ResNet50
with the ArcFace [8] loss as our base face recognition
model. We also test our method on MobileNet [21] and
CBAM-Squeeze-Excitation-ResNet [22] architectures and
the CosFace [56] loss. We use a multivariate Gaussian pol-
icy π(ρ) = N (µπ, σ

2
π) where the variance is fixed σ2

π =
0.05 × I and µπ is learned. For the random optimization
baseline we use one Gaussian for each parameter type with
standard deviation σrs =

wp

10 × I , where wp is the width of
the parameter domain. For the Gaussian random sampling
baseline we use a standard deviation σg =

wp

2 . We use a
GeForce RTX 2080 GPU with 11GB of memory to perform
all of our experiments.

4.3. Testing Weakened Models

We present a way to verify that knowledge from simu-
lated weaknesses translates to real-world weaknesses. We
weaken two networks by training on the CASIA Web-
Face dataset with images that exhibit a yaw parameter
[−∞,−0.5] and [0.5,+∞] filtered out. We extract the
yaw parameter using DECA. We call these the Nega-
tive Yaw Filtered (NYF) and Positive Yaw Filtered (PYF)
datasets/networks, respectively. Both datasets have roughly
the same number of samples: the Negative Yaw Filtered
dataset has ∼ 440k training samples and the Positive Yaw
Filtered dataset has ∼ 449k samples. We also train a Nor-
mal network on all of the ∼ 491k samples of the unfiltered
CASIA WebFace dataset. We then test both the normal net-

work and the yaw-weakened networks on simulated sam-
ples. We do this by generating two images of a same person,
by fixing the shape, texture and expression parameters. The
first image is a frontal image of the person. We vary the yaw
component of the second image in the [−1, 1] range, where
−1 and 1 in the yaw component indicate a fully-profile face
on the negative and positive sides, and compute the cosine
similarity between the embeddings of the two images. This
cosine similarity should be large given that the two images
presented are of the same identity. A low cosine similarity
means that the network has less confidence that the images
show the same person.

We plot this in Figure 2, and observe that each yaw-
weakened network makes less accurate predictions for im-
ages presenting high yaw in their respective weakness in-
tervals. Note that all networks perform almost identically
with frontal samples. Also, note that the normal network
is almost always superior to the two weakened networks.
This is a natural result of having 10% more training data.
This plot is an average over 25 different identities that we
obtain by grid-sampling the first texture and shape compo-
nents over the range [−σ, σ].

We compute the area between the curves for the
[−1.0,−0.5], [−0.5, 0.5] and [0.5, 1.0] intervals. We ob-
serve in Table 1 (left) that in the [−1.0,−0.5] yaw range,
precisely where the NYF network has been weakened, the
area between the Normal-NYF curves is large and the area
between the Normal-PYF curves is small. Conversely, in
the [0.5, 1.0] range, where PYF has been weakened, we see
that the difference between the Normal-PYF curves is large
and the Normal-NYF difference is smaller. Also, we ob-
serve near identical differences between Normal-NYF and
Normal-PYF in the [−0.5, 0.5], which is a consequence of
the lesser amount of training data of NYF and PYF net-
works. We also compute pairwise mean differences for the
different populations of Normal, NYF and PYF networks
and present them in Table 1 (right). We highlight in blue
the statistically significant differences. We have similar re-
sults as in Table 1 (left).

This evidence indicates that when a weakness is purpose-
fully created in a network by filtering out key samples in
the real training dataset, we can retrieve this weakness us-
ing our face simulator. This gives credence to the idea that
we are able to find simulated adversarial examples in the
semantic image manifold that will give us knowledge about
adversarial examples in the real world.

4.4. Simulated Adversarial Testing of Face Recog-
nition Models

In this section we evaluate adversarial testing of face
recognition models for face verification. Specifically, we
generate samples using the FLAME face model and use our
proposed search algorithm to fool face recognition models.

4149

Area Between Curves
↓ Models / Yaw Interval → [-1.0, -0.5] [-0.5, 0.5] [0.5, 1.0]

Normal:NYF 8.69 2.83 4.68
Normal:PYF 2.71 2.76 8.46

Mean Difference
↓ Models / Yaw → -1.0 0.0 1.0

Normal-NYF 0.18 0.01 0.10
Normal-PYF 0.01 0.00 0.16

NYF-PYF -0.17 -0.01 0.06

Table 1. Quantitative differences between evaluation of the purposefully weakened Negative Yaw Filtered (NYF) and Positive Yaw Filtered
(PYF) and the Normal on synthetic faces (bold values for emphasis). Blue values in the table on the right mean the differences are
statistically significant with p < 0.01.

Figure 2. Recognition cosine similarity between two simulated
pairs (frontal and variable yaw) of the same identity (avg. over 25
different identities). The Negative Yaw Filtered network exhibits
less accurate predictions for highly negative yaw images than both
the Positive Yaw Filtered and Normal networks. The Positive Yaw
Filtered network exhibits less accurate predictions for highly pos-
itive yaw images than both other networks.

We train an ArcFace CBAM-ResNet50 on CASIA Web-
Face for 20 epochs. This network achieves a 99.1% accu-
racy on the LFW test set for the face verification task. The
evaluation task is face verification between two synthetic
images of a same person’s face, one frontal and one pro-
file image. We vary the first 15 shape parameters as well as
the first 15 texture parameters for our generated identities,
ranging from −2σ and 2σ where σ is the standard deviation
of each parameter in question.

We propose testing the network using 100 identities ob-
tained by random sampling these parameters following a
uniform distribution. We also test the network using 100
runs of our adversarial testing algorithm (200 maximum it-
erations). In Table 2, we show that the random sampling
testing regime achieves an accuracy of 99%, which is very
close to the 99.1% real-world accuracy of the network on
the LFW test set. Using adversarial testing, the network
exhibits an accuracy of 36%, which is a marked drop in
verification performance. We also compute the average co-
sine similarity between pairs, showing that adversarial test-
ing generates highly adversarial samples (success thresh-
old T = 0.298) whereas random samples are highly non-
adversarial on average. In Figure 3 we show a subset of the
generated samples for both the adversarial testing (above)
and random sampling (below).

We perform further simulated adversarial testing ex-

periments on several combinations of network backbones
(CBAM-ResNet50, CBAM-SE-ResNet50 [22], MobileNet)
and face recognition losses (ArcFace, CosFace) trained on
CASIA WebFace for 20 epochs. All networks achieve ac-
curacies in the (98.85%, 99.1%) range on the LFW test set.
We vary 30 shape parameters, 30 texture parameters ranging
from −2σ and 2σ where σ is the standard deviation of each
parameter. We also vary the yaw pose parameter within
[−1,+1], corresponding to variations of [−π/2,+π/2] de-
grees and the pitch pose parameter from [−1/4,+1/4] cor-
responding to variations within [−π/8,+π/8]. Thus, in this
case our algorithm has to learn 62 parameters. This is a
more challenging scenario due to the larger dimensionality
of the policy output.

We perform 100 runs of our adversarial testing algorithm
(200 maximum iterations), 100 runs of Random Optimiza-
tion using a Gaussian sampling distribution and 1,000 iter-
ations of uniform random sampling and Gaussian random
sampling. We compare these testing methods in Table 3
and we show that the networks achieve very high accura-
cies for both random sampling regimes and for testing us-
ing random optimization. Using adversarial testing, all net-
works exhibit a marked drop in verification performance.
There is also a large increase in the average cosine simi-
larity between pairs, showing that adversarial testing gener-
ates highly adversarial samples (below success thresholds
T = (0.298, 0.237, 0.292, 0.294) respectively), whereas
other methods generate “easy” samples on average.

Further, for example, for ArcFace CBAM-ResNet50,
adversarial testing achieves 51 adversarial samples over
12,587 iterations while random sampling achieves only one
adversarial sample over 1,000 iterations. This makes ad-
versarial testing 400% more sample efficient than random
sampling in this specific scenario. In some of our tested sce-
narios and depending on the number of iterations, random
sampling was not able to find any adversarial samples. This
is reflected by a 100% face verification accuracy. In Fig-
ure 4, we show several successful adversarial testing runs
(orange/red) and one random sampling run (green). Unsuc-
cessful optimization attempts usually converge to low co-
sine similarity without becoming adversarial and remain in
the high-dimensional local minima. Finally, we show an
example of adversarial testing in action where all 30 shape,
30 texture and 2 pose parameters are being learned jointly
in Figure 5. The algorithm finds an adversarial sample that

4150

Table 2. CBAM-ResNet50 face verification accuracy over syn-
thetic datasets generated by uniform random sampling or by ad-
versarial testing (Adv. Testing). We vary the identity by varying
15 shape parameters and 15 texture parameters.

Method Accuracy ↓ Avg. Cosine Similarity ↓
Uniform Random 99% 0.518

Adv. Testing 36% 0.263

Figure 3. Face models obtained using adversarial testing (above)
and random parameter sampling (below). A green border denotes
pairs that are successfully verified as the same identity, whereas a
red border denotes failed verification (model failure). We obtain
adversarial samples using our adversarial testing method more
consistently than with random parameter sampling. Some recur-
ring features of adversarial faces are ambiguous frontal/profile
features (e.g. long nose, tucked jaw), pale/dark skin colors and
left/right asymmetries.

reveals model weaknesses such as vulnerability to unusual
poses, exaggerated facial features and distinct skin color.

4.5. Finding Adversarial Regions of Face Recogni-
tion Models

We use our method described in Algorithm 2 to find ad-
versarial regions in the simulator latent space for face recog-
nition models. We do this in the face verification scenario
between a frontal image with neutral expression and a pro-
file image with an open jaw. We vary the first shape and
texture parameters to find an adversarial sample, and then
find the connected spaces to those seed parameters. We
also grid sample both parameters in order to plot the syn-
thetic sample surface. We show the surface of all synthetic
samples (blue), along with the adversarial region (red) and
the adversarial threshold plane (orange) in Figure 6.

We are successful in finding the adversarial regions when
they exist. We discover a surprising fact when plotting the
synthetic loss landscape (Figure 7) of all the tested net-
works. In this configuration with only 2 variable parame-
ters, the only network with an adversarial region is ArcFace
CBAM-ResNet50. Even though all networks have been

Figure 4. Cosine similarity for successful adversarial testing (red)
and random parameter sampling (green).

Figure 5. A sequence of generated synthetic samples undergo-
ing adversarial testing (left to right, top to bottom). Our method
searches through all 30 shape, 30 texture and 2 pose parameters
jointly to find an adversarial face. The border line colors denote
whether the face recognition network can successfully verify the
pairs, with red denoting a failed verification and green denoting a
successful verification.

trained in the same manner on the same dataset, the net-
work backbone and the loss function change the loss land-
scape substantially. Some networks have a similar down-
ward slope from negative shape towards positive shape, but
some particularities arise in some. Strikingly, ArcFace Mo-
bileNet is the most robust of all the networks in this scenario
with a landscape far above the misclassification threshold
plane. The landscape shape is also completely different
from the other networks.

5. Related Work
Testing computer vision models on synthetic data is not

a new idea [24,26,27,35,40,48], although there is a relative
paucity of work in this area. More common are investiga-
tions on training models on synthetic data [9, 12, 16, 17, 28,
34, 42, 43, 46]. Recent works even learn to adapt the gen-
erative distribution of synthetic data in order for the model
to learn better representations [2, 3, 13, 25, 32, 47] or adapt
the pixels or features of the synthetic data to bridge the
synthetic-to-real domain gap [7, 14, 20, 39, 54, 55]. In con-
trast to this body of work, we propose to search the param-
eter space of a simulator in order to test the model in an ad-
versarial manner. There is very interesting work that adapts

4151

Uniform Random Gaussian Random Random Opt. Adv. Testing
Loss + Backbone Acc. ↓ Avg. CS ↓ Acc. ↓ Avg. CS ↓ Acc. ↓ Avg. CS ↓ Acc. ↓ Avg. CS ↓
ArcFace CBAM-ResNet50 99.9% 0.766 99.3% 0.695 93% 0.414 49% 0.282
CosFace CBAM-ResNet50 99.9% 0.696 99.6% 0.637 86% 0.318 57% 0.281
ArcFace SE-CBAM-ResNet50 99.8% 0.738 97.7% 0.663 73% 0.348 34% 0.305
ArcFace MobileNet 100% 0.825 99.8% 0.751 96% 0.454 58% 0.372

Table 3. Comparison of different synthetic sampling techniques on different combinations of network backbones and face recognition
losses. We vary 30 shape, 30 texture and 2 pose parameters.

Figure 6. Our algorithm finds the adversarial region (red) in the
shape-texture landscape (blue). We plot the initial learning trajec-
tory (lighter red) that yields the seed adversarial simulator param-
eters. We also plot the adversarial threshold plane (orange).

generative distributions in order to test models [1, 51, 61].
In contrast to [51, 61] we test computer vision models that
are trained on real data, which is a more challenging sce-
nario since the domain shift problem has to be described
and overcome. Different from [1, 51, 61] we work on the
domain of face recognition instead of object classification
or VQA, where we have a higher number of simulator pa-
rameters including shape, expression, texture, lighting and
pose parameters. We search the parameter landscape using
a continuous policy that explores all parameters simultane-
ously, which is important since model performance does
not vary independently with each parameter (as Figure 6
shows), and discrete changes in parameter space can yield
high loss changes due to gradient sharpness. A final dif-
ference with these and work on traditional adversarial at-
tacks [6, 18, 33, 37, 44, 45, 53] is that we present a method
that not only finds one isolated adversarial example, but lo-
cates regions of them. There exist methods that propose
objectives that locate regions of adversarial examples [50].
In contrast, we explore the adversarial regions that lie in the
latent space of a simulator instead of pixel space.

6. Conclusion
In this work we propose to test machine learning models

by searching for semantically realistic adversarial examples
using a simulator. We present a framework for simulated
adversarial testing, as well as a method to find simulated
adversarial examples. Finally, we present a method to find
connected spaces of adversarial examples in the semantic
space of latent variables and evaluate our methods on con-
temporary face recognition networks using a face simulator.

Figure 7. Landscape comparisons for different network backbones
and losses. Networks trained on CASIA WebFace.

We find that face recognition networks that have real
world weaknesses due to biased training sets with respect
to pose can be analyzed using controllable simulated faces
and these weaknesses can be discerned. We also find that
contemporary face recognition networks are fooled by spe-
cific combinations of simulated face shapes and textures.
Some recurring features of adversarial faces are ambigu-
ous frontal/profile features (e.g. long nose, tucked jaw),
pale/dark skin colors and left/right asymmetries. When
such a network is tested using adversarial testing, it’s ac-
curacy plummets compared to random testing or testing on
a real-world test set such as LFW. We show evidence that
these adversarial examples are not isolated, but part of con-
nected spaces of adversarial examples in the manifold of
semantically plausible images. We also show that network
loss landscapes can vary significantly depending on the net-
work architecture and loss used, even though the training
dataset is fixed. Even so, adversarial testing finds adversar-
ial samples for all networks effectively. We will investigate
this phenomenon in future work. Finally, we have an in-
depth discussion of the limitations and potential negative
impact of our work in the supplementary material.

Acknowledgments This work was supported in part by
grants ONR N00014-21-1-2812 and NIH R01 EY029700
to Alan Yuille and a gift grant from Open Philanthropy to
Cihang Xie.

4152

References
[1] Michael A Alcorn, Qi Li, Zhitao Gong, Chengfei Wang,

Long Mai, Wei-Shinn Ku, and Anh Nguyen. Strike (with)
a pose: Neural networks are easily fooled by strange poses
of familiar objects. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
4845–4854, 2019. 8

[2] OpenAI: Marcin Andrychowicz, Bowen Baker, Maciek
Chociej, Rafal Jozefowicz, Bob McGrew, Jakub Pachocki,
Arthur Petron, Matthias Plappert, Glenn Powell, Alex Ray,
et al. Learning dexterous in-hand manipulation. The Inter-
national Journal of Robotics Research, 39(1):3–20, 2020. 7

[3] Sara Beery, Yang Liu, Dan Morris, Jim Piavis, Ashish
Kapoor, Neel Joshi, Markus Meister, and Pietro Perona. Syn-
thetic examples improve generalization for rare classes. In
Proceedings of the IEEE/CVF Winter Conference on Appli-
cations of Computer Vision (WACV), March 2020. 7

[4] Shai Ben-David, John Blitzer, Koby Crammer, Alex
Kulesza, Fernando Pereira, and Jennifer Wortman Vaughan.
A theory of learning from different domains. Machine learn-
ing, 79(1):151–175, 2010. 3

[5] Joy Buolamwini and Timnit Gebru. Gender shades: Inter-
sectional accuracy disparities in commercial gender classifi-
cation. In Conference on fairness, accountability and trans-
parency, pages 77–91, 2018. 1

[6] Nicholas Carlini and David Wagner. Towards evaluating the
robustness of neural networks. In 2017 IEEE Symposium on
Security and Privacy (SP), pages 39–57. IEEE, 2017. 2, 8

[7] Yi-Hsin Chen, Wei-Yu Chen, Yu-Ting Chen, Bo-Cheng Tsai,
Yu-Chiang Frank Wang, and Min Sun. No more discrimina-
tion: Cross city adaptation of road scene segmenters. In The
IEEE International Conference on Computer Vision (ICCV),
Oct 2017. 2, 7

[8] Jiankang Deng, Jia Guo, Niannan Xue, and Stefanos
Zafeiriou. Arcface: Additive angular margin loss for deep
face recognition. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
4690–4699, 2019. 5

[9] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Anto-
nio Lopez, and Vladlen Koltun. Carla: An open urban driv-
ing simulator. In Conference on robot learning, pages 1–16.
PMLR, 2017. 7

[10] Yao Feng, Haiwen Feng, Michael J. Black, and Timo
Bolkart. Learning an animatable detailed 3D face model
from in-the-wild images. ACM Transactions on Graphics
(ToG), Proc. SIGGRAPH, 40(4):88:1–88:13, Aug. 2021. 5

[11] Guy Gafni, Justus Thies, Michael Zollhöfer, and Matthias
Nießner. Dynamic neural radiance fields for monoc-
ular 4d facial avatar reconstruction. arXiv preprint
arXiv:2012.03065, 2020. 2

[12] Adrien Gaidon, Qiao Wang, Yohann Cabon, and Eleonora
Vig. Virtual worlds as proxy for multi-object tracking anal-
ysis. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 4340–4349, 2016. 7

[13] Yaroslav Ganin, Tejas Kulkarni, Igor Babuschkin, S. M. Ali
Eslami, and Oriol Vinyals. Synthesizing programs for im-

ages using reinforced adversarial learning. In ICML, 2018.
7

[14] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pas-
cal Germain, Hugo Larochelle, François Laviolette, Mario
Marchand, and Victor Lempitsky. Domain-adversarial train-
ing of neural networks. J. Mach. Learn. Res., 17(1):2096–
2030, Jan. 2016. 2, 7

[15] R. V. Garcia, L. Wandzik, L. Grabner, and J. Krueger. The
harms of demographic bias in deep face recognition re-
search. In 2019 International Conference on Biometrics
(ICB), pages 1–6, 2019. 1

[16] Baris Gecer, Binod Bhattarai, Josef Kittler, and Tae-Kyun
Kim. Semi-supervised adversarial learning to generate pho-
torealistic face images of new identities from 3d morphable
model. In Proceedings of the European conference on com-
puter vision (ECCV), pages 217–234, 2018. 7

[17] Baris Gecer, Alexandros Lattas, Stylianos Ploumpis,
Jiankang Deng, Athanasios Papaioannou, Stylianos
Moschoglou, and Stefanos Zafeiriou. Synthesizing coupled
3d face modalities by trunk-branch generative adversarial
networks. In European conference on computer vision,
pages 415–433. Springer, 2020. 7

[18] Ian Goodfellow, Jonathon Shlens, and Christian Szegedy.
Explaining and harnessing adversarial examples. In Proc.
ICLR, 2015. 2, 8

[19] Patrick J Grother, Mei L Ngan, and Kayee K Hanaoka. Face
recognition vendor test part 3: Demographic effects. 2019.
1

[20] Judy Hoffman, Eric Tzeng, Taesung Park, Jun-Yan Zhu,
Phillip Isola, Kate Saenko, Alexei Efros, and Trevor Darrell.
Cycada: Cycle-consistent adversarial domain adaptation. In
International conference on machine learning, pages 1989–
1998. PMLR, 2018. 2, 7

[21] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-
dreetto, and Hartwig Adam. Mobilenets: Efficient convolu-
tional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861, 2017. 5

[22] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation net-
works. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 7132–7141, 2018. 5, 6

[23] Gary B. Huang, Manu Ramesh, Tamara Berg, and Erik
Learned-Miller. Labeled faces in the wild: A database
for studying face recognition in unconstrained environ-
ments. Technical Report 07-49, University of Massachusetts,
Amherst, October 2007. 5

[24] Justin Johnson, Bharath Hariharan, Laurens Van
Der Maaten, Li Fei-Fei, C Lawrence Zitnick, and Ross
Girshick. Clevr: A diagnostic dataset for compositional
language and elementary visual reasoning. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 2901–2910, 2017. 7

[25] Amlan Kar, Aayush Prakash, Ming-Yu Liu, Eric Cameracci,
Justin Yuan, Matt Rusiniak, David Acuna, Antonio Torralba,
and Sanja Fidler. Meta-sim: Learning to generate synthetic
datasets. In Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV), October 2019. 7

4153

[26] Adam Kortylewski, Bernhard Egger, Andreas Schneider,
Thomas Gerig, Andreas Morel-Forster, and Thomas Vetter.
Empirically analyzing the effect of dataset biases on deep
face recognition systems. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition Work-
shops, pages 2093–2102, 2018. 7

[27] A. Kortylewski, B. Egger, A. Schneider, T. Gerig, A. Morel-
Forster, and T. Vetter. Analyzing and reducing the damage of
dataset bias to face recognition with synthetic data. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition Workshops, pages 2261–2268, 2019. 7

[28] Adam Kortylewski, Andreas Schneider, Thomas Gerig,
Bernhard Egger, Andreas Morel-Forster, and Thomas Vet-
ter. Training deep face recognition systems with synthetic
data. arXiv preprint arXiv:1802.05891, 2018. 7

[29] Tianye Li, Timo Bolkart, Michael. J. Black, Hao Li, and
Javier Romero. Learning a model of facial shape and ex-
pression from 4D scans. ACM Transactions on Graphics,
(Proc. SIGGRAPH Asia), 36(6):194:1–194:17, 2017. 5

[30] Tianye Li, Mira Slavcheva, Michael Zollhoefer, Simon
Green, Christoph Lassner, Changil Kim, Tanner Schmidt,
Steven Lovegrove, Michael Goesele, and Zhaoyang Lv. Neu-
ral 3d video synthesis. arXiv preprint arXiv:2103.02597,
2021. 2

[31] Henry Lieberman. How to color in a coloring book. SIG-
GRAPH Comput. Graph., 12(3):111–116, Aug. 1978. 4

[32] Gilles Louppe and Kyle Cranmer. Adversarial variational
optimization of non-differentiable simulators. arXiv preprint
arXiv:1707.07113, 2017. 7

[33] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt,
Dimitris Tsipras, and Adrian Vladu. Towards deep learn-
ing models resistant to adversarial attacks. In International
Conference on Learning Representations, 2018. 2, 8

[34] Richard T Marriott, Sami Romdhani, and Liming Chen. A
3d gan for improved large-pose facial recognition. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 13445–13455, 2021. 7

[35] Nikolaus Mayer, Eddy Ilg, Philip Hausser, Philipp Fischer,
Daniel Cremers, Alexey Dosovitskiy, and Thomas Brox. A
large dataset to train convolutional networks for disparity,
optical flow, and scene flow estimation. In Proceedings of
the IEEE conference on computer vision and pattern recog-
nition, pages 4040–4048, 2016. 7

[36] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. In European Conference on Computer Vision, pages
405–421. Springer, 2020. 2

[37] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow,
Somesh Jha, Z Berkay Celik, and Ananthram Swami. Practi-
cal black-box attacks against machine learning. In Proceed-
ings of the 2017 ACM on Asia conference on computer and
communications security, pages 506–519. ACM, 2017. 2, 8

[38] Pascal Paysan, Reinhard Knothe, Brian Amberg, Sami
Romdhani, and Thomas Vetter. A 3d face model for pose
and illumination invariant face recognition. In 2009 sixth
IEEE international conference on advanced video and sig-
nal based surveillance, pages 296–301. Ieee, 2009. 5

[39] Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate
Saenko, and Bo Wang. Moment matching for multi-source
domain adaptation. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pages 1406–1415,
2019. 2, 7

[40] Nicolas Pinto, James J DiCarlo, and David D Cox. Establish-
ing good benchmarks and baselines for face recognition. In
Workshop on Faces In’Real-Life’Images: Detection, Align-
ment, and Recognition, 2008. 7

[41] Nikhila Ravi, Jeremy Reizenstein, David Novotny, Tay-
lor Gordon, Wan-Yen Lo, Justin Johnson, and Georgia
Gkioxari. Accelerating 3d deep learning with pytorch3d.
arXiv:2007.08501, 2020. 5

[42] Stephan R Richter, Vibhav Vineet, Stefan Roth, and Vladlen
Koltun. Playing for data: Ground truth from computer
games. In European Conference on Computer Vision, pages
102–118. Springer, 2016. 7

[43] German Ros, Laura Sellart, Joanna Materzynska, David
Vazquez, and Antonio M Lopez. The synthia dataset: A large
collection of synthetic images for semantic segmentation of
urban scenes. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 3234–3243,
2016. 7

[44] Nataniel Ruiz, Sarah Adel Bargal, and Stan Sclaroff. Dis-
rupting deepfakes: Adversarial attacks against conditional
image translation networks and facial manipulation systems.
In European Conference on Computer Vision, pages 236–
251. Springer, 2020. 8

[45] Nataniel Ruiz, Sarah Adel Bargal, and Stan Sclaroff. Pro-
tecting against image translation deepfakes by leaking uni-
versal perturbations from black-box neural networks. arXiv
preprint arXiv:2006.06493, 2020. 8

[46] Nataniel Ruiz, Eunji Chong, and James M. Rehg. Fine-
grained head pose estimation without keypoints. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) Workshops, June 2018. 7

[47] Nataniel Ruiz, Samuel Schulter, and Manmohan Chandraker.
Learning to simulate. In International Conference on Learn-
ing Representations, 2018. 7

[48] Nataniel Ruiz, Barry-John Theobald, Anurag Ranjan,
Ahmed Hussein Abdelaziz, and Nicholas Apostoloff. Mor-
phgan: One-shot face synthesis gan for detecting recogni-
tion bias. In 32nd British Machine Vision Conference 2021,
BMVC 2021, Virtual Event, UK, 2021. 2, 7

[49] Hadi Salman, Andrew Ilyas, Logan Engstrom, Sai Vemprala,
Aleksander Madry, and Ashish Kapoor. Unadversarial ex-
amples: Designing objects for robust vision. arXiv preprint
arXiv:2012.12235, 2020. 2

[50] Hadi Salman, Jerry Li, Ilya P Razenshteyn, Pengchuan
Zhang, Huan Zhang, Sébastien Bubeck, and Greg Yang.
Provably robust deep learning via adversarially trained
smoothed classifiers. In NeurIPS, 2019. 8

[51] Michelle Shu, Chenxi Liu, Weichao Qiu, and Alan Yuille.
Identifying model weakness with adversarial examiner. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 34, pages 11998–12006, 2020. 8

[52] Alvy Ray Smith. Tint fill. SIGGRAPH Comput. Graph.,
13(2):276–283, Aug. 1979. 4

4154

[53] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan
Bruna, Dumitru Erhan, Ian Goodfellow, and Rob Fergus. In-
triguing properties of neural networks. In In Proc. ICLR,
2014. 2, 8

[54] Yi-Hsuan Tsai, Wei-Chih Hung, Samuel Schulter, Ki-
hyuk Sohn, Ming-Hsuan Yang, and Manmohan Chandraker.
Learning to adapt structured output space for semantic seg-
mentation. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2018. 2, 7

[55] Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor Darrell.
Adversarial discriminative domain adaptation. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 7167–7176, 2017. 2, 7

[56] Hao Wang, Yitong Wang, Zheng Zhou, Xing Ji, Dihong
Gong, Jingchao Zhou, Zhifeng Li, and Wei Liu. Cosface:
Large margin cosine loss for deep face recognition. In Pro-
ceedings of the IEEE conference on computer vision and pat-
tern recognition, pages 5265–5274, 2018. 5

[57] Ronald J Williams. Simple statistical gradient-following al-
gorithms for connectionist reinforcement learning. Machine
learning, 8(3-4):229–256, 1992. 4

[58] Sanghyun Woo, Jongchan Park, Joon-Young Lee, and In So
Kweon. Cbam: Convolutional block attention module. In
Proceedings of the European conference on computer vision
(ECCV), pages 3–19, 2018. 5

[59] Dong Yi, Zhen Lei, Shengcai Liao, and Stan Z Li. Learn-
ing face representation from scratch. arXiv preprint
arXiv:1411.7923, 2014. 5

[60] Alan L Yuille and Chenxi Liu. Deep nets: What have they
ever done for vision? International Journal of Computer
Vision, 129(3):781–802, 2021. 1

[61] Xiaohui Zeng, Chenxi Liu, Yu-Siang Wang, Weichao Qiu,
Lingxi Xie, Yu-Wing Tai, Chi-Keung Tang, and Alan L
Yuille. Adversarial attacks beyond the image space. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 4302–4311, 2019. 8

4155

