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Abstract

Natural language explanation (NLE) models aim at ex-
plaining the decision-making process of a black box sys-
tem via generating natural language sentences which are
human-friendly, high-level and fine-grained. Current NLE
models1 explain the decision-making process of a vision
or vision-language model (a.k.a., task model), e.g., a VQA
model, via a language model (a.k.a., explanation model),
e.g., GPT. Other than the additional memory resources and
inference time required by the task model, the task and ex-
planation models are completely independent, which disas-
sociates the explanation from the reasoning process made
to predict the answer. We introduce NLX-GPT, a gen-
eral, compact and faithful language model that can si-
multaneously predict an answer and explain it. We first
conduct pre-training on large scale data of image-caption
pairs for general understanding of images, and then for-
mulate the answer as a text prediction task along with
the explanation. Without region proposals nor a task
model, our resulting overall framework attains better eval-
uation scores, contains much less parameters and is 15×
faster than the current SoA model. We then address the
problem of evaluating the explanations which can be in
many times generic, data-biased and can come in several
forms. We therefore design 2 new evaluation measures:
(1) explain-predict and (2) retrieval-based attack, a self-
evaluation framework that requires no labels. Code is at:
https://github.com/fawazsammani/nlxgpt.

1. Introduction
Deep learning models have enabled extraordinary break-

throughs in a variety of vision tasks (such as image classifi-
cation [15,17,26]) and vision-language tasks (such as visual
question answering [1, 3, 57], visual entailment [56], image

1Throughout this paper, we refer to NLE models as Natural Language
Explanation models aimed for vision and vision-language tasks.

Figure 1. A comparison between previous models (left) and ours
(right). Our model solely requires a visual encoder and a language
model. We model the answer as a text prediction task along with
the explanation. Best viewed in color.

captioning [11, 34, 43, 53], and more), achieving promising
performance. However, they are black box systems. For
these models to be deployed in everyday life, explaining
their decision-making process becomes critical for several
reasons such as trust, accountability, and model bias under-
standing and correctness. Different from visual or textual
explanations which highlight regions or tokens in an image
or sentence that lead to a specific prediction [5, 45, 48, 49],
natural language explanation models [8, 33] explain the
decision-making process of a model through natural lan-
guage sentences. These sentences are easy to understand
by humans and are much more detailed than highlighted
regions or tokens. Recently, NLE for vision and vision-
language (VL) tasks has been introduced [20, 32, 36, 54].
In this work, we focus on explaining models aimed for
vision and vision-language tasks. Current NLE models
[20, 32, 36, 54] first utilize a VL-model to get an answer for
the task at hand (e.g., a visual question answering (VQA)
model). The outputs of the VL-model (answer and mul-
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timodal features) along with the question are then fed to
language model (e.g., LSTM or Transformer) to get an ex-
planation for the answer (see Figure 1). At training time,
the language model is trained to produce explanations for
the ground-truth answers with a NLE dataset. At test time,
the output of a VL-model is utilized to predict an answer
which is fed to the language model to get the explanation.
This paradigm has two disadvantages. First, the addition
of the task model requires higher storage and memory re-
quirements (typically, approx. 80M and 300M parameters
for small and large models, respectively). Second, the VL-
model and language model are completely independent of
each other, which disconnects the explanations from the
reasoning process made to predict the answer. Finally, au-
tomatic NLE measures that evaluate the generated explana-
tion do not always reflect the correctness, reasoning and se-
mantic meaning of the explanations since explanations can
come in different forms and may learn correlations and bias
in the dataset.

In summary, we make the following contributions:

• We propose NLX-GPT, a model which can simultane-
ously predict an answer and explain it, by formulating
the answer prediction as a text generation task along
with the explanation. This eliminates the need for a
VL-model to provide an answer and associates the ex-
planation with the reasoning process made to predict
the answer.

• Our method outperforms previous works on most met-
rics while being 15× faster and requiring less memory
resources. We further present an ablation analysis of
the steps and components of our model, demonstrating
that each aspect contributes non-trivially to the final
performance of the model.

• We present two new evaluation frameworks for NLE
which can reflect the correctness, reasoning, semantic
meaning and the degree of biasness of the generated
explanations

2. Related Work
The first work on NLE was proposed by [18] for vi-

sion tasks. It was then extended to video tasks [22],
vision-language tasks [20, 27, 32, 36, 54] and NLP tasks
[8, 19, 33, 40]. The authors of [18] propose a discrimina-
tive objective that can take into account class-discriminative
image properties which justify a classification prediction.
Later, [36] proposed two datasets: ACT-X and VQA-X. The
former is used to explain decisions of activity recognition
models, while the later is used to explain decisions of VQA
models. The authors used the MCB VQA model [16] as the
task model and an LSTM as the explanation model. The au-
thors of [54] focus on generating more faithful multimodal

explanations and filters out the human textual explanations
whose Grad-CAM visual explanation does not align with
the Grad-CAM of the predicted answer. Their task model is
the Up-Down VQA model [3] and their explanation model
is the Up-Down LSTM model [3]. In [27] , an automatic
dataset of explanations for the VQA task is constructed, in
which the explanations are essentially image captions de-
scribing the image. [32] uses different vision models to en-
code the image and then inputs them along with the ground-
truth answer and question to a GPT-2 model [39] to gen-
erate an explanation. Finally, [20] corrects the eSNLI-VE
dataset [14] for explanations of the visual entailment task.
Their e-UG model is composed of UNITER [9] as the task
model and GPT-2 [39] as the explanation model.

As observed, all these works rely on a task model, which
brings the disadvantages discussed previously. Our pro-
posed NLX-GPT tackles these problems by eliminating the
task model and produces the answer as a text generation
task along with the explanation.

3. NLX-GPT
Consider a task model MT which performs a specific

vision or vision-language task. For example, MT can be
an answering model for VQA, visual entailment or activ-
ity recognition. Also, consider an explainer model ME

which provides an explanation for the output of the vision-
language model. Previous models [20,32,36,54] stack both
MT and ME on top of each other. That is, MT first an-
swers the task, and ME provides an explanation for the an-
swer. Drawing inspiration from [10, 40], in our work we
eliminate MT and allow ME to address both objectives. In
other words, ME simultaneously predicts an answer and
explains it. This is achieved by formulating the answer
prediction as a text generation task along with the expla-
nation. This has two advantages: First, it eliminates the
high memory requirements of MT , which can reach to over
300M parameters [9, 28], and reduces the inference time.
Second, unlike previous models, where MT and ME are
completely independent, the generated answer and expla-
nation from our model become associated with each other,
in the sense that the explanation is intrinsic, internally affil-
iated and connected to the reasoning process made to pre-
dict the answer. In fact, the answering task may perform
even better than having a separate model MT . For exam-
ple, our VQA accuracy outperforms the SoA [20] which
uses UNITER [9] as MT by 3%. This shows the strong
ability of modeling the answering task as a text-generation
task along with its explanation and vice-versa. There are
other reasons for why removing a VL-model is advanta-
geous. We refer readers to Section 7 of the Appendix for
more information. In our case, we choose MT to be a
distilled version [44] of the GPT-2 transformer language
model [7]. Our model is an encoder-decoder architecture,
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Figure 2. A schema of the proposed NLX-GPT model. At test time, we supply the question and <bos> token, and start generating the
answer and explanation

as originally proposed in [51]. The encoder is a visual back-
bone that encodes the image and the decoder is the distilled
GPT-2. We consider all sub-inputs (question/hypothesis,
answer and explanation) as a single sequence to ME and
train ME with the cross-entropy objective to generate a se-
quence w = w1, w2, . . . , wT of T words (containing both
the answer and explanation) by minimizing the negative
log-likelihood:

L = −
T∑

t=1

log pθ (wt | w<t) , (1)

where w<t denotes the words before word t. A schema
of our model is shown in Figure 2. Note that our model can
still be used to explain the answer of any external VL-model
by simply appending the answer output of that VL-model
after the question at the input to our NLX-GPT, which con-
ditions the explanation on that answer. In fact, this becomes
a special case of our general model.

At the same time, we aim to deviate away from visual
encoders biased towards a specific task (e.g., image clas-
sification) as well as from time-expensive bottom-up fea-
tures [3]. We would instead like to fully rely on grid fea-
tures. To this, we utilize the CLIP vision encoder [38] since
the visual features are (1) non-biased and general and (2)
close to the language embedding space of GPT-2 due to
the contrastive learning objective of CLIP, which makes the
fusing of visual and linguistic information easier. Without
region proposals nor a VL-model, our model becomes sig-
nificantly faster and more memory efficient than previous
models, as shown in Table 1. However, we still demonstrate
in later sections that even with a ResNet-101 visual encoder
pretrained on ImageNet-1K, our model can still outperform
previous models that also use a ResNet-101, even without
bottom-up object level features [3]. With bottom-up object-
level features, our model significantly outperforms the SoA
even without using an additional BERT-based multimodal
feature extractor (such as UNITER [9]). In the next sub-

sections, we will explain the two stages we conduct on our
model: pretraining and finetuning. Please note that our vi-
sual encoder is fixed and not fine-tuned at any time during
pretraining or finetuning.

3.1. Pretraining

Training an NLE model to explain the decision-making
process of an answer given a particular image requires
strong image understanding in the first place. Otherwise,
the model may be susceptible to learning correlations and
bias in the dataset, or overfitting due to the small-scale NLE
dataset. In later sections, we make this evident through
visualization. It is also shown in [12] how image under-
standing greatly helps image classification and object de-
tection tasks. Following the trend of vision-language pre-
training [9, 23, 28, 60], we pretrain our Distilled GPT-2 on
a large-scale corpus of image-caption pairs. We choose
image captioning as our pre-training task because (1) it is
aligned with our downstream task of text generation and (2)
image captions provide comprehensive image understand-
ing by describing objects, their attributes and their relation-
ships. Particularly, we use data from COCO captions [30],
Flickr30k [37], visual genome (VG) [25] and image para-
graph captioning [24]. In the case of VG region descrip-
tions, we combine region descriptions per image to form a
paragraph. More details can be found in the Appendix. We
use the cross-entropy objective loss (as in (1)) to train our
model to generate a caption c describing an image I in an
autoregressive manner. Other pre-training objectives such
as image feature regression, masked language modelling
and image-text matching can be used; however, we find that
the results are already satisfactory with cross-entropy train-
ing. It is also shown in [55] that these additional objectives
only contribute a little to the overall performance. We pre-
train the model with a batch size of 768; we refer to the
Appendix for further implementation details.
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Table 1. Comparison between other models in terms of the visual encoder, region proposals, VL-model, explanation generator, inference
time and total number of parameters. Note that VL-models in previous works act as multi-modal feature extractors and answering models.

Model Visual Encoder Region Proposals VL-model Explanation Generator Time (ms) Parameters (M)
FME ResNet-101 ✓ Up-Down VQA Up-Down LSTM ∼910 142
RVT ResNet-101 ✓ BERT GPT-2 ∼925 277
e-UG ResNet-101 ✓ UNITER GPT-2 ∼929 277

NLX-GPT ResNet-101 × × Distilled GPT-2 ∼93 138
NLX-GPT ViT × × Distilled GPT-2 ∼55 182

Table 2. Unfiltered Scores for VQA-X and ACT-X. B4, M R, C, S are short for: BLEU-4, METEOR, ROUGE-L, CIDER and SPICE.
Unfiltered scores on e-SNLI-VE are 11.9, 18.2, 32.5, 1.09 and 33.0, respectively.

VQA-X ACT-X
Approach B4 M R C S B4 M R C S Human
CAPS [36] 5.9 12.6 26.3 35.2 11.9 5.2 11.0 26.5 10.4 4.6 22.9
PJ-X [36] 19.5 18.2 43.4 71.3 15.1 15.3 15.6 40.0 22.0 7.2 38.2
FME [54] 24.4 19.5 47.4 88.8 17.9 - - - - - -

NLX-GPT (w/o pretraining) 23.8 20.3 47.2 89.2 18.3 25.6 21.4 48.0 63.5 15.4 -
NLX-GPT (w/ pretraining) 25.6 21.5 48.7 97.2 20.2 28.1 22.6 49.7 74.9 17.6 89.0

3.2. Concept Detection

In the e-SNLI-VE dataset [20], we find that pre-training
does not help our model generalize. We therefore propose
to compensate for image understanding by predicting image
concepts with a simple multilayer perceptron (MLP) layer
attached on top of the visual encoder and trained on the Vi-
sual Genome dataset [25]. Particularly, we use binary cross-
entropy as the loss function to train an N -way multi-label
classifier, where N is the concept vocabulary:

LP = −
∑
i∈B

N∑
j=1

pij log p̂ij + (1− pij) log (1− p̂ij) , (2)

where pij is the j-th target for the i-th datapoint in the
batch B and p̂ij is the sigmoid probability output. After
detecting the concepts, we append them to the GPT-2 input
and model a conditional language generation task [21]. Fur-
ther implementation details can be found in the Appendix.

3.3. Finetuning

After the pretraining stage, we finetine our NLX-GPT
model on NLE tasks using a batch size of 32. Particularly,
we choose NLE for visual-question answering, visual en-
tailment and visual commonsense reasoning (VQA-X [36],
e-SNLI-VE [20] and VCR [58]) as vision-language tasks,
and NLE for activity recognition (ACT-X) [36] as the vision
task. See Section 4 for more details about these datasets.

3.4. Evaluation Measures

In order to evaluate our method, we use three types of
evaluation measures. First, we consider the automatic nat-
ural language generation (NLG) metrics (BLEU [35], ME-

TEOR [6], ROUGE-L [29], CIDER [52], SPICE [2] and
BERTScore [59]); all scores are computed with the pub-
licly available code2. Second, we use human evaluation
as done in previous works. The process of human evalu-
ation is identical to [20] for VQA-X and e-SNLI-VE, and
identical to [36] for ACT-X. We still provide full details
about the human evaluation process in the Appendix. One
drawback of automatic NLG measures is that they do not
always reflect the truthfulness and correctness of the ex-
planations, since explanations can come in different forms
as well as be very generic and data-biased. Taking VQA
as an example, the data-biasness problem refers to mod-
els that can correctly answer a question without consider-
ing the image information, which is achieved by learning
statistics and correlations in the training data. For exam-
ple, their answer to the question “What is the color of the
grass?” is always “green”. Or “What is the color of the ba-
nana?” is always ”yellow”. When models are faced with
a difficult learning problem, they prefer to learn from the
statistical information that links the question with the most
occurring answer, completely ignoring the image. By sim-
ply memorizing biases in the training data, they exhibit ac-
ceptable performance on the test set. As a result, when the
model is faced with questions with different image informa-
tion (e.g. gray grass rather than green grass, or a ripe black
banana rather than a yellow banana), they show degraded
performance, which also means they are not trustable. The
best way to evaluate this phenomenon is conducting human
evaluation. However, human evaluation is an expensive and
tedious process. To this, automatic measures that better re-
flect the correctness, context, reasoning, semantic meaning

2https://github.com/tylin/coco-caption
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Table 3. Filtered scores for VQA-X and e-SNLI-VE. BS stands for BERTScore. † Since the CIDER score is exceptionally high, we suspect
a difference in the CIDER idf weights used by the e-VIL [20] authors. We therefore report our scores with a different evaluation API [46].
Our resulting scores on this API on NLX-GPT (w/ concepts) for B1, B4, R-L, M and C are: 35.3, 11.9, 33.1, 18.7, 112.5

VQA-X
B1 B2 B3 B4 R-L M C S BS Human Task Acc.

PJ-X [36] 57.4 42.4 30.9 22.7 46.0 19.7 82.7 17.1 84.6 65.4 76.4
FME [54] 59.1 43.4 31.7 23.1 47.1 20.4 87.0 18.4 85.2 63.2 75.5
RVT [32] 51.9 37.0 25.6 17.4 42.1 19.2 52.5 15.8 85.7 67.1 68.6

QA-only [20] 51.0 36.4 25.3 17.3 41.9 18.6 49.9 14.9 85.3 - –
e-UG [20] 57.3 42.7 31.4 23.2 45.7 22.1 74.1 20.1 87.0 71.5 80.5
NLX-GPT 64.2 49.5 37.6 28.5 51.5 23.1 110.6 22.1 86.9 83.22 83.07

e-SNLI-VE
B1 B2 B3 B4 R-L M C S BS Human Task Acc.

PJ-X [36] 29.4 18.0 11.3 7.3 28.6 14.7 72.5 24.3 79.1 59.6 69.2
FME [54] 30.6 19.2 12.4 8.2 29.9 15.6 83.6 26.8 79.7 58.5 73.7
RVT [32] 29.9 19.8 13.6 9.6 27.3 18.8 81.7 32.5 81.1 59.4 72.0

QA-only [20] 29.8 19.7 13.5 9.5 27.0 18.7 80.4 32.1 81.1 - –
e-UG [20] 30.1 19.9 13.7 9.6 27.8 19.6 85.9 34.5 81.7 68.9 79.5

NLX-GPT (w/o Concepts) 35.7 24.0 16.8 11.9 33.4 18.1 114.7 32.1 80.6 66.3 –
NLX-GPT (w/ Concepts) 37.0 25.3 17.9 12.9 34.2 18.8 117.4† 33.6 80.8 67.4 73.91

Figure 3. The retrieval-based attack evaluation framework. On top, we show how to measure the biasness to text in vision-language tasks.
At the bottom, we show the process for vision tasks.

and the degree of biasness of the generated explanations are
needed. We therefore propose two new automatic evalua-
tion measures: (1) Explain-Predict, and (2) Retrieval-based
attack. We elaborate on these measures below.

Explain-Predict: This paradigm is firstly introduced in
[8]. While [8] uses it as the main model, we use it as an
evaluation framework. In this evaluation framework, we
measure how good the explanation justifies the answer. We
input the question and the generated explanation (without
the answer) to a language representation model, and aim to

predict the answer. This measure gives us a degree on the
correlation between the explanation and the answer. If the
explanation correctly justifies the answer, we assume the
language representation model is able to predict it.

We choose DistilBERT [44] to be our language repre-
sentation model. An example is given in Figure 4 where
the input question is: ”what animal is this?” and the gen-
erated explanation is ”it has a long neck and black spots”.
Note that we append a CLS token at the beginning of the
sequence (as in BERT [13]) and a SEP token in between
the question and the generated explanation, in order to dis-
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tinguish between them. We take the CLS token output as
input to a classification layer over all the answers. In this
example, the model predicts ”giraffe” as an answer, which
correctly justifies the generated explanation.

Retrieval-based Attack: In this evaluation framework,
we measure the degree our model is susceptible to corre-
lations and bias in the dataset by attacking it with similar
inputs. For vision-language tasks, we measure the degree
of biasness to both text and images. We will limit our ex-
planation to the biasness to text, as the biasness to images
is equivalent. To measure the biasness to text, we consider
a text as a query to an image-text retrieval model, and re-
trieve K similar images close to the text query in the em-
bedding space. For example, the text query could be ”is
this a healthy meal?” and the retrieved images would be im-
ages of different types of meals. Here, we would like to
observe the following: given the same question, would the
generated explanation always be the same for the different
retrieved images? We assume that the same explanations
are not due to model reasoning, but rather than correlations
and bias in the dataset. In this case we would expect a high
cosine intra-distance (distance between the generated expla-
nations of all the retrieved elements). After retrieving the
images, we supply our NLX-GPT model with the fixed text
query (question) and vary the images (retrieved elements)
to generate K different explanations. Given a query, let
G = {g1 . . . gK} be the set of generated explanations for
all the K retrieved elements. We feed each gk ∈ G into
a language representation model to get its encoded vector
representation. By putting together all encoded representa-
tions, we obtain a matrix V ∈ RK×d, where d is the dimen-
sion of the encoded representation. We first perform L2-
normalization on each row of V ; that is, v̄k = vk/∥vk∥2,
∀k = 1, . . . ,K. We then compute the gram matrix V̄ V̄ T

of the normalized matrix V̄ to find the average cosine dis-
tance between each sample with all the other samples as:
savg = 1

K

∑
i∈U

[
V̄ V̄ T

]
i
, and U is the set of entries in the

upper triangular part of V̄ V̄ T (see green part of the matrix
in Figure 3). Note that the negative distances are clamped to
0. Thus, savg represents the average intra-distance between
the generated explanations of the retrieved elements. The
lower the distance is, the lower the bias will be. Therefore,
a lower distance is better. We choose Sentence-BERT [41]
as the language representation model, a BERT model fine-
tuned to contrast between sentence pairs. We use CLIP [38]
as the retrieval model. Note that this evaluation framework
requires no ground-truth labels, which is advantageous. For
vision tasks, since there is no question or hypothesis in-
volved, we utilize an image-retrieval model (i.e., the image
part of CLIP [38]) to retrieve similar images to a given im-
age query, and the remaining process is the same. Figure 3
depicts the retrieval-based attack evaluation framework.

Figure 4. The explain-predict evaluation framework.

4. Experiments and Results

We mainly experiment with 3 different vision and vision-
language NLE datasets: VQA-X [36], ACT-X [36] and e-
SNLI-VE [20]. We also experiment with the VCR [58]
dataset by re-formulating it as a text generation task. Since
the setup of VCR is different from the previously men-
tioned NLE datasets, we exclude it from the main results
and refer readers to the Appendix. VQA-X is a vision-
language NLE dataset which extends the Visual Question
Answering (VQA v2) dataset [1] and provides explanations
for the answers. The images are obtained from the COCO
dataset [30]. It contains 33K QA pairs (28K images). ACT-
X is a vision NLE dataset which extends the activity recog-
nition dataset [4] and provides explanations for the activity
answers. It contains 18K images. Finally, e-SNLI-VE [20]
is a recently introduced vision-language NLE dataset which
provides explanations for the visual entailment prediction
task (the task of predicting whether an image and hypothesis
entail, contradict or are neutral to each other), and mainly
corrects [14]. The images are obtained from Flickr30k [37].
It contains over 430K examples. There are currently two
different ways previous works evaluate NLE with automatic
NLG metrics. The first is evaluating all the explanations
in the dataset, regardless of whether the predicted answer
for the explanation is true or false. This has been used
in [36, 54]. We refer to this variant as ”unfiltered”. The
second way is to only consider the explanations for which
the predicted answer is correct. This assumes that an expla-
nation is wrong if it justifies a wrong answer, and is there-
fore not considered in the evaluation. This has been used
in [20]. We refer to this variant as ”filtered”. We evaluate
our method on both variants.

4.1. Quantitative Analysis

Table 2 shows our results on the ”unfiltered” variant. As
seen, our model outperforms all previous works on both
VQA-X and ACT-X. Table 3 shows our results on the ”fil-
tered” variant. Our model also outperforms all previous
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Table 4. Explain-Predict scores. GT indicates that the ground-
truth explanations are fed. Scores are in %

Dataset GT NLX-GPT
VQA-X 86.35 77.82

e-SNLI-VE 93.10 73.43
ACT-X 65.09 48.14

Table 5. Retrieval-based attack scores. K indicates how many
elements we retrieve for a given query. Lower is better.

Image Biasness Text Biasness
K@5 K@10 K@5 K@10

VQA-X 44.56 44.99 47.84 46.26
e-SNLI-VE 39.79 37.95 67.16 65.69

Image Biasness
K@5 K@10 K@15

ACT-X 63.78 55.08 48.19

models on most of the scores on both VQA-X and e-SNLI-
VE, while being much more memory efficient, a lot more
faster, and requiring no regional and strong multi-modal
features. We also show our task performance accuracy
scores. For VQA-X, we consider an answer to be correct if
it is included in the set of all possible ground-truth answers.
In Table 4, we report our results on our proposed explain-
predict evaluation framework. We also show the results
when feeding the ground-truth explanations (column indi-
cated by ”GT”). This gives a measure on the top-performing
score. In Table 5, we show our results on our proposed
retrieval-based attack framework. These are computed by
averaging over all the intra-distances scores for all the test
data (images or text) in the respective dataset (lower is bet-
ter). We report scores when we retrieve K = 5, 10, 15 ele-
ments for a given query.

4.2. Qualitative Analysis

In Figure 5 we visualize the attention maps for the pre-
dicted answer, which is modeled as a text prediction task
along with the explanation. In Figure 6, we visualize the
attention map for the predicted answer without and with
model pretraining. This clearly shows how model pretrain-
ing helps the model to reason and visual-ground the correct
answer on which the explanation will be conditioned on. In
Figure 7, we show some qualitative results from our model
on all three tasks. We refer to the Appendix for more quali-
tative examples, failure cases and retrieval-based attack ex-
amples.

4.3. Ablation Studies

We ablate 2 different aspects of our model: First, we
wish to observe how much performance does pretraining
(for VQA-X and ACT-X) or concept detection (for e-SNLI-

Figure 5. The attention maps for the predicted answer

Figure 6. The attention maps for the predicted answer without
pretraining (middle) and with pretraining (right)

VE) add to the overall performance. The last two rows in
Tables 2 and 3 demonstrate this effect. Second, we ablate
different image encoders. Particularly, we experiment with
the vision transformer [15], ResNet-101 [17], DeiT [50] and
bottom-up features [3]. Table 6 demonstrates our results on
these image encoders. The best performance is obtained by
the CLIP vision transformer [38]. Different from [47], we
find the CLIP vision transformer to outperform the CLIP
ResNet-101. We also show the superiority of our model
even with a ResNet-101 pretrained on ImageNet-1K [26] or
with bottom-up features [3]. Note that the scores in Table 6
are without image-caption pretraining.

5. Limitations
There is no free lunch – Although our model brings many

advantages, it still has some limitations. It performs slightly
worse than [20] on the e-SNLI-VE task for three automatic
NLG metrics: METEOR, SPICE and BERTScore. These
metrics have shown high correlation with human judgment
in [20]. Our model thus favors N-gram (such as BLEU,
ROUGE) and human consensus (such as CIDER) metrics
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Figure 7. Some qualitative examples from our model on the three tasks

Table 6. Ablation studies on different image encoders. The scores
are filtered as in Table 3. Also note that the scores are without im-
age captioning pretraining. † indicates that we use the CLIP model
[39] weights. ⋆ indicates the model is pretrained on ImageNet-1K.
↑ means the vision backbone is fine-tuned. Otherwise, the vision
backbone is fixed.

Image Backbone BLEU-4 METEOR CIDER ROUGE
ViT† 28.1 22.6 108.5 50.9

ResNet-101† 26.7 22.1 102.3 50.6
DeiT⋆ 26.4 21.8 97.6 49.7

ResNet-101⋆ 22.4 19.5 81.6 45.7
ResNet-101⋆↑ 25.2 20.5 95.2 47.3

BU-feats 26.5 22.5 101.1 50.1

on the e-SNLI-VE task and gives more weight to those met-
rics rather than the others. We also observe that other NLE
models on the e-SNLI-VE task give more weight to either
the former or the later group of metrics, but not both. This is
also observed in [20] where the BLEU-N, R-L and CIDER

scores are lower than ours.

6. Conclusion and Future Directions
We proposed NLX-GPT, a model which can simultane-

ously predict an answer and explain it by formulating the
answer prediction as a text generation task along with the
explanation. We also proposed two new evaluation frame-
works to better evaluate the generated explanations. In the
future, we would like to take advantage of powerful lan-
guage understanding models through techniques such as
distillation, or even by leveraging NLE datasets aimed for
NLP tasks, which are much more diverse and of large-scale,
and thus can greatly benefit NLE vision-language models.
We also expect to see self-critical sequence training [42] or
its better variants [31] incorporated.
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