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Figure 1. ConDor is a self-supervised method that learns to Canonicalize the 3D orientation and position (3D pose) for full and partial

shapes. (left) Our method takes un-canonicalized 3D point clouds (gray) from different categories as input and produces consistently

canonicalized outputs (colored). (right) Our method can also operate on partial point clouds (missing part of shape shown only for

visualization). In addition, ConDor can also learn consistent co-segmentation of shapes without supervision, visualized as colored parts.

Abstract

Progress in 3D object understanding has relied on manu-

ally “canonicalized” shape datasets that contain instances

with consistent position and orientation (3D pose). This

has made it hard to generalize these methods to in-the-wild

shapes, e.g., from internet model collections or depth sen-

sors. ConDor is a self-supervised method that learns to

Canonicalize the 3D orientation and position for full and

partial 3D point clouds. We build on top of Tensor Field

Networks (TFNs), a class of permutation- and rotation-

equivariant, and translation-invariant 3D networks. Dur-

ing inference, our method takes an unseen full or partial

3D point cloud at an arbitrary pose and outputs an equiv-

ariant canonical pose. During training, this network uses

self-supervision losses to learn the canonical pose from

an un-canonicalized collection of full and partial 3D point

clouds. ConDor can also learn to consistently co-segment

object parts without any supervision. Extensive quantitative

results on four new metrics show that our approach out-

performs existing methods while enabling new applications

such as operation on depth images and annotation transfer.

1. Introduction

Humans have the ability to recognize 3D objects in

a wide variety of positions and orientations (poses) [40],

even if objects are occluded. We also seem to prefer cer-

tain canonical views [10], with evidence indicating that an

object in a new pose is mentally rotated to a canonical

pose [47] to aid recognition. Inspired by this, we aim to

build scene understanding methods that reason about ob-

jects in different poses by learning to map them to a canon-

ical pose without explicit supervision.

Given a 3D object shape, the goal of instance-level

canonicalization is to find an equivariant frame of refer-

ence that is consistent relative to the geometry of the shape

under different 3D poses. This problem can be solved if we

have shape correspondences and a way to find a distinctive

equivariant frame (e.g., PCA). However, it becomes signifi-

cantly harder if we want to operate on different 3D poses

of different object instances that lack correspondences.

This category-level canonicalization problem has received

much less attention despite tremendous interest in category-

level 3D object understanding [8, 11, 14, 25, 26, 31, 56].

Most methods rely on data augmentation [23], or man-

ually annotated datasets [3, 56] containing instances that

are consistently positioned and oriented within each cat-

egory [44, 48, 52]. This has prevented broader applica-

tion of these methods to un-canonicalized data sources,

such as online model collections [1]. The problem is fur-

ther exacerbated by the difficulty of canonicalizing partial

shape observations (e.g., from depth maps [36]), or symmet-

ric objects that require an understanding of inter-instance

part relationships. Recent work addresses these limitations

using weakly-supervised [15, 38] or self-supervised learn-

ing [13, 29, 43, 46], but cannot handle partial 3D shapes, or

is limited to canonicalizing only orientation.
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We introduce ConDor, a method for self-supervised

category-level Canonicalization of the 3D pose of partial

shapes. It consists of a neural network that is trained on

an un-canonicalized collection of 3D point clouds with in-

consistent 3D poses. During inference, our method takes

a full or partial 3D point cloud of an object at an arbitrary

pose, and outputs a canonical rotation frame and translation

vector. To enable operation on instances from different cate-

gories, we build upon Tensor Field Networks (TFNs) [49], a

3D point cloud architecture that is equivariant to 3D rotation

and point permutation, and invariant to translation. To han-

dle partial shapes, we use a two-branch (Siamese) network

with training data that simulates partiality through shape

slicing or camera projection. We introduce several losses

to help our method learn to canonicalize 3D pose via self-

supervision. A surprising feature of our method is the (op-

tional) ability to learn consistent part co-segmentation [6]

across instances without any supervision (see Figure 1).

Given only the recent interest, standardized metrics

for evaluation of canonicalization methods have not yet

emerged. We therefore propose four new metrics that

are designed to evaluate the consistency of instance- and

category-level canonicalization, as well as consistency with

manually pre-canonicalized datasets. We extensively eval-

uate the performance of our method using these metrics

by comparing with baselines and other methods [43, 46].

Quantitative and qualitative results on common shape cate-

gories show that we outperform existing methods and pro-

duce consistent pose canonicalizations for both full and par-

tial 3D point clouds. We also demonstrate previously diffi-

cult applications enabled by our method such as operation

on partial point clouds from depth maps, keypoint annota-

tion transfer, and expanding the size of existing datasets. To

sum up, our contributions include:

• A self-supervised method to canonicalize the 3D pose

of full point clouds from a variety of object categories.

• A method that can also handle partial 3D point clouds.

• New metrics to evaluate canonicalization methods, ex-

tensive experiments, and new applications.

2. Related Work

Canonical object representations in human perception

have been extensively studied as mental rotation [40,

47], shape constancy and equivalence [30], and canonical

views [10]. We review related work that studies or uses

canonicalization for machine perception of 3D scenes.

3D Scene Understanding: Invariance and equivariance to

3D pose in tasks such as shape classification, reconstruction

and registration was initially achieved using hand-crafted

features [17, 37, 39]. With machine learning, these features

were replaced with learned features [51,53,59], but 3D data

introduces challenges in learning invariant features [33].

Data augmentation by sampling the space of 3D poses for

each object is one way to address this problem [23] but re-

sults in longer training and larger networks. Category-level

object reconstruction methods have gained significant atten-

tion with representations ranging from voxel grids [8, 25],

implicit surfaces [31], parametric surfaces [14, 22], point

clouds [57], and depth images [61]. Almost all of these

methods rely on manually pre-canonicalized datasets like

ShapeNet [4] and ModelNet40 [56] to learn inductive biases

for effective learning [48]. Neural networks have also been

successfully used for supervised [27] and unsupervised [6]

segmentation of object parts.

3D Neural Networks: Numerous neural networks have

been proposed for processing 3D data represented as vox-

els [24, 34, 56], multiple views [45], point clouds [33, 35,

54] or meshes [16, 58]. For 3D point clouds, PointNet

and related methods achieve point permutation equivari-

ance and translation equivariance, but not rotation equiv-

ariance. Spherical CNNs [9] and Tensor Field Networks

(TFNs) [32, 49] address this limitation. We use 3D point

clouds as our shape representation and TFNs to achieve

equivariance to permutation, translation, and rotation.

Supervised Canonicalization: Supervised canonicaliza-

tion of shapes enables applications such as instance-level

camera pose estimation [42] or human pose estimation [18,

41]. It can also be useful for category-level reasoning, for

example 6 DoF pose estimation [50, 52]. However, these

methods are limited to learning from data with ground truth

canonicalization making it hard to generalize to real data.

Our method is most related to recent work on weakly su-

pervised [15, 38], or self-supervised learning of canonical-

ization of semantic keypoints [29] and point clouds [43,46].

Unlike these methods, we can canonicalize both orientation

and translation for partial shapes.

3. Background

3D Pose Canonicalization: The 3D pose of an object

refers to its 3D position and orientation in space specified

by an intrinsic object-centric reference frame (defined by

an origin and orthonormal rotation). Having a consistent

intrinsic frame across different shapes is critical in many

problems [5, 12, 32, 62]. We denote such a consistent in-

trinsic frame as a canonical frame. This frame transforms

together with the object, i.e., it is equivariant. The object

pose is constant relative to the canonical frame – we call

this our canonical pose.

In instance-level 3D pose canonicalization, our goal is

to find a consistent canonical frame across different poses of

the same object instance (Figure 2, top). In category-level

3D pose canonicalization, we want a canonical frame that

is consistent with respect to the geometry and local shape

across different object instances (Figure 2, bottom). Any

equivariant frame that is consistent across shapes is a valid
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Figure 2. A canonical frame visualized for (top) the same instance

in different 3D poses, and (bottom) different instances in different

3D poses. Partial shapes with amodal frame shown in last column.

canonical frame – this allows us to compare canonicaliza-

tion with manually-labeled ground truth (see Section 6.1).

In addition to full shapes, we also consider partial shape

canonicalization for which we define an amodal canonical

frame as shown in Figure 2.

Tensor Field Networks: Our method estimates a canon-

ical frame for 3D shapes represented as point clouds. For

this task, we use Tensor Field Networks [49] (TFNs), a 3D

architecture that is equivariant to point permutation and ro-

tation, and invariant to translation. Given a point cloud

X ∈ R3×K and a integer (aka type) ℓ ∈ N, a TFN

can produce global (type ℓ) feature vectors of dimension

2ℓ + 1 stacked in a matrix F ℓ ∈ R(2ℓ+1)×C , where C

is user-defined number of channels. F ℓ
:,j(X) satisfies the

equivariance property F ℓ
:,j(RX) = Dℓ(R)F ℓ

:,j(X), where

Dℓ : SO(3) → SO(2ℓ + 1) is the so-called Wigner matrix

(of type ℓ) [7, 20, 21]. Please see [2, 32, 49, 55] for details.

4. Method

Given a point cloud X ∈ R3×K denoting a full or partial

shape from a set of non-aligned shapes, our goal is to es-

timate its rotation R(X) (canonical frame) sending X to a

canonical pose. For a partial shape Y ⊂ X we also learn a

translation T (Y ) aligning Y with X in the canonical frame.

We achieve this by training a neural network on 3D shapes

in a self-supervised manner (see Figure 3).

4.1. Learning to Canonicalize Rotation

We first discuss the case of canonicalizing 3D rotation

for full shapes. Given a point cloud X , our approach es-

timates a rotation-invariant point cloud Xc, and an equiv-

ariant rotation E that rotates Xc to X . Note that for full

shapes, translation can be canonicalized using mean center-

ing [29], but this does not hold for partial shapes.

Rotation Invariant Point Cloud/Embedding: To esti-

mate a rotation-invariant point cloud, we build on top of a

permutation-, rotation-equivariant and translation-invariant

neural network architecture: Tensor Field Networks (TFNs)

[49] with equivariant non-linearities for TFNs [32]. Given

X , we use a TFN [32] to produce global equivariant fea-

tures F ℓ, with columns F ℓ
:,j as described in Section 3.

The central observation of [32] is that the features F

have the same rotation equivariance property as coefficients

of spherical functions in the spherical harmonics basis, and

can therefore be treated as such. We exploit this property

by embedding the shape using the spherical harmonics ba-

sis and using the global TFN features F as coefficients of

this embedding. Since the input to the spherical harmon-

ics embedding and the coefficients rotate together with the

input shape, they can be used to define a rotation and trans-

lation invariant embedding of the shape. Formally, let

Y ℓ(x) ∈ R2ℓ+1 be the vector of degree ℓ spherical har-

monics which are homogeneous polynomials defined over

R3. We define a rotation invariant embedding of the shape

as the dot products

Hℓ
ij := ⟨F ℓ

:,j , Y
ℓ(Xi)⟩, (1)

where i is an index to a single point on the point cloud, and

j is the channel index as in Section 3. Both sides of the

dot product are rotated by the same Wigner rotation matrix

when rotating the input pointcloud X making H invariant

to rotations of X . The input point cloud is mean-centered

to achieve invariance to translation. Note that we can use

any functional basis of the form : x 7→ (φr(∥x∥)Y ℓ(x))rℓ,
where (φr)r are real valued functions to define H .

We use the rotation invariant embedding corresponding

to ℓ = 1 (degree 1) to produce a 3D invariant shape

through a linear layer on top of H . Note that degree 1

spherical harmonics are the x, y, z coordinates of the in-

put point cloud since Y 1(x) = x. As we show in Sec-

tion 4.3, other choices for ℓ enable us to learn consistent

co-segmentation without supervision. The 3D rotation in-

variant shape is given by:

Xc
i :=

∑

j

W:,jH
1
ij = W (F 1)⊤Xi. (2)

We obtain our canonical frame as described in Section 3

as R(X) = W (F 1)⊤ where W is the learnable weights

matrix of the linear layer.

Rotation Equivariant Embedding: Next, we seek to find

an equivariant rotation that transforms Xc to X . In addi-

tion to the equivariant features F , our TFN also outputs a

3D equivariant frame E which we optimise to be a rotation

matrix. E satisfies the equivariance relation E(R.X) =
RE(X) so that the point cloud E(X)Xc is rotation equiv-

ariant. Note that we could have chosen E(X) = R(X)⊤

but we instead choose to learn E(X) independently as this

approach generalizes to the case of non-linear embeddings
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Figure 3. ConDor. (left) Our method learns to canonicalize rotation by estimating an equivariant pose E(X) and an invariant point

cloud X
c of an input shape X . A self-supervision loss ensures that the input and transformed canonical shapes match. (right) To handle

translation in partial shapes, we train a two-branch (Siamese) architecture, one taking the full shape and the other taking an occluded

(e.g., via slicing) version of the full shape as input. Various losses ensure that the feature embeddings of the full and partial shapes match.

We predict the amodal barycenter of the full shape T (O(X )) from the partial shape to canonicalize for position.

(e.g., with values other than ℓ = 1 in Equation (2)) which

we use for unsupervised segmentation in Section 4.3.

Using E, we can transform our 3D invariant embedding

Xc back to the input equivariant embedding and compare

it to the input point cloud. To handle situations with high

occlusion and symmetric objects we estimate P equivariant

rotations and choose the frame that minimizes the L2 norm

between corresponding points in the input and the predicted

invariant shape.

4.2. Learning to Canonicalize Translation

Next, we discuss canonicalizing 3D translation for par-

tial point clouds, e.g., acquired from depth sensors or Li-

DAR. As noted, translation canonicalization for full shapes

is achieved using mean centering [29]. Thus, our approach

in Section 4.1 is sufficient for 3D pose canonicalization of

full shapes. However, partial shapes can have different cen-

troids depending on how the shape was occluded. To ad-

dress this issue, we extend our approach to additionally find

a rotation-equivariant translation T ∈ R3 that estimates

the difference between the barycenter of the full and par-

tial shape from the mean-centered partial point cloud that

translates it to align with the full shape in the input frame.

In practice, we operationalize the above idea in a two-

branch Siamese architecture as shown in Figure 3. We slice

the input point cloud to introduce synthetic occlusion. We

penalize the network by ensuring semantic consistency be-

tween the full and the partial point cloud. Furthermore, our

network predicts an amodal translation vector that captures

the barycenter of the full shape from the partial input shape.

4.3. Unsupervised Co­segmentation

A surprising finding is that our method can be used for

unsupervised part co-segmentation [6] of full and partial

shapes with little modification. This result is enabled by

finding the rotation invariant embedding H in Equation (1)

corresponding to all ℓ ⩾ 0 to produce a non-linear invari-

ant embedding. To obtain a consistent rotation invariant

part segmentation, we segment the input shape into N parts

by learning an MLP on top of the rotation invariant embed-

ding. The part label of each point in the input point cloud

is given by Si := softmax[MLP(H)i]. Results visualized

in the paper include these segmentations as colored labels.

Please see the supplementary material for more details.

5. Self-Supervised Learning

5.1. Loss Functions

A key contribution of our work is to demonstrate that

3D pose canonicalization can be achieved through self-

supervised learning as opposed to supervised learning from

labeled datasets [4, 56]. We now list the loss functions that

enable this. Additionally, we describe losses that prevent

degenerate results, handle symmetric shapes, and enable

unsupervised segmentation. We begin with full shapes.

Canonical Shape Loss: Our primary self-supervision sig-

nal comes from the canonical shape loss that tries to mini-

mize the L2 loss between the rotation invariant point cloud

Xc transformed by the rotation equivariant rotation E with

the input point cloud X . It is worth noting that Xc and

X are in correspondence because our method is permuta-

tion equivariant and we extract point-wise embeddings. For

each point i in a point cloud of size K, we define the canon-

ical shape loss to be

Lcanon =
1

K

∑

i

∥EXc
i −Xi∥2. (3)

We empirically observe that our estimation of E can be

flipped 180◦ or Xc can become a degenerate shape when

the object class has symmetry or heavy occlusions. To mit-

igate this issue, we estimate P equivariant rotations Ep and

choose the one that minimizes the above loss.
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Orthonormality Loss: The equivariant rotation E esti-

mated by our method must be a valid rotation in SO(3), but

this cannot be guaranteed by the TFN. We therefore add a

loss to constrain E to be orthonormal by minimizing its dif-

ference to its closest orthonormal matrix. We achieve this

using the SVD decomposition of E = UΣV ⊤ and enforc-

ing unit eigenvalues with the loss

Lortho = ∥UV ⊤ − E∥2. (4)

Separation Loss: When estimating P equivariant rotations

Ep, our method could learn a degenerate solution where all

Ep are similar. To avoid this problem, we introduce a sepa-

ration loss that encourages the network to estimate different

equivariant rotations as

Lsep = −
1

9P

∑

i ̸=j

||Ei − Ej ||2 . (5)

Restriction Loss: We next turn our attention to partial

shapes. Similar to full shapes, we compute the canonical

shape, orthonormality and separation losses. We assume

that a partial shape is a result of a cropping operator O that

acts on a full point cloud X to select points corresponding to

a partial version O(X) ⊆ X . In practice, our cropping op-

erator is slicing or image projection (see Section 5.2). Dur-

ing training, we train two branches of our method, one with

the full shape and the other with a partial shape generated

using a random sampling of O. We then enforce that the

invariant embedding for partial shapes is a restriction of the

invariant embedding of the full shape X using the loss

Lrest =
1

|S|

∑

i∈S

∥Ô[Xc]i −
(
Ô[X]

c)
i
∥22, (6)

where S is the set of valid indices of points in both X and

O(X), and the ĥat indicates mean-centered point clouds.

During inference, we do not require the full shape and can

operate only with partial shapes. Empirically, we observe

that our method generalizes to different cropping operations

between training and inference (see Section 6.3)

Amodal Translation Loss: Finally, to align the mean-

centered partial shape with the full shape, we estimate

the barycenter of the full shape after the occlusion oper-

ation O[X] from the partial shape only using a rotation-

equivariant translation vector T (Ô[X]) by minimizing

Lamod = ∥T (Ô[X])−O(X)∥22. (7)

Unsupervised Part Segmentation Losses: A surprising

finding in our method is that we can segment objects into

parts consistently across instances without any supervision

(see Figure 1). This is enabled by interpreting higher de-

gree invariant embedding Hℓ as a feature for unsupervised

segmentation. Our losses are based on the localization and

equilibrium losses of [46]. We refer the reader to [46]

and the supplementary document for details on these losses.

Note that [46] need to perform segmentation to enable rota-

tion canonicalization, while it is optional for us.

5.2. Network Architecture & Training

Our method is trained on a collection of un-

canonicalized shapes X , and partial shapes randomly gen-

erated using a suitable operator O. We report two kinds of

partiality: slicing and image projection (i.e., depth maps).

We borrow our TFN architecture from [32] and use the

ReLU non-linearity in all layers. We use 1024 and 512

points for full and partial point cloud. Our method pre-

dicts 5 canonical frames for every category. Our mod-

els are trained for 45,000 iterations for each category with

the Adam [19] optimizer with an initial learning rate of

6× 10−4. We set a step learning rate scheduler that decays

our learning rate by a factor of 10−1 every 15,000 steps. Our

models are trained on Linux with Nvidia Titan V GPUs –

more details in the supplementary document.

6. Experiments

We present quantitative and qualitative results to com-

pare our method with baselines and existing methods, jus-

tify design choices, and demonstrate applications.

Datasets: For full shapes, we use un-canonicalized shapes

from ShapeNet (Core) [3] and ModelNet40 [56]. For

ShapeNet, our data split [11, 46] has 31,747 train shapes,

and 7,943 validation shapes where each shape is a 3D point

cloud with 1024 points sampled using farthest point sam-

pling. The shapes are from 13 classes: airplane, bench,

cabinet, car, chair, monitor, lamp, speaker, firearm, couch,

table, cellphone, and watercraft. For ModelNet40 [56],

we use 40 categories with 12,311 shapes (2,468 test). For

partial shapes, we either randomly slice shapes from the

above datasets, or we use the more challenging ShapeNet-

COCO dataset [44] that contains objects viewed from mul-

tiple camera angles and mimics occlusions from depth sen-

sors. While all these datasets are already pre-canonicalized,

we use this information only for evaluation – our method is

trained on randomly transformed un-canonicalized shapes

X ∈ X from these datasets.

6.1. Canonicalization Metrics

Most work on canonicalization evaluates performance

indirectly on downstream tasks such as segmentation or reg-

istration [43, 46]. This makes it hard to disentangle canon-

icalization performance from task performance. We con-

tribute four new metrics that measure different aspects of

3D pose canonicalization while disentangling performance

from downstream tasks. The first three of these metrics

evaluate rotation assuming mean-centering, while the last

metric measures translation errors for partial shapes.

Instance-Level Consistency (IC): The IC metric is de-

signed to evaluate how well a method performs for canon-

icalizing the 3D rotation of the same shape instance. For

each shape in the dataset, we obtain another copy of it by
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Table 1. Full shape canonicalization compared to a PCA baseline, Canonical Capsules (CaCa) [46] and Compass [43], and full (F) and

full+partial (F+P) versions of our method. We outperform methods on most categories and metrics.

bench cabinet car cellph. chair couch firearm lamp monitor plane speaker table water. avg. multi

Instance-Level Consistency (IC) ↓

PCA 0.0573 0.0350 0.0477 0.0276 0.0974 0.0628 0.0324 0.0755 0.0480 0.0502 0.0491 0.0727 0.0400 0.0535 0.0535

CaCa [46] 0.0630 0.1567 0.0426 0.0823 0.0253 0.1479 0.0084 0.0372 0.0748 0.0093 0.1540 0.0787 0.0270 0.0698 0.0395

Compass [43] 0.1030 0.0816 0.0790 0.0664 0.0791 0.0766 0.0748 0.0495 0.0638 0.0610 0.0721 0.0641 0.0430 0.0703 0.0507

Ours (F) 0.0225 0.0346 0.0191 0.0234 0.0221 0.0221 0.0081 0.0454 0.0283 0.0163 0.0787 0.0523 0.0270 0.0308 0.0394

Ours (F+P) 0.0696 0.0288 0.0230 0.0263 0.0235 0.0222 0.0084 0.0403 0.0242 0.0144 0.0678 0.0361 0.0236 0.0314 0.0329

Category-Level Consistency (CC) ↓

Ground truth 0.0980 0.1460 0.0578 0.0733 0.1191 0.0955 0.0536 0.2147 0.1088 0.0673 0.1709 0.1444 0.0915 0.1108 0.1108

PCA 0.0976 0.1055 0.0654 0.0600 0.1389 0.0937 0.0527 0.1802 0.0970 0.0731 0.1397 0.1479 0.0816 0.1026 0.1026

CaCa [46] 0.1134 0.1742 0.0730 0.1033 0.1220 0.1919 0.0493 0.1888 0.1186 0.0684 0.1840 0.1660 0.0883 0.1262 0.1132

Compass [43] 0.1654 0.1348 0.1077 0.0931 0.1522 0.1175 0.1258 0.1833 0.1266 0.1019 0.1579 0.1626 0.0942 0.1325 0.1283

Ours (F) 0.1043 0.1067 0.0575 0.0612 0.1135 0.0869 0.0525 0.1754 0.0988 0.0681 0.1504 0.1475 0.0851 0.1006 0.1035

Ours (F+P) 0.1250 0.1065 0.0581 0.0635 0.1145 0.0874 0.0500 0.1844 0.1001 0.0679 0.1477 0.1432 0.0912 0.1030 0.1005

Ground Truth Consistency (GC)↓

PCA 0.0760 0.1047 0.0208 0.0390 0.1190 0.0799 0.0261 0.1366 0.0862 0.0460 0.1280 0.1267 0.0645 0.0810 0.0810

CaCa [46] 0.0761 0.0688 0.0529 0.0667 0.0943 0.1812 0.0330 0.1592 0.0897 0.0266 0.0744 0.1401 0.0683 0.0870 0.1060

Compass [43] 0.1599 0.1586 0.0892 0.0851 0.1504 0.1160 0.1214 0.1654 0.1231 0.0975 0.1552 0.1554 0.0804 0.1275 0.1247

Ours (F) 0.0671 0.1131 0.0257 0.0511 0.0526 0.0585 0.0359 0.1399 0.0674 0.0255 0.1505 0.0779 0.0746 0.0723 0.0902

Ours (F+P) 0.1115 0.1134 0.0230 0.0553 0.0509 0.0537 0.0223 0.1274 0.0650 0.0286 0.1456 0.0738 0.0477 0.0706 0.0843

applying a rotation from R, a user-defined set of random ro-

tations (we use 120 rotations). We then compute the 2-way

Chamfer Distance (CD), to handle classes with symmetries

such as tables, between the canonicalized versions of the

shapes (with superscript c). We expect this to be as small as

possible for better canonicalization. The average IC metric

is given as:

IC :=
1

|X ||R|

∑

Xi∈X

∑

Rj∈R

CD[(Rj .Xi)
c, Xc].

Category-Level Consistency (CC): The CC metric is de-

signed to evaluate the quality of 3D rotation canonicaliza-

tion between different shape instances. For each shape X

in the dataset, we pick N other shapes to form a set of com-

parison shapes N . We then follow a similar approach as

IC and compute the 2-way Chamfer Distance between each

shape and its N possible comparison shapes. Intuitively, we

expect this metric to be low if canonicalization is consis-

tent across different instances. Ideally, we want to evaluate

this metric for all possible comparison shapes, but to reduce

computation time, we pick N = 120 random comparison

shapes. The average CC metric is given as:

CC :=
1

|X |N

∑

Xi∈X

∑

Xj∈N

CD[Xc
i , X

c
j ].

Ground Truth Consistency (GC): The GC metric is de-

signed to compare estimated canonicalization with manual

ground truth pre-canonicalization in datasets like ShapeNet

and ModelNet40. For perfect canonicalization, the pre-

dicted canonical shape should be a constant rotation away

from ground truth shape. Given the predicted canonicaliz-

ing frames R(Xj),R(Xk) for aligned shapes Xj , Xk ∈ X ,

we induce the same canonicalization on any other shape

Xi ∈ X and compute the 2-way CD between them.

GC :=
1

|X |3

∑

Xi,Xj ,Xk∈X

CD[R(Xj).Xi,R(Xk).Xi].

We note that manual canonicalization, which is based

on human semantic understanding of shapes, does not nec-

essarily match with this paper’s notion of canonicalization

which is founded on geometric similarity. Nonetheless, this

metric provides a way to compare with human annotations.

Translation Error (TE): To measure error in translation

for partial shapes, we compute the average L2 norm be-

tween the estimated amodal translation and ground truth

amodal translation – this has the same form as Lamod in

Section 5.1. Note that we have the ground truth amodal

translation for our datasets since partial shapes are gener-

ated from the full shapes using an occlusion function O.

6.2. Comparisons

We report comparisons on canonicalizing both full and

partial shapes. Only the rotation metrics from Section 6.1

are relevant for full shapes since we assume input shapes

are mean-centered without translation differences [29]. We

report the TE metric for partial shape canonicalization. Out-

side of these metrics, we also report indirect evaluations of

canonicalization [43, 46] on classification.

Canonicalization Metrics: We compare our method with

baselines and other methods using our new canonicalization

metrics (Section 6.1). For this experiment, we follow previ-

ous work [11] and choose 13 categories from the ShapeNet,

training one model per category as well as a joint model

for all categories. We choose PCA as a baseline – for each

shape we compute the top-3 principal components and use

this as an equivariant frame for alignment across instances.
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Table 2. Partial shape canonicalization compared to PCA and Compass*, our modification of [43]. We outperform other methods by a

larger margin than in the full shapes setting.

bench cabinet car cellph. chair couch firearm lamp monitor plane speaker table water. avg. multi

Ground Truth Consistency (GC)↓

PCA 0.0916 0.1391 0.0727 0.0879 0.1337 0.0908 0.0371 0.1985 0.0804 0.0915 0.1479 0.1087 0.1021 0.1063 0.1063

Compass* 0.1917 0.1412 0.1020 0.1066 0.1476 0.1115 0.1538 0.1735 0.1194 0.1115 0.1617 0.1709 0.0737 0.1358 0.1423

Ours(F+P) 0.1416 0.1182 0.0356 0.0685 0.0780 0.0593 0.0300 0.1501 0.0692 0.0360 0.1469 0.0662 0.0739 0.0826 0.1016

Instance-Level Consistency (IC) ↓

PCA 0.1033 0.1140 0.1149 0.0828 0.1475 0.1221 0.0517 0.1571 0.0867 0.1000 0.1182 0.1401 0.0756 0.1088 0.1088

Compass* 0.1900 0.0790 0.1183 0.0911 0.1280 0.1053 0.1440 0.1000 0.0836 0.1000 0.1134 0.1080 0.0487 0.1084 0.1247

Ours(F+P) 0.1432 0.0501 0.0349 0.0442 0.0622 0.0478 0.0221 0.0891 0.0442 0.0265 0.1086 0.0739 0.0469 0.0611 0.0792

Category-Level Consistency (CC) ↓

PCA 0.1269 0.1500 0.1253 0.1081 0.1636 0.1367 0.0691 0.2312 0.1178 0.1124 0.1677 0.1769 0.1078 0.1380 0.1380

Compass* 0.2118 0.1300 0.1438 0.1215 0.1612 0.1280 0.1688 0.1990 0.1242 0.1255 0.1760 0.1719 0.0919 0.1503 0.1647

Ours (F+P) 0.1695 0.1109 0.0632 0.0739 0.1270 0.0935 0.0546 0.2048 0.1042 0.0713 0.1666 0.1579 0.0936 0.1147 0.1234

We compare with two methods for rotation canonicaliza-

tion: Canonical Capsules (CaCa) [46] and Compass [43].

Results for full shape canonicalization are shown in Ta-

ble 1. We evaluate two versions of our method on full

shapes, one trained with only full shapes (F) and one trained

on both full and partial shapes (F+P). For the IC metric, both

our methods outperform other methods, including base-

lines, in almost all categories. PCA underperforms in the

IC metric due to the frame ambiguity. Our method outper-

forms other canonicalization methods, but surprisingly, we

find that PCA is very close. For the CC metric, canonical-

ized shapes of different geometry are compared with each

other. PCA minimizes CC metric by aligning shapes using

the principal directions, but does not result in the correct

canonical frame as shown in Section 6.2 (see supplement

for in-depth discussion). Qualitative results in Section 6.2

show that we perform significantly better than other meth-

ods. Finally, our method outperforms other methods on the

GC metric indicating that it could be used to extend the size

of existing datasets (see Section 6.4).

Next, we discuss results of partial shape canonicalization

shown in Table 2. Since no other method exists for partial

shape canonicalization, we modified the training setting of

Compass to include slicing augmentation (using O) to op-

erate similar to our F+P method (Compass*). The training

data and occlusion function are identical for all methods.

Different from full shapes, we observe that our method sig-

nificantly outperforms other methods on all three metrics

indicating that our method’s design is suited for handling

partiality. We also compute the Translation Error (TE) met-

ric averaged over all our single category models as 0.0291

while it is 0.0326 for our multi-category model. For com-

parison, all our shapes lie within a unit-diagonal cuboid [4].

3D Shape Classification: We measure 3D shape classi-

fication accuracy as an indirect metric of canonicalization

following [43]. We train models with un-canonicalized

shapes from all 13 categories. We augment the PCA base-

line, CaCa, Compass and our full shape models with Point-

Net [33] which performs classification on canonicalized

outputs. We observe that our method (74.6%) outperforms

other methods on classification accuracy: PCA (64.9%),

CaCa (72.5%), and Compass (72.2%). Please see the sup-

plementary document for comparison on registration.

Registration: We measure the registration accuracy of

our method for categories (airplanes, chairs, multi) on full

shapes in table 3. Our method does not perform well in this

task as we predict a frame E ∈ O(3) which can have reflec-

tion symmetries resulting in high RMSE, but low CD.

Table 3. Registration – Distance in terms of root mean-square er-

ror (RMSE) and Chamfer distance between registered and ground-

truth points on the ShapeNet (core) dataset for full shapes only.

RMSE↓ Chamfer (CD)↓

Method Airplane Chair Multi Airplane Chair Multi

PCA 0.616 0.695 0.715 0.050 0.097 0.054

Deep Closest Points [53] 0.318 0.160 0.131 - - -

Deep GMR [60] 0.079 0.082 0.077 - - -

CaCa [46] 0.024 0.027 0.070 0.009 0.026 0.040

Compass [43] 0.361 0.369 0.487 0.061 0.079 0.051

Ours (F) 0.254 0.314 0.496 0.015 0.026 0.040

Ours (F + P) 0.201 0.280 0.404 0.014 0.023 0.033

6.3. Ablations

We justify the following key design choices: the effect

of increasing amounts of occlusion/partiality, loss functions

(Section 5.1), and the benefit of multiple frames.

Degree of Occlusion/Partiality: We examine the ability of

our model to handle varying amounts of occlusion/partiality

for the car category. Our occlusion function O occludes

shapes to only keep a fraction of the original shape between

25% and 75% (i.e., 25% is more occluded than 75%). The

average over all metrics indicates that our method performs

optimally when trained at 50% occlusion (25%: 0.0594,

50%: 0.0580, 75%: 0.0886).

Loss Functions: We evaluate our F+P model on both full

and partial shapes trained with all losses, without the sepa-

ration loss Lsep, and without the restriction loss Lrest. We

observe that using Lsep and Lrest performs optimally with

the least average error 0.0696 across all canonicalization
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Figure 4. (left) Qualitative comparison with other methods on 6 randomly chosen full shapes. (center) More qualitative results from our

method on challenging full/partial car shapes and a variety of full/partial lamp shapes (missing parts only shown for visualization). The last

row (red border) shows failure cases caused due to incorrect canonical translation for partial shapes, or symmetric shapes. (right) Rows

1–2: Application of our method in transferring sparse keypoints from one shape to another. Row 3: Canonicalization of two depth maps

from the ShapeNetCoco [44] dataset showing consistency in canonicalized shapes. All results rendered using Mitsuba 2 [28].

metrics over three categories (airplanes, tables, chairs).

Multi-Frame Prediction: We ablate on the number of

canonical frames (1, 3, 5) predicted by our method to mea-

sure its effectiveness on symmetric categories. We evaluate

on two symmetric categories, table, and lamp, and observe

(Table 4) that 3 and 5 frames perform better in most cases.

Table 4. Our method handles symmetric categories like lamp and

table by estimating multiple canonical frames.

Category lamp table

Frames 1 3 5 1 3 5

GC (full) ↓ 0.1400 0.1370 0.1274 0.0749 0.0693 0.0738

IC (full) ↓ 0.0686 0.0635 0.0403 0.0607 0.0564 0.0361

CC (full) ↓ 0.1869 0.1887 0.1844 0.1595 0.1569 0.1432

GC (partial) ↓ 0.1782 0.1711 0.1501 0.0681 0.0635 0.0662

IC (partial) ↓ 0.1376 0.1319 0.0891 0.0923 0.0936 0.0739

CC (partial) ↓ 0.2230 0.2226 0.2048 0.1705 0.1722 0.1579

6.4. Applications

ConDor enables applications that were previously dif-

ficult, particularly for category-level object understanding.

First, since our method operates on partial shapes, we can

canonicalize objects in depth images. To validate this,

we use depth maps from the ShapeNetCOCO dataset [44]

and canonicalize partial point clouds from the depth maps.

Section 6.2 (right, row 3) shows an example of depth

map canonicalization (see supplementary). Second, since

our method outperforms other methods, we believe it can

be used to expand existing canonical datasets with un-

canonicalized shapes from the internet – we show exam-

ples of expanding the ShapeNet in the supplementary docu-

ment. Finally, we show that ConDor can be used to transfer

sparse keypoint annotations between shape instances. We

utilize the unsupervised part segmentation learned using our

method to solve this task (see supplementary). Section 6.2

(right, rows 1–2) shows results of transferring keypoint an-

notations from one shape to another.

7. Conclusion

We introduced ConDor, a self-supervised method to

canonicalize the 3D pose of full and partial 3D shapes. Our

method uses TFNs and self-supervision losses to learn to

canonicalize pose from an un-canonicalized shape collec-

tion. Additionally, we can learn to consistently co-segment

object parts without supervision. We reported detailed ex-

periments using four new metrics, and new applications.

Limitations & Future Work: Despite the high quality

of our results, we encounter failures (see Section 6.2), pri-

marily with symmetric or objects with fine details (lamps)

where the canonical frame is incorrect. We also observed

that PCA often performs very well, and sometimes outper-

forms methods on full shapes (we do significantly better on

partial shapes). Our method occasionally generates flipped

canonicalized shapes along the axis of symmetry due to the

prediction of an O(3) frame. Our work can be extended to

canonicalize purely from partial shapes and perform scale

canonicalization.

Acknowledgments: This work was supported by AFOSR

grant FA9550-21-1-0214, a Google Research Scholar

Award, a Vannevar Bush Faculty Fellowship, ARL grant

W911NF2120104, and gifts from the Adobe and Autodesk

corporations. We thank the reviewers for their valuable

comments.

16976



References

[1] Unity asset store - the best assets for game making.

https://assetstore.unity.com/. (Accessed on

11/08/2021). 1

[2] Brandon Anderson, Truong-Son Hy, and Risi Kondor. Cor-

morant: Covariant molecular neural networks. arXiv

preprint arXiv:1906.04015, 2019. 3

[3] Angel X Chang, Thomas Funkhouser, Leonidas Guibas,

Pat Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese,

Manolis Savva, Shuran Song, Hao Su, et al. Shapenet:

An information-rich 3d model repository. arXiv preprint

arXiv:1512.03012, 2015. 1, 5

[4] Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat

Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese, Mano-

lis Savva, Shuran Song, Hao Su, Jianxiong Xiao, Li Yi,

and Fisher Yu. ShapeNet: An Information-Rich 3D Model

Repository. Technical Report arXiv:1512.03012 [cs.GR],

Stanford University — Princeton University — Toyota Tech-

nological Institute at Chicago, 2015. 2, 4, 7

[5] Chao Chen, Guanbin Li, Ruijia Xu, Tianshui Chen, Meng

Wang, and Liang Lin. Clusternet: Deep hierarchical cluster

network with rigorously rotation-invariant representation for

point cloud analysis. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 4994–

5002, 2019. 2

[6] Zhiqin Chen, Kangxue Yin, Matthew Fisher, Siddhartha

Chaudhuri, and Hao Zhang. Bae-net: branched autoencoder

for shape co-segmentation. In Proceedings of the IEEE/CVF

International Conference on Computer Vision, pages 8490–

8499, 2019. 2, 4

[7] Gregory S Chirikjian, Alexander B Kyatkin, and AC Buck-

ingham. Engineering applications of noncommutative har-

monic analysis: with emphasis on rotation and motion

groups. Appl. Mech. Rev., 54(6):B97–B98, 2001. 3

[8] Christopher B Choy, Danfei Xu, JunYoung Gwak, Kevin

Chen, and Silvio Savarese. 3d-r2n2: A unified approach for

single and multi-view 3d object reconstruction. In European

conference on computer vision, pages 628–644. Springer,

2016. 1, 2

[9] Taco S Cohen, Mario Geiger, Jonas Köhler, and Max
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