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Abstract

Autonomous systems and humans are increasingly shar-
ing the same space. Robots work side by side or even
hand in hand with humans to balance each other’s limi-
tations. Such cooperative interactions are ever more so-
phisticated. Thus, the ability to reason not just about a
human’s center of gravity position, but also its granular
motion is an important prerequisite for human-robot inter-
action. Though, many algorithms ignore the multimodal
nature of humans or neglect uncertainty in their motion
forecasts. We present Motron, a multimodal, probabilistic,
graph-structured model, that captures human’s multimodal-
ity using probabilistic methods while being able to out-
put deterministic maximum-likelihood motions and corre-
sponding confidence values for each mode. Our model aims
to be tightly integrated with the robotic planning-control-
interaction loop; outputting physically feasible human mo-
tions and being computationally efficient. We demonstrate
the performance of our model on several challenging real-
world motion forecasting datasets, outperforming a wide
array of generative/variational methods while providing
state-of-the-art single-output motions if required. Both us-
ing significantly less computational power than state-of-the
art algorithms.

1. Introduction
The key desideratum of autonomous systems is to pro-

vide added-value to humans while ensuring safety. Tradi-
tionally, safety aspects limit such robots to low-risk tasks
with minimal human interaction. An understanding of hu-
mans and their distribution of feasible anticipated move-
ment is key to develop safe, risk-aware human-interactive
autonomous systems. Such systems could operate in closer
proximity to humans, performing tasks involving higher
levels of interaction, providing enhanced added value.

However, capturing the complexity of human motion
in a computational model is challenging due to the multi-
tude of continuous movement possibilities (multimodality),
even within fixed boundaries of physical limitations. Tra-
ditionally, over-conservative systems rely solely on those
constraints to ensure safety, while predictive single-motion-
output methods discard the potential of many high-level fu-

Figure 1. Two examples of multiple possible poses at a given pre-
diction time weighted by their probability. Left: Start of high vari-
ance jumping motion. Right: Landing from jump. Lower body is
predicted with low uncertainty as feet will come to a stop during
landing. Our parametric output distribution captures the full mul-
timodal uncertainty in human motion; enabling subsequent evalu-
ation of samples, individual modes, or most-likely motion as well
as their respective confidence values.

tures in favor of a single possible motion.
In contrast to such deterministic regressors, Monte-Carlo

method models aim to produce samples of human future
motion. However, for different reasons (e.g., simulation
purposes), they prioritize generative diversity over repre-
senting actual plausible motions. For robotic use cases, we
aim for samples to represent the underlying distribution of
possible motions; or even better a parametric description
thereof (Fig. 1).

Both, single-output and sampled, human motion predic-
tions have been developed independently to maximize their
strengths in accuracy and diversity. Still, many of them have
been developed without directly accounting for real-world
robotic use cases; they settle for diversity instead of accu-
racy, ignore physical boundaries, and are computationally
too expensive. We target robotic use cases, where predic-
tions are used in a control loop. As such, a model has to
capture the underlying distribution of possible human mo-
tions without being over-confident or over-diverse within
an imminent time horizon; combining and balancing the
desiderata of both research strands. In consequence, we are
interested in developing a human motion prediction model
that (I) represents the inherent multimodal structure of hu-
man motion; (II) accurately captures humans’ probabilistic
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and diverse nature while obeying rigid skeleton constraints;
(III) by directly incorporating structural information of the
human skeleton; (IV) while being able to deal with imper-
fect data; (V) outputting the maximum amount of informa-
tion for the use of subsequent systems.

To achieve those desiderata, our contribution is three-
fold: First, we describe a new efficient way to model graph-
structured problems where nodes have a fixed semantic
class, usable for generic graph-structured problems. Sec-
ondly, we present Motron, which uniquely uses a probabilis-
tic output structure based on the Concentrated Gaussian dis-
tribution in SO3 and a parallel weight sharing approach in-
corporating the skeleton’s structure. It is designed to mirror
the multimodal and uncertain nature of humans. Motron’s
flexible output structure is designed to serve downstream
robotic modules such as motion planning, decision mak-
ing, and control. Finally, we evaluate our model on the
fulfillment of our desiderata using single-output metrics and
metrics based on samples; combining both research strands.
We outperform an extensive selection of Monte-Carlo based
motion prediction methods while showing state-of-the-art
performance on single-output evaluation procedures using
a variety of metrics and datasets. Our contributions are sub-
stantiated by a thorough ablation study. We further show
that Motron can deal with occluded data often present in
real-world applications by including the additional uncer-
tainty in its output.

2. Related Work
Human Motion Forecasting. The release of the H3.6M

dataset [20] in 2014 stimulated a wealth of research in the
field of human motion prediction. While early works were
based on traditional approaches such as Markov Models
[32, 41] or Gaussian Processes [49] the advances of deep
learning has taken over recent approaches. Algorithms now
are largely based on single-motion-output regressors [11,
12, 38, 40]; improving performance by incorporating hu-
man skeleton structural information into their architectures
[23, 33]. Li et al. [33] merge nodes to create meta graphs of
different scale to extract higher level information. Two con-
cepts of capturing temporal influences have emerged: Re-
current Neural Networks (RNNs) and transforming time-
series to a frequency domain [1, 35, 54], where the lat-
ter is not agnostic to varying history horizons. Recently,
Transformer [46] architectures have been explored over-
coming RNNs shortcomings in capturing longer time series
[35, 45]. While generative and variational approaches have
emerged as state-of-the-art in trajectory forecasting [27, 43,
44] for their plethora of captured information, they largely
exist in parallel to research on single-output regressors in
human motion forecasting. The field is split in approaches
using Generative Adversarial Networks (GANs) [4, 17, 18,
28] and (Conditional) Variational Autoencoders ((C)VAEs)
[52–54]. Of these, similar to the field of trajectory predic-
tion, adapted versions of the VAE frameworks show better
results [53].

Surprisingly, these two fields of single-output and prob-
abilistic motion prediction are highly disentangled, follow-
ing their respective distinct experimentation protocols. In
single-motion-output setups, it is, for example, common to
predict one future second. In contrast, previous probabilis-
tic works set their focus on producing plausible diverse mo-
tion samples over a longer prediction horizon (2s); at which
point the true human motion is fraught with uncertainty.

By slight abuse of terminology, we will distinguish the
two common types of motion prediction algorithms in the
remainder of this work. Monte-Carlo based models which
can produce samples from a distribution of future motions
will be referenced as probabilistic models while single-
motion-output models will be referenced as deterministic
models for their lack of uncertainty awareness.

Directional Probabilistic Learning. In robotic applica-
tions, such as filtering, the use of directional statistics for
rotational systems has been proven useful [13, 15, 29, 30].
The most common distributions for modeling rotational
uncertainty are the Bingham [6], the von Mises–Fisher
[10], the Projected Gaussian [31], and using a Concen-
trated Gaussian in SO(3)[3, Chapter 7.3.1]. Advances in
deep probabilistic learning, however, are mainly focused on
learning distributions in vector space [7, 8, 43]. Thus, of
the rotational distributions, only the Bingham distribution
has been applied to probabilistic deep learning [14, 42]. In
[14], Gilitschenski et al. directly learn the parameters of a
Bingham distribution representing the orientation of an ob-
ject in an image.

Graph Neural Networks. Besides other concepts like
message passing, convolution, and aggregation [55] the
concept of attention, first introduced for temporal depen-
dencies [46], has been applied to graph-structured prob-
lems by Veličković et al. [47] as Graph Attention Networks
(GAT). Recently those GATs have been included in tempo-
ral networks such as LSTMs by replacing the linear trans-
formations in each RNN cell with a Graph Attention Layer
[50]. Within human motion forecasting Graph Convolution
Networks (GCNs) [35, 36] have shown good performance.
Salzmann et al. [43] model dependencies between different
entities for trajectory prediction using a sequential message
passing algorithm. This, however, becomes computational
infeasible for larger number of node types.

3. Problem Formulation
We aim to generate plausible motion distributions for

a fixed number N of human skeleton nodes (joints)
n1, ..., nN . Each node ni is assigned to a semantic class
Si, e.g. Elbow, Knee, or Hip. At time t, given the D-
dimensional state s 2 RD of each node and all of their
histories for the previous H timesteps, which we denote
as x = s(t�H:t)

1,...,N 2 R(H+1)⇥N⇥D, we seek a distribu-
tion over all nodes’ future states for the next T timesteps
y = s(t+1:t+T )

1,...,N 2 RT⇥N⇥D, which we denote as p(y | x).
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4. Preliminaries
Quaternion Representation. The rotational nature of

the human anatomy presents a challenge to neural net-
works. Commonly used rotation representations in R3,
Euler angles and exponential maps, suffer from singulari-
ties, discontinuity, and non-uniqueness [16, 40]; all prop-
erties contrary to neural network characteristics. Outside
of deep learning, however, quaternions have long been es-
tablished as the default rotational representation. As a con-
sequence of their properties, interpretability, and common
use in robotics we choose quaternions as the data represen-
tation throughout our model. Thus the input state x(t)

i =

[q(t)
i , q̇(t)

i ] is defined as the concatenation of the rotation
in quaternion representation and its time differential, where
q(t)
i = q(t�1)

i �q̇(t)
i ; resulting in a D = 8 dimensional state.

Probabilistic Rotations. We use the Concentrated
Gaussian distribution NSO(3) [3, Chapter 7.3.1] to model
a probability distribution over the rotation group SO(3). A
probabilistic rotation is given as

R = exp(✏̂ )R̄ (1)
where R̄ is a ’large’, noise-free, nominal rotation, exp is the
exponential map, ˆ is a linear, skew-symmetric Lie algebra
operator, and ✏ 2 R3 is a ’small’, noisy component:

✏ ⇠ N (0,⌃) (2)
The distribution’s p.d.f is defined as

p(R | R̄,⌃) =
1

Z
e�

1
2 (ln(RR̄T )̌ )T⌃�1(ln(RR̄T )̌ ) (3)

where Z is the Gaussian normalization constant, ln is the
inverse of the exponential map, and ˇ is the inverse linear,
skew-symmetric Lie algebra operator.

Unlike the Bingham or Von Mises-Fisher, the Concen-
trated Gaussian distribution supports the analytical compo-
sition of rotations which is a necessary property as we use
differential quaternions as intermediate output representa-
tion to leverage a residual connection concept (this is justi-
fied in Sec. 6.3). A probabilistic multiplication of two rota-
tions R3 = R1R2 is expressed as

R3 = R1R2 = exp(✏1̂ )R̄1exp(✏2̂ )R̄2 (4)
without approximation we have

R3 = exp(✏1̂ )exp((R̄1✏2)̂ )R̄1R̄2

= exp(✏1̂ )exp(✏12̂ )R̄3
(5)

using first order Baker-Campbell-Hausdorff approximation
we get

R3 = exp((✏1 + ✏12)̂ )R̄3 (6)

R3 ⇠ NSO(3)(R̄1R̄2,⌃1 + R̄1⌃2R̄
T
1 ) (7)

To represent multimodality, we define our output struc-
ture as a Concentrated Gaussian Mixture Model in SO(3)
(N ⇡

SO(3)). For q ⇠ N ⇡
SO(3)(⇡i, R̄i,⌃i), the p.d.f is given

as
p(R | ⇡, R̄,⌃) =

X

i

⇡i NSO(3)(R̄i,⌃i) (8)

where ⇡i 2 R is the mixture coefficient for the i-th NSO(3)

component.
We want to emphasize that the presented concept on dif-

ferentiable probabilistic (residual) rotations is applicable to
a wide range of problems exceeding motion prediction.

Typed Graph Attention. To make use of the informa-
tion of the human skeleton, the entire model is comprised of
two building blocks which preserve and efficiently resemble
the skeleton structure. Both modules utilize a Graph Influ-
ence Matrix G 2 RN⇥N inspired by previous work [26, 33,
36]. Matrix multiplying the Graph Influence Matrix with a
Graph State Matrix x 2 RN⇥DI calculates an element-wise
weighted sum of each node’s state. This operation is known
as Graph Convolution [26] or Graph Attention [47] where
the attention weights are learned instead of inferred from
node states.

To allow for model particularities depending on the se-
mantic class Si of node ni, we define a typed weight ten-
sor NW 2 RN⇥DI⇥DO as N stacked weight matrices
WS 2 RDI⇥DO where WS :

NW =
⇥
WS0 WS1 . . . WSN

⇤
(9)

We define the multiplication operator · as a batched matrix
multiplication between the typed weight tensor NW and
the graph input matrix x 2 RN⇥DI

f(x) = NW · x (10)
All nodes ni of the same type Si share the same weights
and all N nodes are processed with a single batched matrix
multiplication allowing for efficient learning.

Typed Graph (TG)-Linear: Using both concepts, atten-
tion and typed weights, we define the equivalent to a linear
fully connected layer in our graph neural network as

f(x) = G(NW · x) (11)
Typed Graph (TG)-GRU: To capture temporal dependen-

cies within the model we introduce the typed graph equiva-
lent to an GRU layer as

rt = �g(Gt(
NWr · xt) +Gt(

NUr · ht�1) + bf )

zt = �g(Gt(
NWz · xt) +Gt(

NUz · ht�1) + bf )

nt = �g(Gt(
NWn · xt) + rt �Gt(

NUn · ht�1) + bf )

ht = (1� zt) � nt + zt � ht�1

Gt = Gt�1 +Gta

where G0, NW and NU are trainable parameters. h

is the GRUs state and � represents an activation function.
The input x 2 RN⇥DI holds DI dimensional information
on the N nodes. The Graph Influence Matrix G is initial-
ized as unit matrix and is optimized during training. For the
TG-GRU an additional Temporal Additive Graph Influence
Matrix Gta 2 RN⇥N is initialized as a zero matrix and is
optimized to capture the temporal change of influence be-
tween nodes over time.
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5. Motron
Our model1 is visualized in Fig. 2. From a high-level per-

spective, we combine latent discrete variables with proba-
bilistic mixture distribution as output structure to model the
diverse nature of human motion while embedding the skele-
ton graph structure directly into the learning and inference
procedure by using only Typed Graph components.

This model extends core concepts of probabilistic, multi-
modal deep learning towards the application of human mo-
tion prediction. We call our model Motron.

Graph Structure Embodiment. We enable efficient use
of graph-structured information by imbuing the architecture
from end to end. Thus, the architecture is fully described by
the two building blocks TG-Linear and TG-GRU; there is no
fully connected influence between hidden node states. This
leads to natural modeling of the information flow, where
weights are shared between symmetric joints as well as a
reduction in model parameters of about 40%.

Modeling Motion History. Starting from the input rep-
resentation x = s(t�H:t)

1,...,N 2 RH⇥N⇥D, the model needs to
encode a node’s current state and its history. To encode the
observed history of the node, its current and previous states
are fed into a TG-GRU network. The final output is encoded
to the model’s hidden state h by a TG-Linear layer.

Explicitly Accounting for Multimodality. Motron ex-
plicitly handles multimodality by leveraging a probabilistic
latent variable architecture. It produces the target distribu-
tion p(y | x) by introducing a discrete latent variable z,

p(z | x) = 1

N

X

i

fTG�Linear(h)i, (12)

which encodes high-level latent behavior and allows for
p(y | x) to be expressed as

p(y | x) =
X

z

p (y | x, z)p✓(z | x), (13)

where  and ✓ are deep neural network weights that param-
eterize their respective distributions. Unlike latent variables
in probabilistic variational (e.g. (C)VAEs), this latent vari-
able is not explicitly encouraged to learn a representation
for the decoder (e.g. using KL-divergence), but implicitly
enables the decoder to differentiate between modes.

Producing Motions. The sampled latent variable z is
concatenated with the hidden representation vector h and
fed into our TG-GRU decoder. Each TG-GRU cell out-
puts the parameters R̄,⌃ of a NSO(3) for each node. Us-
ing ⇡i = p(z = i | x) we produce the mixture model
q̇ ⇠ N ⇡

SO(3) over differential quaternions as an interme-
diate output distribution.

Thus, z being discrete is necessary as it enables us
to rethink Eq. (13) as a N ⇡

SO(3) with mixture distribution
p(z | x). It also aids in interpretability, as one can visualize
the high-level behaviors resulting from each z by sampling

1All of our source code, trained models, and data can be found online
at https://github.com/TUM-AAS/motron-cvpr22.

Figure 2. Our network architecture: The encoder abstracts hu-
man’s historic poses into a hidden representation h using a TG-
GRU. This representation is used to infer the distribution over the
latent variable p(z | x), and is fed into the decoder together with
latent samples z. The decoder, again, uses a TG-GRU to com-
pute the output distribution. Notably, p(z | x) is reused as mixing
coefficients in the output distribution.

motions (see Fig. 4).
Using the closed composition formula Eq. (6) of the

Concentrated Gaussian in SO(3) we can ”integrate” the dis-
tribution over differential quaternions to the final output dis-
tribution over quaternions. The intermediate step is neces-
sary as motion samples are produced by sampling differen-
tial quaternions and subsequently ”integrating” them to mo-
tions. Directly sampling the output distribution would lead
to time inconsistent motions. Additionally, using differen-
tial output for recurrent layers is known to ease the learning
problem and improve convergence [22, 43].

Training the Model. Commonly, learning good rep-
resentations for probabilistic latent variables is achieved
by including the ground truth y as input to the latent
layer during training and simultaneously introducing a Kull-
back–Leibler Divergence (KL) loss term to squeeze out the
dependency on y during the training process [19, 43]. When
using the CVAE framework, these competing conditions
can lead to unstable training behavior and the collapse of the
latent distribution (KL divergence towards zero). In con-
trast, we do not input the ground truth but give the model
the option to use the latent capacity p✓(z | x) to maximize
Eq. (13) in Eq. (14). Formally, we aim to solve

max
✓, 

NX

i=1

Ez⇠p✓(·|xi)

⇥
log p (yi | xi, z)

⇤
(14)

Notably, no reparameterization trick, commonly needed for
training probabilistic latent variable models [24, 25] is used
to backpropagate through the categorical latent variable z

as it is not sampled during training time. Instead, Eq. (14)
is directly computed since the latent space has only |Z| dis-
crete elements. (For an in depth discussion see Appendix A)

Output Configurations. Based on the desired use case,
Motron can produce many different outputs. The main four
are outlined below.

1. Distribution: Due to the use of a discrete latent vari-
able and probabilistic output structure, the model can
provide an analytic output distribution by directly
computing Eq. (13). This parametric N ⇡

SO(3) distri-
bution entails the complete information inferred by the
model.
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2. Sampled: The model’s sampled output, where z and y

are sampled sequentially according to
z ⇠ p✓(z | x), y ⇠ p (y | x, z). (15)

3. Most Likely Mode (ML-Mode): The model’s determin-
istic and most-likely single output. The high-level la-
tent behavior mode and output trajectory are the modes
of their respective distributions, where

zmode = argmax
z

p✓(z | x),

y = argmax
y

p (y | x, zmode).
(16)

4. Weighted Mean (W-Mean) The mean of all latent
modes weighted by their probability. Following [37], it
is given as the normalized largest eigenvector of QQ

T

where Q is a matrix of stacked quaternion column vec-
tors, where

qn = yn = argmax
y

p(y | x, z = n),

Q = [⇡1q1, ...,⇡|Z|q|Z|].
(17)

6. Experiments
While desiderata (III) and (V) in Sec. 1 are explicitly

fulfilled by the embedded human structure and the use of
N ⇡

SO(3) as output distribution, we conduct both quantitative
and qualitative experiments to show that our method also
succeeds in the remaining desiderata.

We, therefore, structure our experiments as follows:
First, we show that Motron performs best in capturing hu-
mans’ probabilistic and diverse nature (II) by introducing
a new probabilistic metric to the field of human motion
prediction. Secondly, we highlight the learned multimodal
structure (I) by evaluating deterministic outputs of high
likelihood modes. Later we also give a visualization of how
these modes manifest in distinct motions. Finally, we show
that our approach can handle incomplete data (IV) in the
form of occluded joints.

Datasets. We provide quantitative experimentation re-
sults on two datasets; namely the Human 3.6 Million
(H3.6M) [20] dataset and the Archive of Motion Capture as
Surface Shapes (AMASS) [34]. AMASS is a unified collec-
tion of 18 motion capture datasets totaling 13944 motion-
sequences from 460 subjects performing a large variety of
actions. In comparison, the H3.6M dataset consists of 240
sequences from 8 subjects performing 15 actions each.

6.1. Probabilistic Evaluation
Metrics. Probabilistic approaches have been compared

on the basis of a variety of metrics in position space, most
prominent are Best-of-N metrics where N = 50 motions
are sampled from the model; the best metric value of these
is reported. Such metrics, however, only present limited
insights on a model’s output distribution as only a single
motion of an arbitrary number N is evaluated. To fully as-
sess an algorithm’s probabilistic capabilities, we propose an
alternative evaluation methodology for probabilistic algo-
rithms where we measure the ability to accurately capture

and reproduce the underlying uncertainty distribution of
motions. To this point we adopt the KDE-NLL metric [21]
to assess the method’s Negative Log-Likelihood (NLL) by
fitting a probability distribution, using Kernel Density Esti-
mate (KDE) [39], to output samples. Although Motron can
compute its own log-likelihood, we apply the same evalua-
tion methodology to maintain a directly comparable perfor-
mance measure. As the NLL is unbounded, we clip it to a
maximum value of 20 (⇠ 2 ⇤ 10�7%) in order to prevent
single outliers from dominating. Still, to be comparable, we
additionally follow the evaluation methodology of Yuan et
al. [53]: We report the Average Pairwise Distance (APD)
as a measure of sample diversity as well as the Best-of-N
metrics Average Displacement Error (ADE), and Final Dis-
placement Error (FDE) as measures of quality. Further, we
report their Multi-Modal ADE and FDE metrics (MMADE
and MMFDE). “Similar“ motions are grouped by using an
arbitrary distance threshold at t = 0 and the average metric
over all these grouped motions is reported. As close poses at
a single instance can, however, belong to entirely different
motions (Appendix C), the KDE-NLL reports a more holis-
tic representation of a model’s probabilistic capabilities.

Probabilistic Baselines. We focus on the current state-
of-the-art algorithm (1) DLow [53] to compare our desider-
ata side to side. DLow uses an adapted VAE algorithm to
generate samples without collapsing to a single mode. For
the standard probabilistic experiment methodology, we fur-
ther report methods based on CVAEs: (2) Pose-Knows [48]
and (3) MT-VAE [51]; GAN based (4) DeLiGAN [18] and
diversity promoting methods (5) Best-of-Many [5], (6) GM-
VAE [9], and (7) DSF [52]. We were not able to compare to
LCP-VAE [2] for a lack of open accessible source code.

Evaluation Methodology. In order to compare to other
probabilistic methods, which output motions solely in po-
sition space, we use the forward kinematic of the respec-
tive test subject to convert our joint configuration samples
to joint positions. Predicting in configuration space and us-
ing human’s forward kinematic to produce motions in po-
sition space, ensures our motions to be kinematic feasi-
ble. However, they bring a disadvantage compared to ap-
proaches directly outputting joints positions, common for
probabilistic approaches, as they are not constrained by a
rigid bone structure (Appendix D). For the KDE-NLL met-
ric, we sample N = 1000 motions from each method and
fit a KDE for each future timestep. For the N = 50 metrics
(APD, ADE, FDE, MMADE, MMFDE) we use 50 motions,
sampled from our intermediate output distribution over q̇

and ”integrated”; these motions are transformed into posi-
tion space using the respective subjects forward kinematics.
We train the model on 0.5 seconds of history and predict a
two second horizon. Generally, we can dynamically change
the prediction horizon online thanks to the flexible decoder
structure during inference.

Results. Fig. 3 shows that Motron clearly outperforms
the current state-of-the-art algorithm DLow in represent-
ing the underlying motion distribution of the human sub-
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Figure 3. Negative Log Likelihood of the ground truth in the fitted
KDE distribution of samples from each model. Lower is better.
Samples from DLow are over-confidently wrong for early predic-
tion timesteps.

1 s 2 s
APD ADE FDE APD ADE FDE

DSF [52] - - - 9.330 0.493 0.592
DeLiGAN [18] - - - 6.509 0.483 0.534
GMVAE [9] - - - 6.769 0.461 0.555
Best-of-Many [5] - - - 6.265 0.448 0.533
MT-VAE [51] - - - 0.403 0.457 0.595
Pose-Knows [48] - - - 6.723 0.461 0.560
DLow [53] 5.180 0.305 0.419 11.741 0.425 0.518
Ours 3.453 0.252 0.350 7.168 0.375 0.488

Table 1. Best of N = 50 evaluation against probabilistic algo-
rithms on a prediction horizon of one and two seconds on H3.6M
dataset.

ject and therefore having a lower NLL over all prediction
timesteps. This result is supported by the Best-of-N metrics
over one and two seconds in Tab. 1. We show significantly
better results than DLow on ADE and FDE. Notably, this
is achieved while using less diverse motion samples (lower
APD) indicating that our samples are concentrated around
likely motions. MMADE and MMFDE values for differ-
ent thresholds are presented in Fig. 6 in Appendix C. For
smaller thresholds we outperform DLow while for higher
thresholds, where possibly uncorrelated motions are evalu-
ated together as displayed in Fig. 8 in Appendix C, we un-
surprisingly achieve lower scores as our approach does not
over-diversify its predictions.

6.2. Deterministic Evaluation
Metrics. We report the Mean Angle Error (MAE-L2)

as the Euclidean distance of the stacked (ZYX-)Euler an-
gles as well as the Mean Per Joint Position Error (MPJPE)
[20] which is calculated using the human’s skeleton for-
ward kinematic. Those are the standard evaluation metrics
in deterministic motion prediction [23, 33, 35, 36, 40]. To
better understand the influence of the learned latent multi-
modality we apply an Best-of-N evaluation for the MAE-L2
and MPJPE metric. Here we report the value for the mo-
tion with the best average metric value over all prediction
timesteps originating from the N modes’ means with the
highest probability p(z | x).

Deterministic Baselines. We evaluate against the fol-
lowing deterministic approaches: (1) Zero Velocity: All
joints keep their current state at prediction time through-
out the entire prediction horizon. (2) GRU sup. [38]: Sim-
ple encoder-decoder structure using GRUs for variable his-
tory and prediction horizon and exponential maps as data

representation. (3) Quaternet [40]: Encoder-Decoder ar-
chitecture using GRUs and quaternion data representation.
(4) HistRepItself [35]: Transformer [46] encoder and fixed
prediction horizon graph convolution decoder. Data is pre-
processed using the Discrete Cosine Transform (DCT) on
the time dimension and the model predicts a residual be-
fore the output is transformed back using the inverse DCT.
(5) ST-Transformer [1]: Decoupled temporal and spatial
self-attention. For the H3.6M dataset we state the reported
values of (2) - (3) and re-run the evaluation of (4) as they
originally did not account for 2⇡ angle discontinuity. For
the AMASS dataset we re-train (4) HistRepItself to match
our test split. We were not able to compare to some other
methods for a lack of open source code (AGED [17]) or
their computational complexity (DMGNN [33] - 62 Million
parameter)

Evaluation Methodology. It has become common to
benchmark on 8 fixed sequences per action of a single test
subject on the H3.6M dataset. This has been shown to be
un-representative [40]. Thus, we report results on 8 [33, 35,
38, 40] (see Appendix F) and 256 [35, 40] samples per ac-
tion on the H3.6M data to be comparable to past methods.
For the AMASS dataset, we report results on the official test
split, consisting of the Transitions and SSM dataset. While
prior authors [35] have argued that the Transitions dataset
is not suitable for evaluating prediction algorithms for their
change of action within sequences, we argue that such be-
havior can happen in real-world applications. We subsam-
ple the H3.6M dataset to 25 HZ and the AMASS dataset to
20 HZ as most of the included datasets have been recorded
with a framerate divisible by 20 but not by 25. When com-
paring to ST-Transformer [1] (Tab. 4) we follow their evalu-
ation methodology. For the H3.6M dataset, we report metric
values previously published on both 8 and 256 samples per
action. As the AMASS dataset has been released recently,
there are not many published results, yet. Thus, we retrain
the current best state-of-the-art algorithm HistRepItself and
re-train it on the official test split. We train the model on two
seconds of history and predict one second into the future.

Results. We evaluate our approach on common sin-
gle sample metrics against fully deterministic approaches.
Tab. 2 summarizes the results on the H3.6M dataset. Even
though we don’t explicitly optimize for a deterministic out-
put, our Weighted-Mean output outperforms all other state-
of-the-art algorithms.

We want to point out that we introduced the W-Mean
output configuration solely for these metrics commonly
used in deterministic evaluation. This allows us to point
to the shortcomings of both, deterministic algorithms and
their corresponding evaluation metrics: They produce mo-
tions which represent the average of all likely motions given
the motion history. This average motion, however, may rep-
resent a unlikely or even infeasible motion. This (uninten-
tional) behavior is followed by our W-Mean output config-
uration. Thus, we want to emphasize that while we outper-
form other algorithms on specific metrics we advise against
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MAE (L2)
milliseconds 80 160 320 400 560 720 880 1000
Zero Vel. 0.40 0.70 1.11 1.25 1.46 1.63 1.76 1.84
GRU sup. [38] 0.43 0.74 1.15 1.30 - - - -
Quarternet [40] 0.37 0.62 1.00 1.14 - - -
HistRepItself [35] 0.28 0.52 0.88 1.02 1.23 1.40 1.55 1.64
Ours W-Mean 0.28 0.51 0.87 1.01 1.22 1.40 1.54 1.63
Ours ML-Mode 0.28 0.51 0.88 1.02 1.24 1.42 1.58 1.67
Ours Bo3-Modes 0.28 0.50 0.85 0.97 1.16 1.31 1.45 1.54
Ours Bo5-Modes 0.28 0.51 0.84 0.96 1.13 1.28 1.42 1.51

Table 2. Average angle error on 256 samples per action on the
H3.6M test dataset. A break down by actions and the results on
the MPJPE metric can be found in Appendix F.

MAE (L2)
milliseconds 100 200 400 600 800 1000
Zero Vel. 0.73 1.20 1.60 1.73 1.76 1.76
HistRepItself [35] 0.45 0.78 1.06 1.17 1.27 1.33
Ours W-Mean 0.42 0.76 1.05 1.19 1.27 1.33
Ours ML-Mode 0.42 0.76 1.08 1.22 1.31 1.38
Ours Bo3-Modes 0.42 0.74 1.01 1.12 1.20 1.28
Ours Bo5-Modes 0.42 0.74 0.99 1.09 1.17 1.27

Table 3. Average angle error on 10,000 samples from the AMASS
test set. The MPJPE metric can be found in Appendix F.

MAE (L2)
milliseconds 100 200 300 400
ST-Transformer [1] 0.178 0.291 0.395 0.490
Ours W-Mean 0.147 0.243 0.335 0.420

Table 4. Average angle error using the evaluation procedure in [1].

using the W-Mean output configuration for actual applica-
tions.

The lower rows of Tab. 2 and Tab. 3 supports that our
approach captures multimodality by committing to a spe-
cific motion per mode; thereby attributing appropriate prob-
ability mass to less likely motions. As such, the most
likely deterministic mode (ML-Mode) commits to the mode
which is best explained by the data. However, on average it
accumulates a higher error compared to W-Mean as it is
expected to represent a “wrong“ motion with probability
p = 1� maxi(⇡i) (see Sec. 5). Looking at the set of likely
deterministic mode outputs (BoN in Tab. 2 and Tab. 3), it
becomes clear that one of the motion modes performs ex-
ceptionally better than the mean output of deterministic re-
gressors. This behavior is further visualized for a single
example in Sec. 6.4.

Notably, Motron can capture multimodality and reason
probabilistically about humans’ future motion while being
computationally more efficient then a deterministic regres-
sor. With 1.7 Million parameters we need half the computa-
tional power than HistRepItself (3.4M parameters) and are
significantly more efficient compared to the current state-of-
the-art algorithm DLow with 7.3 Million parameters. Other
graph based models, such as [33], even use 62 Million pa-
rameters.

6.3. Ablation Study
In this section, we will show the influence of our contri-

butions on the model’s performance as well as justify our
design choices quantitatively.

NLL MAE (L2)
milliseconds 400 1000

P
400 1000

|Z| = 1 -160.77 -106.10 -4032.58 1.05 1.68
|Z| = 2 -173.21 -117.20 -4320.73 1.02 1.63
|Z| = 3 -176.25 -121.86 -4405.46 1.02 1.65
|Z| = 4 -176.74 -122.03 -4418.98 1.01 1.63
|Z| = 5 -177.01 -122.02 -4432.40 1.01 1.63
|Z| = 6 -174.50 -117.70 -4340.94 1.01 1.64

Table 5. Negative Log Likelihood (NLL) and MAE (L2) perfor-
mance using different number of latent modes on H3.6M dataset.

NLL MAE (L2)
milliseconds 400 1000

P
400 1000

No Typed Graph -170.28 -112.35 -4264.17 1.07 1.73
One-Hot -174.78 -119.33 -4372.70 1.04 1.67
Gaussian Mixture Model -158.56 -102.24 -3879.12 1.06 1.69
Bingham -162.58 -107.52 -3983.10 1.07 1.67
Latent Grad. Flow -174.68 -119.99 -4374.77 1.02 1.64
Full -177.01 -122.02 -4432.40 1.01 1.63

Table 6. Negative Log Likelihood (NLL) and MAE (L2) perfor-
mance on ablated model structures on H3.6M dataset.

Number of latent modes. We ablate the number of la-
tent discrete states which manifest as motion modes in the
model’s output (Tab. 5). Four and five modes show the best
performance. We use five modes for our approach to give
the model more expressiveness when necessary.

Influence of contributions. To show the influence of
our contributions on the model’s performance we ablate
them individually in Tab. 6. We first remove the Typed
Graph weight sharing scheme and subsequently replace it
with One-Hot encoded type information which can recover
some performance. Next, we replace the Concentrated
Gaussian distribution in SO(3) with a standard Multivari-
ate Normal (Gaussian) Mixture Model (GMM) and subse-
quently with a Bingham distribution. Unlike our NSO(3),
the MVN is not designed to handle rotations and their spe-
cial characteristics. It, therefore, has worse results in all
metrics. The Bingham distribution, in contrast, is designed
for rotations but does not support the composition of rota-
tions. Thus, we can not use differential quaternions as in-
termediate output making the learning task more complex.
Also, samples from a Bingham can only be approximated
using computationally and memory expensive algorithms
(e.g. Metropolis-Hasting). Finally, we enable gradient flow
through the latent variable (see Appendix A and Sec. 5),
which has a minor negative impact.

6.4. Qualitative Results
Fig. 4 shows the capability of our method to capture the

multimodal nature of human motions. Displayed is an ex-
emplary motion where the human lands from a jump and
rapidly pulls his arms down. In the beginning t = 500ms,
the different latent modes capture different possible speeds
of the downwards arm movement. While the most likely
mode anticipates a slower downwards movement than per-
formed, the second most likely mode captures the true mo-
tion closely. Further, less likely modes capture even faster
motions as well as movements where the arms are pulled
more in front of the body. Notably, reasonably small uncer-

6463



(a) Ground Truth t = �500ms (b) Ground Truth t = 0ms (c) Ground Truth t = 500ms (d) 5 Modes t = 500ms

(e) Ground Truth t = 1s (f) Mode 1 p(z) = 38% (g) Mode 2 p(z) = 35% (h) Mode 3 p(z) = 23% (i) Mode 4 p(z) = 3% (j) Mode 5 p(z) = 2%

Figure 4. Qualitative visualization of the prediction distribution on a single sample from the AMASS dataset. The human lands from a
jump and pulls both arms downwards. (a)-(c), (e) Ground Truth poses. (d) 5 modes of our prediction distribution. Each mode is weighted
by its probability where opacity indicates high confidence in a particular mode. (f)-(j) Mean of each of the five output modes at t = 1s.

tainty is presented by the model for other joints. Towards
the end t = 1000ms, the expressiveness and multimodality
of the modes can be experienced as, for example, Mode 5
captures the possibility of a consecutive second jump.

Another important quality for robotic applications is the
ability to work with imperfect data. To simulate occlusions
during training we apply Node Dropout. For the occluded
nodes, we set a random number of continuous states leading
to t = 0 to the neutral quaternion. The unique capabilities
of our model here are shown in Fig. 5. In this instance, we
artificially occlude all joint’s data of the left leg. This leads
to high variance but reasonable sampled predictions during
early timesteps. More importantly, the model can under-
stand and output its uncertainty: The closed form standard
deviation of the parametric N ⇡

SO(3) output distribution is ad-
equately higher compared to the distribution with perfect
data. For increasing prediction time, the model uses the in-
fluence between nodes learned in the Typed Graph layers
to produce reasonable motions even for the occluded nodes
and adjusts its relative confidence reasonably.
7. Conclusion

In this work, we present Motron, a probabilistic human
motion forecasting approach which uniquely provides the
information plethora of a probabilistic approach and the
accuracy of a deterministic model. Its predictions respect
rigid skeleton constraints, all while producing full paramet-
ric motion distributions, which can be especially useful in
downstream robotic applications. It achieves state-of-the-
art prediction performance in a variety of metrics on stan-
dard and new real-world human motion datasets. Further,
to the best of the authors’ knowledge, it is the first method
that demonstrates its ability to deal with occluded data while
reasoning about its own uncertainty.

No Occlusion
t = 40ms

Occlusion
t = 40ms

No Occlusion
t = 400ms

Occlusion
t = 400ms

Figure 5. Handling of imperfect data. All joints of the left leg
are artificially occluded. Top: Visualization of prediction samples
with and without occlusion. Bottom: Mean standard deviation of
parametric output distribution of left hip and knee. The occluded
data is addressed by the model adjusting its own uncertainty.

Limitations. The approach is yet limited by the up-
stream data provider. While the motion capture system uti-
lized to record the datasets used here, provides the required
accuracy to calculate the joint rotations via inverse kinemat-
ics, the authors anticipate this being a challenge when rely-
ing on vision-based algorithms for human poses detection.
Further, our approach’s tendency to less diverse predictions
can become problematic with regards to new unseen behav-
iors where our approach would be overly confident.

Future Directions include incorporating Motron’s hu-
man behavior predictions in downstream robotic planning,
decision making, and control frameworks, as well as explor-
ing options to tightly couple upstream vision algorithms.
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