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Abstract

Certified patch defenses can guarantee robustness of an
image classifier to arbitrary changes within a bounded con-
tiguous region. But, currently, this robustness comes at a
cost of degraded standard accuracies and slower inference
times. We demonstrate how using vision transformers en-
ables significantly better certified patch robustness that is
also more computationally efficient and does not incur a
substantial drop in standard accuracy. These improvements
stem from the inherent ability of the vision transformer to
gracefully handle largely masked images.1

1. Introduction
High-stakes scenarios warrant the development of cer-

tifiably robust models that are guaranteed to be robust to
a set of transformations. These techniques are beginning
to find applications in real-world settings, such as verify-
ing that aircraft controllers behave safely in the presence
of approaching airplanes [19], and ensuring the stability of
automotive systems to sensor noise [54].

We study robustness in the context of adversarial
patches—a broad class of arbitrary changes contained
within a small, contiguous region. Adversarial patches cap-
ture the essence of a range of maliciously designed physi-
cal objects such as adversarial glasses [44], stickers/graffiti
[12], and clothing [55]. Researchers have used adversar-
ial patches to fool image classifiers [4], manipulate object
detectors [18, 24], and disrupt optical flow estimation [38].

Adversarial patch defenses can be tricky to evaluate—
recent work broke several empirical defenses [1, 16, 35]
with stronger adaptive attacks [6, 48]. This motivated
certified defenses, which deliver provably robust models
without having to rely on an empirical evaluation. How-
ever, certified guarantees tend to be modest and come
at a cost: poor standard accuracy and slower inference

*Equal contribution.
1Our code is available at https://github.com/MadryLab/

smoothed-vit.

times [25, 26, 56, 63]. For example, a top-performing, re-
cently proposed method reduces standard accuracy by 30%
and increases inference time by two orders of magnitude,
while certifying only 13.9% robust accuracy on ImageNet
against patches that take up 2% of the image [25]. These
drawbacks are commonly accepted as the cost of certifi-
cation, but severely limit the applicability of certified de-
fenses. Does certified robustness really need to come at
such a high price?

Our contributions

In this paper, we demonstrate how to leverage vision
transformers (ViTs) [10] to create certified patch defenses
that achieve significantly higher robustness guarantees than
prior work. Moreover, we show that certified patch defenses
with ViTs can actually maintain standard accuracy and in-
ference times comparable to standard (non-robust) models.
At its core, our methodology exploits the token-based na-
ture of attention modules used in ViTs to gracefully handle
the ablated images used in certified patch defenses. Specif-
ically, we demonstrate the following:

Improved guarantees via smoothed vision transformers.
We find that using ViTs as the backbone of the derandom-
ized smoothing defense [25] enables significantly improved
certified patch robustness. Indeed, this change alone boosts
certified accuracy by up to 13% on ImageNet, and 5% on
CIFAR-10 over similarly sized ResNets.

Standard accuracy comparable to that of standard ar-
chitecures. We demonstrate that ViTs enable certified de-
fenses with standard accuracies comparable to that of stan-
dard, non-robust models. In particular, our largest ViT
improves state-of-the-art certified robustness on ImageNet
while maintaining standard accuracy that is similar to that
of a non-robust ResNet (>70%).

Faster inference. We modify the ViT architecture to drop
unnecessary tokens, and reduce the smoothing process to
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pass over mostly redundant computation. These changes
turn out to vastly speed up inference time for our smoothed
ViTs. In our framework, a forward pass on ImageNet be-
comes up to two orders of magnitude faster than that of
prior certified defenses, and is close in speed to a standard
(non-robust) ResNet.

2. Certified patch defense with smoothing &
transformers

Smoothing methods are a general class of certified de-
fenses that combine the predictions of a classifier over many
variations of an input to create predictions that are certi-
fiably robust [7, 26]. One such method that obtains robust-
ness to adversarial patches is derandomized smoothing [25],
which aggregates a classifier’s predictions on various image
ablations that mask most of the image out.

These approaches typically use CNNs, a common de-
fault model for computer vision tasks, to evaluate the im-
age ablations. The starting point of our approach is to ask:
are convolutional architectures the right tool for this task?
The crux of our methodology is to leverage vision trans-
formers, which we demonstrate are more capable of grace-
fully handling the image ablations that arise in derandom-
ized smoothing.

2.1. Preliminaries

Image ablations. Image ablations are variations of an im-
age where all but a small portion of the image is masked out
[25]. For example, a column ablation masks the entire im-
age except for a column of a fixed width (see Figure 1 for
an example). We focus primarily on column ablations and
explore the more general block ablation in Appendix G.

…

Figure 1. Examples of column ablations for the left-most image
with column width 19px.

For a input h × w sized image x, we denote by Sb(x)
the set of all possible column ablations of width b. A col-
umn ablation can start at any position and wrap around the
image, so there are w total ablations in Sb(x).

Derandomized smoothing. Derandomized smoothing
[25] is a popular approach for certified patch defenses that
constructs a smoothed classifier comprising of two main
components: (1) a base classifier, and (2) a set of image ab-
lations used to smooth the base classifier. Then, the result-
ing smoothed classifier returns the most frequent prediction

of the base classifier over the ablation set Sb(x). Specifi-
cally, for an input image x, ablation set Sb(x), and a base
classifier f , a smoothed classifier g is defined as:

g(x) = arg max
c

nc(x) (1)

where
nc(x) =

∑
x′∈Sb(x)

I{f(x′) = c}

denotes the number of image ablations that were classi-
fied as class c. We refer to the fraction of images that
the smoothed classifier correctly classifies as standard ac-
curacy.

A smoothed classifier is certifiably robust for an input
image if the number of ablations for the most frequent class
exceeds the second most frequent class by a large enough
margin. Intuitively, a large margin makes it impossible for
an adversarial patch to change the prediction of a smoothed
classifier since a patch can only affect a limited number of
ablations.

Specifically, let ∆ be the maximum number of ablations
in the ablation set Sb(x) that an adversarial patch can si-
multaneously intersect (e.g., for column ablations of size b,
an m×m patch can intersect with at most ∆ = m + b− 1
ablations). Then, a smoothed classifier is certifiably robust
on an input x if it is the case that for the predicted class c:

nc(x) > max
c′ 6=c

nc′(x) + 2∆. (2)

If this threshold is met, the most frequent class is guaran-
teed to not change even if an adversarial patch compromises
every ablation it intersects. We denote the fraction of pre-
dictions by the smooth classifier that are both correct and
certifiably robust (according to Equation 2) as certified ac-
curacy.

Vision transformers. A key component of our approach
is the vision transformer (ViT) architecture [10]. In contrast
to convolutional architecures, ViTs use self-attention lay-
ers instead of convolutional layers as their primary building
block and are inspired by the success of self-attention in
natural language processing [49]. ViTs process images in
three main stages:

1. Tokenization: The ViTs split the image into p × p
patches. Each patch is then embedded into a position-
ally encoded token.

2. Self-Attention: The set of tokens are then passed
through a series of multi-headed self-attention layers
[49].

3. Classification head: The resulting representation is fed
into a fully connected layer to make predictions for
classification.
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Figure 2. Illustration of the smoothed vision transformer. For a given image, we first generate a set of ablations. We encode each ablation
into tokens, and drop fully masked tokens. The remaining tokens for each ablation are then fed into a vision transformer, which predicts a
class label for each ablation. We predict the class with the most predictions over all the ablations, and use the margin to the second-place
class for robustness certification.

Recent works have investigated whether ViTs can im-
prove robustness in various settings. ViTs initially appeared
to be more robust than CNNs to natural and adversarial
perturbations [36]. However, recent work showed that this
might not be the case [2]. In Appendix B we demonstrate
that standard ViTs and CNNs can both be easily broken us-
ing simple patch attacks.

2.2. Smoothed vision transformers

Two central properties of vision transformers make ViTs
particularly appealing for processing the image ablations
that arise in derandomized smoothing. Firstly, unlike
CNNs, ViTs process images as sets of tokens. ViTs thus
have the natural capability to simply drop unnecessary to-
kens from the input and “ignore” large regions of the im-
age, which can greatly speed up the processing of image
ablations.

Moreover, unlike convolutions which operate locally, the
self-attention mechanism in ViTs shares information glob-
ally at every layer [49]. Thus, one would expect ViTs to
be better suited for classifying image ablations, as they can
dynamically attend to the small, unmasked region. In con-
trast, a CNN must gradually build up its receptive field over
multiple layers and process masked-out pixels.

Guided by these intuitions, our methodology leverages
the ViT architecture as the base classifier for processing the
image ablations used in derandomized smoothing. We first
demonstrate that these smoothed vision transformers enable
substantially improved robustness guarantees, without los-
ing much standard accuracy (Section 3). We then modify
the ViT architecture and smoothing procedure to drastically
speed up the cost of inference of a smoothed ViT (Section
4). We present an overview of our approach in Figure 2.

Setup. We focus primarily on the column smoothing set-
ting and defer block smoothing results to Appendix G. We
consider the CIFAR-10 [22] and ImageNet [9] datasets, and

perform our analysis on three sizes of vision transformers—
ViT-Tiny (ViT-T), ViT-Small (ViT-S), and ViT-Base (ViT-
B) models [10, 51]. We compare to residual networks
of similar size—ResNet-18, ResNet-50 [17], and Wide
ResNet-101-2 [60], respectively. Further details of our ex-
perimental setup are in Appendix A. Further experiments
exploring data-augmentation are in Appendix C.

3. Improving certified and standard accuracies
with ViTs

Recall that even though certified patch defenses can
guarantee robustness to patch attacks, this robustness typ-
ically does not come for free. Indeed, certified patch de-
fenses tend to have substantially lower standard accuracy
when compared to typical (non-robust) models, while de-
livering a fairly limited degree of (certified) robustness.

In this section, we show how to use ViTs to substantially
improve both standard and certified accuracies for certified
patch defenses. To this end, we first empirically demon-
strate that ViTs are a more suitable architecture than tra-
ditional convolutional networks for classifying the image
ablations used in derandomized smoothing (Section 3.1).
Specifically, this change in architecture alone yields models
with significantly improved standard and certified accura-
cies. We then show how a careful selection of smoothing
parameters can enable smoothed ViTs to have even higher
standard accuracies that are comparable to typical (non-
robust) models, without sacrificing much certified perfor-
mance (Section 3.2).

Our ImageNet and CIFAR-10 results are summarized in
Table 1 and Table 2, respectively. We further include the in-
ference time to evaluate a batch of images, using the mod-
ifications described in Section 4. See Appendix H for ex-
tended tables covering a wider range of experiments.
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Table 1. Summary of our ImageNet results and comparisons to certified patch defenses from the literature: Clipped Bagnet (CBN),
BAGCERT, Derandomized Smoothing (DS), and PatchGuard (PG). Time refers to the inference time for a batch of 1024 images, b is the
ablation size, and s is the ablation stride. An extended version is in Appendix H.

Standard and Certified Accuracy on ImageNet (%)

Standard 1% pixels 2% pixels 3% pixels Time (sec)

Baselines

Standard ResNet-50 76.1 — — — 0.67
WRN-101-2 78.9 — — — 3.1
ViT-S 79.9 — — — 0.4
ViT-B 81.8 — — — 0.95
CBN [63] 49.5 13.4 7.1 3.1 3.05
BAGCERT [32]‡ 45.3 — 22.9 — 8.60
DS [25]* 44.4 17.7 14.0 11.2 149.5
PG [56]† 55.1† 32.3† 26.0† 19.7† 3.05

Smoothed models

ResNet-50 (b = 19) 51.5 22.8 18.3 15.3 149.5
ViT-S (b = 19) 63.5 36.8 31.6 27.9 14.0

WRN-101-2 (b = 19) 61.4 33.3 28.1 24.1 694.5
ViT-B (b = 19) 69.3 43.8 38.3 34.3 31.5
ViT-B (b = 37) 73.2 43.0 38.2 34.1 58.7
ViT-B (b = 19, s = 10) 68.3 36.9 36.9 31.4 3.2

Table 2. Summary of our CIFAR-10 results and comparisons
to certified patch defenses from the literature: Clipped Bagnet
(CBN), Derandomized Smoothing (DS), and PatchGuard (PG).
Here, b is the column ablation size out of 32 pixels. An extended
version is in Appendix H.

Standard and Certified Accuracy on CIFAR-10 (%)

Standard 2× 2 4× 4

Baselines

CBN [63] 84.2 44.2 9.3
DS [25]* 83.9 68.9 56.2
PG [56]† 84.7† 69.2† 57.7†

Smoothed models

ResNet-50 (b = 4) 86.4 71.6 59.0
ViT-S (b = 4) 88.4 75.0 63.8

WRN-101-2 (b = 4) 88.2 73.9 62.0
ViT-B (b = 4) 90.8 78.1 67.6

3.1. ViTs outperform ResNets on image ablations.

We first isolate the effect of using a ViT instead of a
ResNet as the base classifier for derandomized smoothing.
Specifically, we keep all smoothing parameters fixed and
only vary the base classifier. Following [25], we use col-

umn ablations of width b = 4 for CIFAR-10 and b = 19 for
ImageNet for both training and certification.

Ablation accuracy. The performance of derandomized
smoothing entirely depends on whether the base classifier
can accurately classify ablated images. We thus measure
the accuracy of ViTs and ResNets at classifying column ab-
lated images across a range of evaluation ablation sizes as
shown in Figure 3. We find that ViTs are significantly more
accurate on these ablations than comparably sized ResNets.
For example, on ImageNet, ViT-S has up to 12% higher ac-
curacy on ablations than ResNet-50.

Certified patch robustness. We next measure the effect
of improved ablation accuracy on certified accuracy. We
find that using a ViT as the base classifier in derandomized
smoothing substantially boosts certified accuracy compared

*We found that ResNets could achieve a significantly higher certified
accuracy than was reported by [25] if we use early stopping-based model
selection. We elaborate further in Appendix A.

†The PatchGuard defense uses a specific mask size that guarantees ro-
bustness to patches smaller than the mask, and provides no guarantees for
larger patches. In this table, we report their best results: each patch size
corresponds to a separate model that achieves 0% certified accuracy against
larger patches. Comparisons across the individual models can be found in
Appendix H.

‡No code was available, so we extracted the numbers from the paper.
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Figure 3. Accuracies on column-ablated images for models on
CIFAR-10 and ImageNet. The models were trained on column
ablations of width b = 19 for ImageNet and b = 4 for CIFAR-
10, and evaluated on a range of ablation sizes. ViTs outperform
ResNets on image ablations by a sizeable margin.
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Figure 4. Certified accuracies for ViT and ResNet models on
CIFAR-10 and ImageNet for various adversarial patch sizes. Cer-
tification was performed using a fixed ablation of size b = 4 for
CIFAR-10 and b = 19 for ImageNet (as in [25]).

to ResNets across a range of model sizes and adversarial
patch sizes, as shown in Figure 4. For example, against
32×32 adversarial patches on ImageNet (2% of the image),
a smoothed ViT-S improves certified accuracy by 14% over
a smoothed ResNet-50, while the larger ViT-B reaches a

certified accuracy of 39%—well above the highest reported
baseline of 26% [56].

Standard accuracy. We further find that smoothed ViTs
can mitigate the precipitous drop in standard accuracy ob-
served in previously proposed certified defenses, particu-
larly so for larger architectures and datasets. Indeed, the
smoothed ViT-B remains 69% accurate on ImageNet—
14.2% higher standard accuracy than that of the best per-
forming prior work (Table 1). A full comparison between
the performance of smoothed models and their non-robust
counterparts can be found in Appendix H.

3.2. Ablation size matters

In the previous section, we fixed the width of column
ablations at b = 19 for derandomized smoothing on Ima-
geNet, following [25]. We now demonstrate that properly
choosing the ablation size can improve the standard accu-
racy even further—by 4% on ImageNet—without sacrific-
ing certified performance.

Specifically, we take ImageNet models trained on col-
umn ablations with width b = 19, and change the smooth-
ing procedure to use a different width at test time. We report
the resulting standard and certified accuracies in Figure 5,
and defer additional experiments on changing the ablation
size during training to Appendix D.1.

Although [25] found a steep trade-off between certified
and standard accuracy in CIFAR-10 (which we verify in Ap-
pendix D.2), we find this to not be the case for ImageNet for
either CNNs or ViTs. We can thus substantially increase the
ablation size to improve standard accuracy without signifi-
cantly dropping certified performance as shown in Figure 5.
For example, increasing the width of column ablations to
b = 37 improves the standard accuracy of the smoothed
ViT-B model by nearly 4% to 73% while maintaining a 38%
certified accuracy against 32×32 patches. In addition to be-
ing 12% higher than the standard accuracy of the best per-
forming prior work, this model’s standard accuracy is only
3% lower than that of a non-robust ResNet-50.

Thus, using smoothed ViTs, we can achieve state-of-the-
art certified robustness to patch attacks in the ImageNet set-
ting while attaining standard accuracies that are more com-
parable to those of non-robust ResNets.

4. Faster inference with ViTs
Derandomized smoothing with column ablations is an

expensive operation, especially for large images. Indeed,
an image with h× w pixels has w column ablations, so the
forward pass of smoothed model is w times slower than a
normal forward pass—two orders of magnitude slower on
ImageNet.

To address this, we first modify the ViT architecture
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Figure 5. Certified (left) and standard (right) accuracies for a collection of smoothed models trained with a fixed ablation size b = 19 on
ImageNet, and evaluated with varying ablation sizes. Certified accuracy remains stable across a range of ablation sizes, while standard
accuracy substantially improves with larger ablations.

to avoid unnecessary computation on masked pixels (Sec-
tion 4.1). We then demonstrate that reducing the number of
ablations via striding offers further speed up (Section 4.2).
These two (complementary) modifications vastly improve
the inference time for smoothed ViTs, making them com-
parable in speed to standard (non-robust) convolutional ar-
chitectures.

4.1. Dropping masked tokens

Recall that the first operation in a ViT is to split and en-
code the input image as a set of tokens, where each token
corresponds to a patch in the image. However, for image ab-
lations, a large number of these tokens correspond to fully
masked regions of the image.

Our strategy is to pass only the subset of tokens that con-
tain an unmasked part of the original image, thus avoiding
computation on fully masked tokens. Specifically, given an
image ablation, we alter the ViT architecture to do the fol-
lowing steps:

1. Positionally encode the entire ablated image into a set
of tokens.

2. Drop any tokens that correspond to a fully masked re-
gion of the input.

3. Pass the remaining tokens through the self-attention
layers.

The algorithm for dropping masked tokens is described
in Algorithm 1, and the overall inference procedure for a
smoothed ViT is summarized in Algorithm 2. As one would
expect, since the positional encoding maintains the spatial
information of the remaining tokens, the ViT’s accuracy
on image ablations barely changes when we drop the fully
masked tokens. We defer a detailed analysis of this phe-
nomenon to Appendix E.

Computational complexity. We now provide an informal
summary of the computational complexity of this proce-
dure, and defer a formal asymptotic analysis to Appendix

Algorithm 1 Mechanism for processing an image ablation
z ∈ R3×h×w with mask m using a ViT with tokens of size
p × p while dropping masked tokens. The ViT is decom-
posed into a positional encoder E and attention layers V .

1: function PROCESSABLATION(z,m)
2: T = {} Initialize set of tokens for an ablation
3: for i, j ∈ [h/p]× [w/p] do
4: if not mip:(i+1)p,jp:(j+1)p = 0 then
5: T = T ∪ E(zip:(i+1)p,jp:(j+1)p, i, j)
6: end if
7: end for
8: return V (T )
9: end function

Algorithm 2 Forward pass for a smoothed ViT on an input
image x for k classes and ablation set S(x), where z,m ∈
S(x) are the image ablations z and the corresponding mask
m.

1: function SMOOTHEDVIT(x)
2: ci = 0 for i ∈ [k] // Initialize counts to zero
3: for z,m ∈ S(x) do
4: y = PROCESSABLATION(z,m)
5: cy = cy + 1 // Update counts
6: end for
7: return arg maxy cy
8: end function

E.1. After tokenization, the bulk of a ViT consists of two
main operation types:

• Attention operators, which have costs that scale
quadratically with the number of tokens but linearly
in the hidden dimension.

• Fully-connected operators, which have costs that scale
linearly with the number of tokens but quadratically in
the hidden dimension.

Reducing the number of tokens thus directly reduces the
cost of attention and fully connected operators at a quadratic
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Table 3. Multiplicative speed up of inference for a smoothed ViT
with dropped tokens over a smoothed ResNet, measured over a
batch of 1024 images with b = 19.

ResNet-18 ResNet-50 WRN-101

ViT-T 5.85x 21.96x 101.99x
ViT-S 2.85x 10.68x 49.62x
ViT-B 1.26x 4.75x 22.04x

and linear rate, respectively. For a small number of tokens,
the linear scaling from the fully-connected operators tends
to dominate. The cost of processing column ablations thus
scales linearly with the width of the column, which we em-
pirically validate in Figure 6. Further details about how we
time these models can be found in Appendix A.4.

20 30 40 50 60
Ablation Size (px)

0.0

0.5

Fo
rw

ar
d 

Pa
ss

 T
im

e 
(s

ec
)

(B
as

e 
Cl

as
sif

ie
r)

ViT-T
ViT-S
ViT-B
 
Drop Tokens
All Tokens

Figure 6. The average time to compute a forward pass for ViTs on
1024 column ablated images with varying ablation sizes, with and
without dropping masked tokens. The cost of processing a full im-
age without dropping masked tokens corresponds to the maximum
ablation size b = 224.

4.2. Empirical speed-up for smoothed ViTs

Smoothed classifiers must process a large number of im-
age ablations in order to make predictions and certify ro-
bustness. Consequently, using our ViT (with dropped to-
kens) as the base classifier for derandomized smoothing di-
rectly speeds up inference time. In this section, we explore
how much faster smoothed ViTs are in practice.

We first measure the number of images per second that
smoothed ViTs and smoothed ResNets can process. We use
column ablations of size b = 19 on ImageNet, following
[25]. In Table 3 that describes our results, we find speedups
of 5-22x for smoothed ViTs over smoothed ResNets of sim-
ilar size, with larger architectures showing greater gains.
Notably, using our largest ViT (ViT-B) as the base classi-
fier is 1.25x faster than using a ResNet-18, despite being
8x larger in parameter count. Dropping masked tokens thus
substantially speeds up inference time for smoothed ViTs,
to the point where using a large ViT is comparable in speed
to using a small ResNet.

Strided ablations. We now consider a complementary
means of speeding up smoothed classifiers: directly reduc-
ing the size of the ablation set via strided ablations. Specif-
ically, instead of using every possible ablation, we can sub-
sample every s-th ablation for a given stride s. Striding
can reduce the total number of ablations (and consequently
speed up inference) by a factor of s, without substantially
hurting standard or certified accuracy (Table 1). We study
this in more detail in Appendix F.

Strided ablations, in conjunction with the dropped to-
kens optimization from Section 4.1, lead to smoothed ViTs
having inference times comparable to standard (non-robust)
models. For example, when using stride s = 10 and drop-
ping masked tokens, a smoothed ViT-S is only 2x slower
than a single inference step of a standard ResNet-50, while
a smoothed ViT-B is only 5x slower. We report the infer-
ence time of these models, along with their standard and
certified accuracies, in Table 1.

5. Related work
Certified defenses. An extensive body of research has
studied the development of certified or provable defenses
to adversarial perturbations. This line of research largely
falls into one of three categories: tighter or exact veri-
fiers [11, 21, 31, 46, 57], convex relaxation-based defenses
[14, 15, 33, 37, 43, 50, 52, 53, 62], and smoothing-based de-
fenses [7, 23, 25, 27, 28, 41, 42, 58]. In the case of patches,
the earliest certified defense used an instance of convex re-
laxation (interval bounds) to derive provable guarantees to
adversarial patch [6]. Subsequent work [26] focused on ran-
domized smoothing. This approach smooths classifiers over
random noise, but tend to be extremely expensive to use (4-
5 orders of magnitudes slower than a standard, non-robust
model) [7, 26]. Recently, [29] proposed a variant based
on randomized cropping that performs similarly to [25] but
with better guarantees under worse-case patch transforma-
tions.

Deterministic smoothing. To mitigate the expensive in-
ference times of randomized smoothing, [25] proposed de-
randomized smoothing, which used a finite set of abla-
tions to smooth a base classifier. This substantially re-
duced the computational requirements of smoothing, but
is still two orders of magnitude slower than standard mod-
els. Several other defenses, including Clipped BagNet [63],
BAGCERT [32], and PatchGuard [56], rely on restricting
the model’s receptive field. These approaches are faster
than derandomized smoothing, but have other limitations.
Clipped BagNet (CBN) has substantially weaker robust-
ness guarantees than derandomized smoothing. BAGCERT
achieves higher robustness guarantees than CBN, but lower
standard accuracy. PatchGuard has further higher but brit-
tle guarantees: a defended model is optimally defended
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against a specific patch size, and achieves no robustness at
all against patches that are even slightly larger than the one
considered.

Empirical methods: attacks and defenses. Another line
of work studies empirical approaches for generating adver-
sarial patches and designing empirical defenses. Adversar-
ial patches have been developed for downstream tasks such
as image classification [20], object detection [5, 13, 30], and
facial recognition [3, 44, 45]. Several of these attacks work
in the physical domain [4, 5, 13], and can successfully target
tasks such as traffic sign recognition [5, 13]. Heuristic de-
fenses to these attacks include watermarking [16] and gradi-
ent smoothing [35]; however, these defenses were shown to
be vulnerable adaptive attacks [6]. More recently, [39] pro-
posed an adversarial training approach and [34] proposed a
robust attention module to improve empirical robustness to
patch attacks.

Vision transformers. Our work leverages the vision
transformer (ViT) architecture [10], which adapts the pop-
ular attention-based model from the language setting [49]
to the vision setting. Recent work [47] has released more
efficient training methods as well as pre-trained ViTs that
have made these architectures more accessible to the wider
research community.

6. Conclusion
We demonstrate how applying visual transformers

(ViTs) within the smoothing framework leads to signifi-
cantly improved certified robustness to adversarial patches
while maintaining standard accuracies that are on par with
regular (non-robust) models. Further, we put forth changes
to the ViT architecture and the corresponding smoothing
procedure that greatly speed up the resulting inference times
over previous smoothing approaches by up to two orders of
magnitude—they end up being only 2-5x slower than that
of a regular ResNet. We believe that these improvements fi-
nally establish models that are certifiably robust to adversar-
ial patches as a viable alternative to standard (non-robust)
models.

Limitations. Similarly to other certified defenses, our
method specifically focuses on patch attacks and does not
guarantee robustness to attacks that fall outside of this
threat model. Furthermore, although our approach is vastly
faster than other smoothed models, smoothed ViTs are still
slightly slower than standard (non-robust) models. Finally,
the standard accuracy of our models may suffer if the pre-
dictive signal in an image comes only from a small region
of the image, as that region might not be present in many
image ablations.

Potential negative impact. A possible negative impact of
our work is that it might instill overconfidence in the model.
At test time, our robustness guarantees ensure that the pre-
diction is stable but might be not necessarily correct, lead-
ing to a false sense of confidence. Additionally, users may
erroneously extrapolate other forms of robustness from our
guarantees of patch robustness. The guarantees presented
in this paper are robustness guarantees and not correctness
guarantees, in the sense that our models can guarantee that
a prediction is stable if a certain region of the image is ma-
nipulate, but it cannot guarantee that the prediction will be
correct. Therefore, we encourage users to be aware of these
subtleties before using our technique.
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