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Figure 1. We propose a zero-shot text-to-shape generation method named CLIP-Forge. Without training on any shape-text pairing labels,
our method generates meaningful shapes that correctly reflect the common name, (sub-)category, and semantic attribute information.

Abstract

Generating shapes using natural language can enable
new ways of imagining and creating the things around
us. While significant recent progress has been made in
text-to-image generation, text-to-shape generation remains
a challenging problem due to the unavailability of paired
text and shape data at a large scale. We present a sim-
ple yet effective method for zero-shot text-to-shape gener-
ation that circumvents such data scarcity. Our proposed
method, named CLIP-Forge, is based on a two-stage train-
ing process, which only depends on an unlabelled shape
dataset and a pre-trained image-text network such as CLIP.
Our method has the benefits of avoiding expensive inference
time optimization, as well as the ability to generate multiple
shapes for a given text. We not only demonstrate promising
zero-shot generalization of the CLIP-Forge model qualita-
tively and quantitatively, but also provide extensive compar-
ative evaluations to better understand its behavior.

1. Introduction

Generating 3D shapes from text input has been a chal-
lenging and interesting research problem with both signif-
icant scientific and applied value [19, 22, 23, 34]. In the
artificial intelligence and cognitive science research com-
munities, researchers have long sought to bridge the two

modalities of natural language and geometric shape [3, 55].
In practice, text-to-shape generation models are a key en-
abling component to new smart tools in creative design and
manufacture as well as animation and games [6].

Significant progress has been made to connect text and
image modalities [10, 18, 26, 27, 52, 54]. Recently, DALL-
E [49] and its associated pre-trained visual-textual embed-
ding model CLIP [48] has shown promising results on the
problem of text-to-image generation [44]. Notably, they
have demonstrated strong zero-shot generalization while
evaluated on tasks the model has not been specifically
trained on. Shape generation is a more fundamental prob-
lem than image generation, because images are projections
and renderings of the inherently 3D physical world. There-
fore, one may wonder if the success in 2D can be transferred
to the 3D domain. This turns out to be a non-trivial prob-
lem. Unlike the text-to-image case, where paired data is
abundant, it is impractical to acquire huge paired datasets
of texts and shapes.

Leveraging the progress of text-to-image generation, we
present CLIP-Forge. As shown in Figure 2, we overcome
the limitation of shape-text pair data scarcity via a simple
and effective approach. We exploit the fact that 3D shapes
can be easily and automatically rendered into images us-
ing standard graphics pipelines. We then utilize pre-trained
image-text joint embedding models such as [25, 48], which
bring text and image embeddings in a similar latent space so
that they can be used interchangeably. Hence, we can train
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Figure 2. Illustration of the main idea. It is difficult to directly
learn text-to-shape generation due to the lack of paired data. In-
stead, we use renderings of shapes with a pre-trained image-text
joint embedding model to bridge the data gap between 3D shapes
and natural language.

a model using image embeddings, but at inference time re-
place it with text embeddings.

In CLIP-Forge, we first obtain a latent space for shapes
via training an autoencoder, and we then train a normalizing
flow network [12] to model the distribution of shape em-
beddings conditioned on the image features obtained from
the pre-trained image encoder [48]. We use the renderings
of 3D shapes and hence, no labels are required for training
our model. During inference, we obtain text features of the
given text query via the pre-trained text encoder. We then
condition the normalizing flow network with text features
to generate a shape embedding, which is converted into 3D
shape through the shape decoder. In this process, CLIP-
Forge requires no text labels for shapes, which means it can
be extended easily to larger datasets. Since our method is
fully feed-forward, it also has the advantage of avoiding the
expensive inference time optimizations as employed in ex-
isting 2D approaches [17, 56].

The main contributions of this paper are as follows:

• We present a new method, CLIP-Forge, that generates
3D shapes directly from text as shown in Figure 1,
without requiring paired text-shape labels.

• Our method has an efficient generation process requir-
ing no inference time optimization, can generate mul-
tiple shapes for a given text and can be easily extended
to multiple 3D representation.

• We provide extensive evaluation of our method in
various zero-shot generation settings qualitatively and
quantitatively.

2. Related Work
Zero-Shot Learning. Zero-shot learning is an important
paradigm of machine learning, which typically aims to
make predictions on classes that have never been observed
during training, by exploiting certain external knowledge
source. The literature originates from the image classifica-
tion problem [32, 41], and has been recently extended to
generative models, in particular, the task of synthesizing
images from text [49]. As far as our best knowledge, our
method is the first to bring this paradigm to the 3D shape
domain, which enables efficient shape generation from nat-
ural language text input.
Applications of CLIP. A major building block of our
method is CLIP [48], which shows groundbreaking zero-
shot capability using a mechanism to connect text and im-
age by bringing them closer in the latent space. Previous
work such as ALIGN [25], has used a similar framework on
noisy datasets. Recently, pre-trained CLIP has been used
for several zero-shot downstream applications [15, 17, 25,
40, 44, 53]. The most similar previous work to ours is zero-
shot image and drawing synthesis [17, 44]. Typically, these
methods involve iteratively optimizing a random image to
increase certain CLIP activations. There is still no clear
way to apply them to 3D due to the significantly higher
complexity. Our approach conditions a shape prior network
with CLIP features, which has the advantages of signifi-
cant speed-up and the capability to generate multiple shapes
from a single text.
3D Shape Generation and Language. Recently, there has
been tremendous progress in 3D shape generating in differ-
ent data formats such as point cloud [2, 33, 58], voxel [57],
implicit representation [7,36,43] and mesh [38]. While our
method is not limited to produce one 3D data format, we
mainly adopt the implicit representation in this work due to
their simplicity and superior quality. More recently, meth-
ods that use text to localize objects in 3D scene have been
explored [1, 5]. A metric learning method for text-to-shape
generation is presented in [6]. The main difference and ad-
vantage of our approach is its zero-shot capability which
requires no text-shape labels.
Multi-Stage Training. In this work we follow a multi-stage
training approach, where we first learn the embeddings of
the target data and then learn a probabilistic encoding model
for the learned embeddings. Such an approach as been ex-
plored in image generation [14,35,39] and 3D shape gener-
ation [2, 7]. Concretely for CLIP-Forge, we first train a 3D
shape autoencoder and then model the embeddings using
normalizing flow.
Normalizing Flow. Generative models have extensive use
cases such as content creation and editing. Flow-based
generative networks [11, 12, 50] is able to perform exact
likelihood evaluation, while being efficient to sample from.
They have been widely applied to a variety of tasks rang-
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Figure 3. An overview of the CLIP-Forge method. The top row shows the two training stages of shape autoencoder training, and the
conditional normalizing flow training. The bottom row shows how text-to-shape inference is conducted.

ing from image generation [30], audio synthesis [28] and
video generation [31]. Recently, normalizing flow has been
brought to the 3D domain enabling fast generation of point
clouds [46,58]. In this paper, we employ a normalizing flow
model [12] to model the conditional distribution of latent
shape representations given text and image embeddings.

3. Method

Our method requires a collection of 3D shapes with-
out any associated text labels, which takes the format of
S = {(In,Vn,Pn,On)}Nn=1. Each shape in the collection
S is comprised of a rendered image In, a voxel grid Vn,
a set of query points in the 3D space Pn, and space occu-
pancies On. As an overview, the CLIP-Forge training has
two stages. In the first stage, we train an autoencoder with
a voxel encoder and an implicit decoder. Once the autoen-
coder training is completed we obtain a shape embedding
en for each 3D shape in S. In the second stage, we train a
conditioned normalizing flow network to model and gener-
ate en, which is conditioned with image features obtained
from the CLIP image encoder using In. During inference,
we first convert the text to the interchangeable text-image
latent space using the CLIP text encoder. We then condition
the normalizing flow network with the given text features
and a random vector sampled from the uniform Gaussian
distribution to obtain a shape embedding. Finally, this shape
embedding is converted to a 3D shape using the implicit de-
coder. The overall architecture is shown in Figure 3.

3.1. Stage 1: Shape Autoencoder

The autoencoder consists of an encoder and a decoder.
We use an encoder fV to extract the shape embedding en

for the training shape collection, using Vn of resolution 323

as the input. We use a simple voxel network that comprises
of a series of batch-normalized 3D convolution layers fol-
lowed by linear layers. This can be written as:

en = fV (Vn) + ϵ, where ϵ ∼ N (0, 0.1) (1)

where en is augmented with a Gaussian noise. We find em-
pirically injecting this noise improves the generation quality
as later shown in the ablation study. This is also theoreti-
cally verified to improve results for conditional density es-
timation [51]. We then pass en through an implicit decoder.
Our decoder architecture is inspired by the Occupancy Net-
works [36], which takes concatenated en and Pn as input.
Our implicit decoder consists of linear layers with residual
connections and predicts On. We use a mean squared error
loss between the predicted occupancy and the ground truth
occupancy. Our framework is flexible and can be adapted to
different forms of architectures. To showcase this, we use a
PointNet [47] as the encoder and a FoldingNet [59] as the
decoder that generates point clouds instead of occupancies,
which are trained with a Chamfer loss [2].

3.2. Stage 2: Conditional Normalizing Flow

We train a normalizing flow network using en and its
corresponding rendered images In. Note that each In can
include multiple images of the same shape from different
rendering settings, such as changing camera viewpoints.
We model the conditional distribution of en using a Real-
NVP network [12] with five layers, which transforms the
distribution of en into a normal distribution. We obtain
the condition vector cn by passing In through the ViT [13]
based CLIP image encoder fI , whose weights are frozen
after pre-training. cn is concatenated with the transformed
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feature vector at each scale and translation coupling layers
of RealNVP:

cn = fI(In), z1:dn = e1:dn and (2)

zd+1:D
n = ed+1:D

n ⊙exp
(
s([cn; e

1:d
n ])

)
+ t([cn; e

1:d
n ]) (3)

where s and t stand for the scale and translation function
parameterized by a neural network. The intuition here is
we split the object embedding en into two parts where one
part is modified using a neural network that is simple to
invert, but still dependent on the remainder part in a non-
linear manner. The splitting can be done in several ways
by using a binary mask [12]. In particular, we investigate
two strategies: checkerboard masking and dimension-wise
masking. The checkerboard masking has value 1 where the
sum of spatial coordinates is odd, and 0 otherwise. The
dimension-wise mask has value 1 for the first half of latent
vector, and 0 for the second half. The masks are reversed
after every layer. Finally, we impose a density estimation
loss on the shape embeddings as:

log (p(en)) = log
(
p
(
zn

))
+ log

(∣∣∣∣det(∂f(en)

∂zTn

)∣∣∣∣)
where f is the normalizing flow model, and ∂f(en)/∂z

T
n is

the Jacobian of f at en [12]. We model the latent distribu-
tion p(zn) as an unit Gaussian distribution.

3.3. Inference

During the inference phase, we convert a text query t into
the text embedding using the CLIP text encoder, fT . As
the CLIP image and text encoders are trained to bring the
image and text embeddings in a joint latent space, we can
simply use the text embedding as the condition vector for
the normalizing flow model, i.e. c=fT (t). Once we obtain
the condition vector we can sample a vector from the nor-
mal distribution and use the reverse path of the flow model
to obtain a shape embedding in p(en). The normal distri-
bution allows us to sample multiple times to obtain mul-
tiple shape embeddings for a given text query. We obtain
the mean shape embedding by using the mean of the nor-
mal distribution. The mean shape embedding represents the
prototype for a given text query. These shape embeddings
are then converted to 3D shapes using the implicit decoder
trained in stage 1.

4. Experiments
In this section, we first describe the experimental setup

and then show qualitative and quantitative results. More
results can be found in the supplementary material.
Dataset. For all of our experiments, we use the
ShapeNet(v2) dataset [4] which consists of 13 rigid object

classes. We use the processed version of the data which
consists of rendered images, voxel grids, query points and
their occupancies from shapes as provided in [9, 36].
Implementation Details. For both training stages, we use
the Adam optimizer [29] with a learning rate of 1e-4 and a
batch size of 32. We train the stage 1 autoencoder for 300
epochs whereas we train the stage 2 conditional normal-
izing flow model for 100 epochs. For all the experiments
below we use a latent size of 128 with a BatchNorm [24]
based voxel encoder and a ResNet based decoder inspired
by the Occupancy Network [36]. We use a RealNVP [12]
based network with dimension-wise masking for the flow
model. The design decisions are discussed in the ablation
study section and further details are provided in the supple-
mental material.
Evaluation Metrics. To evaluate our method thoroughly,
we consider four criteria and several metrics for those cri-
teria respectively. Furthermore, for some criteria we man-
ually define a set of 234 text queries (or prompts). These
queries include direct hyponyms for the ShapeNet cate-
gories from the WordNet [16] taxonomy, sub-categories and
relevant shape attributes for a given category (e.g. a round
chair, a square table, etc.) across the ShapeNet(v2) dataset.
The text queries are listed in the appendix. The criteria are
as follows:

1. Reconstruction Quality. This criteria is mainly used
to check the reconstruction capabilities of the stage
1 autoencoder on the test set. We use two metrics:
Mean Square Error (MSE) on 30,000 sample query
points and Intersection over Union (IOU) with 323

voxel shapes.

2. Generation Quality. We use this criteria to evaluate
the quality of generated shapes on text queries. We
consider two metrics: Fréchet inception distance (FID)
[21] and Maximum Measure Distance (MMD) using
IOU . To calculate FID and MMD, we first take 224
text queries as mentioned above and generate a mean
shape embedding for each text query. We then gener-
ate 323 resolution 3D objects for all the text queries.
For FID, we compare the generated 3D shapes with
the test dataset of ShapeNet. FID depends on a pre-
trained network, for which we train a voxel classifier
on the 13 ShapeNet classes and use the feature vec-
tor from the fourth layer. We provide more details in
the appendix. In the case of MMD, for each generated
shape we match a shape in the test dataset based on the
highest IOU. We then average the IOU across all the
text queries. Note, MMD is a variation of the Mini-
mum Measure Distance as described in [2], which we
believe is more suitable for implicit representations as
we do not need to sample the surface.

3. Diversity Across Categories. To make sure we gen-
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method FID↓ MMD↑ Acc.↑

text2shape-CMA [6] 16078.05 0.4992 4.27
text2shape-supervised [6] 14881.96 0.1418 6.84
‘CLIP-Forge (ours) 2425.25 0.6607 83.33

Table 1. Comparing CLIP-Forge with supervised models using the
text2shape dataset.

erate shapes across categories we design a new crite-
ria. First, we generate the shapes based on the text
queries as mentioned above. For each text query we
have an assigned label. We then pass the generated
voxels through the same classifier used to calculate the
FID metric. We then report the accuracy based on the
assigned label. We refer to this metric as Acc. through-
out the text. Also note that the FID metric gives a good
measure for diversity as we compare it with the test
distribution.

4. Human Perceptual Evaluation. To evaluate CLIP-
Forge’s ability to provide control over the generated
shape using attribute, common name, and sub-category
information from the text prompt, we conducted a per-
ceptual evaluation using Amazon SageMaker Ground
Truth and crowd workers from Mechanical Turk [37].
More detail is provided in section 4.3.

4.1. Comparison with Supervised Models

We compare CLIP-Forge with text-to-shape generation
models that are trained with direct supervision signals.
The only existing paired text-shape dataset is provided by
Text2Shape [6], which contains 56,399 natural language
descriptions for ShapeNet objects within the chair and ta-
ble categories. We train two supervised models using
the Text2Shape dataset: text2shape-CMA uses the cross-
modality alignment loss described in [6] and text2shape-
supervised uses a direct MSE loss in the embedding space.
For both supervised baseline methods, we use the same
CLIP text encoder and occupancy network shape encoder
and decoder to ensure fair comparison. Table 1 shows the
result on our text query set. It can be seen that CLIP-
Forge significantly outperforms both supervised baselines
in all evaluation metrics. In particular, we observe that
text2shape-CMA generates generic shapes such as boxes
and spheres that do not resemble specific objects. The
text2shape-supervised baseline fails to generalize and tends
to generate chair- and table- like shapes that it is trained on,
despite the text query is irrelevant to these two categories.

4.2. Qualitative Results

We qualitatively evaluate generative capabilities of our
method. First, in Figure 4 we show that our network can
generate multiple and diverse shapes using a single text

query. This can be useful in a design process for imagin-
ing new variations. Next, we show that our network can
generate shapes based on category, sub-category, common
semantic words, and common shape attributes as shown in
Figure 5. It can be seen that our network captures seman-
tic notion of the text query. Finally, we show the generated
shapes from interpolation between two text inputs in Fig-
ure 7. The interpolation results imply that the conditioning
space is smooth.

4.3. Human Perceptual Evaluation

In this study we measure whether providing additional
detail in the text prompt gives rise to semantically appropri-
ate changes in the generated shape. To evaluate if the shape
changes are semantically correct, we used human evalua-
tors from Amazon Mechanical Turk [37]. The human eval-
uators were presented with pairs of images as shown in Fig-
ure 6(a). One image was generated using the ShapeNet(v2)
category name (for example “a car”) while the other was
generated using text which described a sub-category or
shape attribute (for example “a truck” or “a round car”). The
human evaluators were asked to identify which image best
matched the sub-category or attribute text prompt. Each im-
age pair was shown to 9 independent human evaluators. We
record the fraction of image pairs for which more than half
of the evaluators selected the image generated using the sub-
category or attribute augmented prompt.

The results of the perceptual study are shown in Fig-
ure 6(b). The human evaluators correctly identified the
model generated by the detailed prompt for 70.83% of the
image pairs, showing that our method is able to utilize at-
tribute and sub-category information in a way which is rec-
ognizable for humans. We see the attribute prompts pro-
duced shapes which were more easily identified than those
from the sub-category prompts. One reason for this result
is that the attribute augmented prompts give a clear descrip-
tion of how the object should look, while many of the sub-
categories are less easily recognized given the quality of
generation. For example “A circular bench” was correctly
identified by 8/9 evaluators while “A laboratory bench” was
not recognized by any of the 9 humans.

4.4. Choice of Prefix in Text Prompt

Designing a prompt can be challenging as small changes
in words can potentially have a impact on our downstream
task. In this experiment, we investigate how much does
prompt selection effect the performance of our method. We
specifically investigate what prefix to choose before a text
query. The investigations are shown in Table 2. We find
that prefix selection indeed has a effect on generation qual-
ity and diversity. A interesting avenue of future research
would be to investigate prompt engineering [60].
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“a chair” “a plane”

“a truck” “a square table”

Figure 4. Our method can generate multiple examples given a text query. In this case, we are generating 3 shapes for a given text prompt.

“a pistol” “an ak-47” “a yacht” “a dressing table” “a beach wagon” “a van”

“a throne” “a stool” “a sofa” “a telly” “a table lamp” “a delta wing”

“a monster truck” “a muscle car” “a speedboat” “a sail boat” “a bar stool” “a wing chair”

“a table” “a circular table” “a rectangular table” “a square table” “a thick table” “a thin table”

Figure 5. Illustrating our method can generate shapes via text containing common names, sub-category and attribute. The first two rows
show shape generation based on using common names to describe an object. The next row shows two shapes for sub-category in car, boat
and chair category. The final row illustrates the different shape attributes (circular, square, etc.) for the table class.
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Figure 6. a) An example of an image pair and text prompt shown to
the human evaluators. b) The percentage of image pairs for which
the model generated by the text prompt was correctly identified.

prefix FID↓ MMD↑ Acc.↑

“a”/“an” 2425.25 0.6607 83.33
“a photo of” 2400.36 0.6490 78.63
“a photo of a” 2484.49 0.6620 80.77
“a picture of a” 2560.98 0.6681 81.20
“a rendering of” 3029.92 0.6311 76.50
“a photo of one” 2715.45 0.6597 82.48
“one” 3142.07 0.6608 87.18

Table 2. Different Prompts and their effect.

“a truck” → “a sports car”

“a cabinet” → “a table”

Figure 7. Interpolation results between two text queries.

4.5. CLIP-Forge for Point Cloud

In this section, we investigate if our method can be sim-
ply applied to a different representation, namely, a point
cloud. As stated earlier we use the PointNet encoder [47]
and FoldingNet decoder [59]. We use the same flow archi-
tecture as mentioned above. We train the network on the
ShapeNet(v2) dataset. The results are shown in Fig 8. It
can be seen that our method does a satisfactory job in gen-
erating 3D point clouds using text queries while using off
the shelf point cloud encoders and decoders.

5. Ablation Studies

In this section, we discuss how different components of
our algorithm affect our model. For all our ablation studies,
we use the above mentioned hyperparameters for the au-
toencoder unless otherwise stated. For the flow model, we
use RealNVP model with Checkerboard masking for most
experiments unless otherwise stated.

“an f-16 ” “a bench” “a desk”

“a lamp” “a billiard table” “a thin car”

“a round table” “a supersonic plane” “a sailing boat”

Figure 8. CLIP-Forge point cloud generations.

5.1. Stage 1 Autoencoder Design Choice

In Table 3, we experiment with different parts of the au-
toencoder architecture. The first subsection of Table 3 in-
vestigates how adding noise in the latent space helps our
model. Empirically it can be seen from the table that adding
noise not only helps the reconstruction but also improves
the generation and diversity of the shapes generated. Next
we investigate the size of the latent space and find that our
model works reasonably well while using a smaller latent
size of 128. Finally, we explore different encoders and de-
coders for our model. The results indicate that our model
can take different representations, point cloud, as the input
to the encoder. We provide more details regarding the en-
coder and decoder in appendix.

5.2. Stage 2 Prior Design Choice

In this section, we investigate the design choice for the
prior network. First, we investigate different conditioning
mechanisms, namely, conditioning the affine coupling lay-
ers and conditioning the prior network. From Table 4, it can
be seen the choice of conditioning matters and conditioning
the affine layers is the most effective. This intuitively makes
sense as we are conditioning multiple times as we are con-
catenating each coupling layer whereas we just condition
the prior once. A similar phenomena is observed in the case
of an architectures like [7,43], where they concatenated the
condition vector multiple times.

In Table 4, we also investigate different masking tech-
niques (Dimension masking and Checkered masking) [12]
and a distinct flow architecture: Masked Autoregressive

18609



noise latent encoder decoder IOU↑ MSE↓ FID↓ MMD↑ Acc.↑

×
128 VoxEnc RN-OccNet

0.7275 0.01120 3871.48 0.6559 71.94
✓ 0.7374 0.01159 2688.72 0.6732 79.34

✓
256

VoxEnc RN-OccNet
0.7375 0.01158 3177.92 0.6535 78.77

512 0.7362 0.01155 3577.72 0.6374 74.50

✓ 128
PointNet RN-OccNet 0.7082 0.01051 2646.93 0.6746 76.50

ResVoxEnc RN-OccNet 0.7371 0.01075 3146.94 0.6509 74.64
VoxEnc CBN-OccNet 0.7674 0.01025 2956.78 0.6645 78.77

Table 3. Effects of different autoencoder design choices in stage 1, including the usage of Gaussian noise, the latent vector size, as well as
various encoder and decoder architectures.

condition prior FID↓ MMD↑ Acc.↑

affine coupling
RealNVP-C

2688.72 0.6732 79.34
prior network 5227.32 0.6600 62.39

affine coupling
RealNVP-D 2591.87 0.6751 82.19
MAF [42] 6052.62 0.6273 59.40

Table 4. Effects of different conditional normalizing flow design
choices in stage 2.

Flow (MAF) [42]. It can be seen from the table that both
masking techniques are effective but Dimension masking
(RealNVP-D) seems to be more effective than Checkered
masking (RealNVP-C). Furthermore, we find that MAF
flow prior network is not as effective as RealNVP. For the
remainder of the ablation studies we use the Dimension
Masking for RealNVP.

5.3. Number of Renderings

Next, we evaluate if using more views helps the gener-
ation quality and diversity. We report the results in Table
5. The views are randomly selected from the renderings as
prepared in [9]. It can be seen that using more views in
general help improve the generation quality and diversity.
As we are using a pre-trained CLIP model which is trained
on natural images from different viewpoints, training using
multiple views of shape renderings allows us to better cap-
ture the output distribution of CLIP model.

5.4. CLIP Architecture

In this section, we evaluate using different CLIP mod-
els to see how increasing the size of CLIP model and us-
ing ResNet [20] or ViT [13] based clip model effects our
downstream task. We empirically observe from Table 5 that
increasing the size of the model, i.e from ViT-B/32 to ViT-
B/16, does not effect the text based generation too much.
A more surprising result is that ResNet based CLIP model
performs inferior to Visual Transformers. We hypothesize
that patch based methods such as ViT focus more on the
foreground object rather than the background. This is espe-

rendering CLIP FID↓ MMD↑ Acc.↑

1
ViT-B/32

2983.72 0.6586 79.77
5 2776.28 0.6655 80.20
10 2622.71 0.6652 80.63

20
ViT-B/32 2591.87 0.6751 82.19
ViT-B/16 2515.81 0.6573 80.48
RN50x16 2906.75 0.6591 75.93

Table 5. Effects of different numbers of renderings and CLIP ar-
chitectures.

cially helpful in the case of image renderings.

6. Limitations and Future Work
We believe our method can be improved in several ways.

Firstly, the quality of generation is still lacking and we be-
lieve a novel future avenue would be to combine ideas from
local implicit methods [8, 45]. Furthermore, our work cur-
rently focuses on geometry and it would be interesting to
integrate texture to our model. Finally, we are limited by
CLIP’s trained data distribution and a potential future di-
rection would be to fine tune it for a specfic dataset.

In terms of potential negative impact, language-driven
3D modeling tools enabled by CLIP-Forge might lower the
technical barriers to 3D modeling and potentially reduce
some tedious 3D modeling tasks for 3D modelers and an-
imators. However, it brings a greater benefit of democratiz-
ing 3D content creation to the general public, similar to that
everyone can take photos and make videos today.

7. Conclusion
We presented a method, CLIP-Forge, that can efficiently

generate multiple 3D shapes while preserving the semantic
meaning from a given text prompt. Our method requires no
text-shape labels as training data, offering an opportunity to
leverage shape-only datasets such as ShapeNet. Finally, we
showed that our model can generate results on other repre-
sentations such as point clouds and we thoroughly studied
different components of the method.
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