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Abstract

Dimensionality reduction is crucial both for visualiza-
tion and preprocessing high dimensional data for machine
learning. We introduce a novel method based on a hierar-
chy built on 1-nearest neighbor graphs in the original space
which is used to preserve the grouping properties of the data
distribution on multiple levels. The core of the proposal is
an optimization-free projection that is competitive with the
latest versions of t-SNE and UMAP in performance and vi-
sualization quality while being an order of magnitude faster
at run-time. Furthermore, its interpretable mechanics, the
ability to project new data, and the natural separation of
data clusters in visualizations make it a general purpose
unsupervised dimension reduction technique. In the paper,
we argue about the soundness of the proposed method and
evaluate it on a diverse collection of datasets with sizes
varying from 1K to 11M samples and dimensions from 28
to 16K. We perform comparisons with other state-of-the-art
methods on multiple metrics and target dimensions high-
lighting its efficiency and performance. Code is available
at https://github.com/koulakis/h-nne

1. Introduction

Dimensionality reduction techniques are now increas-
ingly used in many fields of science and have to cope with
an ever increasing size of real-world datasets. It plays an
important role both for visualization and processing of high
dimensional data. Much of current research is focused on
finding unsupervised algorithms that are both scalable to
massive data and are able to preserve the structure of data
in less dimensions. Most of them attempt to retain the lo-
cal or global structure of the data by optimizing over pair-
wise distances in the target space. Two main directions
for the current dimension reduction techniques can be iden-
tified with respect to how such local or global neighbor-
hood is preserved in terms of the distances. Methods such
as PCA [15], MDS [18] and Sammom mapping [31] try

Figure 1. Visualization of the entire ImageNet dataset. Speed and
embedding quality of dimension reduction methods.

to preserve the global distances among all samples in the
data. Whereas more recent popular methods such as t-
SNE [35,36], LargeVis [33], and UMAP [26,30] seek to ad-
ditionally preserve the local structure e.g. by preserving the
distance relations in the k-neighborhood of each data sam-
ple. To retain such relations, these methods generally have
to solve an optimization problem with the goal of matching
the distribution of distances in the target space with their
distribution in the original space. For instance, t-SNE min-
imizes the Kullback-Leibler divergence between distribu-
tions of k-nearest neighbor (k-NN) distances fitted in the
high and low-dimensional space. Similarly, the more recent
method UMAP optimizes the embedding in the target space
with the goal of preserving the 1-skeleton of fuzzy simpli-
cial sets constructed in the original space. Such optimiza-
tions are computationally expensive in nature and account
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for the main complexity of these algorithms, thus limiting
their run-time performance on large scale datasets.

In this paper, we present a different approach which in-
stead of relying on point-level optimization, captures multi-
stage NN properties of the data and, using those, projects
points in a simple algorithmic way. The main tools used to
build this structure are Nearest Neighbor Graphs (NNGs)
which have been well studied. In [12] Epstein et al. show
that for a 1-NNG, its NN relations are well preserved in
a low dimensional space when the edges are placed on a
monotone logical grid [8]. An effective strategy for embed-
ding the NNG into an l-dimensional grid is to embed the
individual components of the graph separately. The con-
nected components of NNGs capture clusters of samples.
Recursively building 1-NNGs on the previously obtained
connected components provides a hierarchical view on how
samples are merged together at successive levels. Consid-
ering each connected component as a node in the hierarchy
one can identify complete paths on how these nodes and
their associated samples successively merge together from
bottom to top. Such a hierarchical node graph provides a
view of data in terms of how the local neighborhood is dis-
tributed in the high dimensional space. After an inexpen-
sive preliminary projection of the high dimensional data on
a desired low dimensional space we can use the original hi-
erarchical node graph in the target space to enforce the local
structure directly. We achieve this with a fast recursive top-
down approach by moving the clusters of samples towards
these nodes starting at the top level with the least number
of nodes and moving progressively downward to reach the
bottom i.e. the finer level.

Since our proposal is rooted in obtaining the Hierarchi-
cal 1-Nearest Neighbor graph based Embedding, we term
the method h-NNE. Figure 1 depicts an example of embed-
ding the ResNet-50 features of the full ImageNet dataset.
As seen, in comparison to the current state-of-the-art meth-
ods, not only do we achieve competitive embedding quality
- indicated by the trustworthiness metric - but also a signif-
icantly faster run-time. To summarize, our main contribu-
tion is an alternative dimensionality reduction and visual-
ization method which does not rely on expensive optimiza-
tion methods. This makes it operate at a magnitude faster
than existing methods, without requiring hyperparameter
tuning, and maintaining similar performance. In the fol-
lowing sections, before delving into the proposed method,
we will discuss the related works to place it in context and
followed by experiments and comparisons with the state-of-
the-art on a diverse collection of datasets.

2. Related work
Most of the current state-of-the-art unsupervised di-

mension reduction techniques aim at preserving the local
pairwise distances in a projected manifold. Hinton and

Roweis [14] introduced the Stochastic Neighborhood Em-
bedding (SNE), which creates a low-dimensional embed-
ding by enforcing the conditional probabilities (euclidean
distances converted to similarities) in the lower dimension
to be similar to those in the higher dimension. This is
achieved by fitting Gaussian distributions on the samples
and matching them to distributions in the lower dimen-
sion. Building on SNE, t-Distributed Stochastic Neighbor
Embedding (t-SNE) [36] substituted the Gaussian distribu-
tion, used in the low-dimensional space, with long-tailed
t-distributions. t-SNE is inherently computationally expen-
sive. Follow-up works of t-SNE such as Barnes-Hut t-SNE
[35], viSNE [2], FIt-SNE [20, 21], and opt-SNE [6], have
further improved t-SNE so it can converge faster and scale
better to larger datasets. Much of the followup work fol-
lows the same direction. For example, LargeVis [33] and
the current state-of-the art methods like UMAP [26] and
PaCMAP [38] have objective functions building on that of
t-SNE. These methods focus on improving efficiency and
preservation of more global structure along with the local
structure. This is commonly achieved by construction and
operations on weighted graphs. Typically a k-NN graph
is constructed in the original space and then used to en-
force the k-neighborhood of each sample point in a pre-
liminary projected space. All current state-of-the-art meth-
ods such as t-SNE [36], LargeVis [33], UMAP [26] and
PaCMAP [38] are heavily related in terms of this under-
lying process. A more thorough discussion on this k-NN
graph optimization view is provided in McInnes et al. [26]
that compares t-SNE, LargeVIs and UMAP optimization
equations in this context. The difference between these
techniques comes from the changes in the objective func-
tion that is used for optimizing the projected embedding.
For instance a common goal of optimization is to attract
together samples that lie in the same k-neighborhood and
repulse them from far away samples. If viewed in terms of
the k-NN graph layout this amounts to defining and using a
set of attractive forces applied along edges and a set of re-
pulsive forces applied among vertices. This is a non-convex
optimization problem and convergence is achieved by care-
fully changing the attraction and repulsion forces through
gradient descent based learning. In effect it is contrastive
learning by using samples in k-neighborhoods as positives
to the current data point and sampling negatives from the
rest. To reduce cost, UMAP employs negative sampling to
pick a subset of samples for the repulsive force whereas the
more recent PaCMAP defines highly-weighted near-pairs
and mid-near pairs to help preserve more structure. A re-
lated strategy is used by triplet constraint methods such as
TriMap [1] which is initialized with the low dimensional
PCA embedding. This embedding is then modified using a
set of carefully selected triplets from the high-dimensional
representation. Finally, t-SNE and UMAP methods have
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Figure 2. A summary of the h-NNE projection method.

their parametric versions [30, 34] where they train an MLP
with a similar objective function. The parametric methods
simplify the projection of new datapoints. Another impor-
tant consideration in these methods is their reliance on user
supplied hyperparameters. Apart from specifying the num-
ber of neighbors k to construct the graph, several other op-
timization specific parameters are also required.

Our approach is a major shift in contrast to these current
methods. Instead of building a weighted k-NN graph, we
create a clustering hierarchy by recursively building 1-NN
graphs with static edge links. This hierarchy is then used
to move samples in the lower dimensional space without
requiring the use of gradient descent based optimization.
Simultaneously, this removes the reliance on specific hy-
perparameters. This provides us with a highly efficient and
scalable dimension reduction method.

3. The h-NNE algorithm
Our projection algorithm consists of three main steps:

building a tree hierarchy based on 1-NNGs, computing a
preliminary projection with an approximate version of PCA
and adjusting the projected point locations based on the con-
structed tree. The projected point location adjustment can
be enhanced with an optional inflation step which can be
used to improve visualization. In the following sections, we
will elaborate on each step and provide some evidence of
their validity. Figure 2 gives an overview of the method.

3.1. Nearest neighbor graph based hierarchy

Several projection methods start by defining a structure
over the data which encodes the relative positions of points
and then project in a way that preserves this structure. For
example, UMAP relies on a weighted graph encoding near-

est neighbor relations while t-SNE uses a collection of lo-
cal distributions based again on the nearest neighbor rela-
tions. In our case, we strive for a structure which captures
both local neighbor properties of points and global cluster-
ing properties. In order to achieve this with a low computa-
tional cost, and at the same time keep the approach simple
and parameter free, we build a hierarchy based on 1-NN
relations between points. This approach is inspired by clas-
sical work on nearest neighbor graphs such as [12] and the
FINCH clustering method [32].

Assume that our dataset is X = {xi}i≤N , where xi ∈
RD. The first step in constructing the hierarchy entails
building NNG(X) which is a directed graph that connects
each point to its nearest neighbor. This can be performed by
using any nearest neighbor or approximate nearest neigh-
bor algorithm. Next, we identify the connected components
of NNG(X), denoted by {NNGi(X)}i≤g0 , which form
directed graphs with all edges pointing to a single bi-root.
For each graph NNGi(X), we compute its centroid c

(0)
i =

1
g0

∑
x∈NNGi(X)

x and thus form a new set of points C(0) =

{c(0)i }i≤g0 . We then repeat the same process of comput-
ing NNG(C(0)) and its components’ centroids to derive
C(1) and continue until we reach the smallest set of cen-
troids C(l) which contains at least three points. The NNG
hierarchy is then the tree TNNG(X) = ⟨

⋃
i≤l

C(i) ∪ X, E⟩,

where each centroid is connected to each of the points of the
NNG component which corresponds to it. Figure 3 displays
a single step of this iterative process.

In comparison with k-NNGs for k > 1, 1-NNGs are
quite small in size, which make them well-suited to con-
struct a fine-grained hierarchy with several levels. A sim-
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ple rule of thumb is that the number of points decreases
on average by a factor of 0.31 on every step. This can
be extracted from the following theorem assuming that, at
least locally, the data and centroids on higher levels are uni-
formly distributed. Though the validity of the assumption is
hard to verify, we notice that this rule holds for all observed
datasets.

Theorem 1 (Eppstein, Paterson, Yao [12]). The expected
number of components in NNG(X) for a uniform random
point set X in a unit square is asymptotic to approximately
0.31|X|.

3.2. Preliminary linear embedding

Though the clustering tree structure is enough to pro-
duce a projection respecting the partitions of the origi-
nal dataset on separate levels, the relative positions of the
points contained in the graph components NNGi(X) and
NNGi(C

(k)) need to be determined in the target space.
One could use a random projection, or even start with ran-
dom points, but there is an extra gain in both preservation
scores and in visual quality when using some meaningful
initial projection. We choose to use PCA and to accelerate
its computation, we estimate the covariance matrix of the
data using the centroids C(i) of a predefined level of the hi-
erarchy. One could as well sub-sample the original point set
X, but we notice that using the centroids increases stability
and avoids deviation of the initialization between runs. We
experimentally verify that this approximation of principal
components produces results comparable to using PCA on
the full data. We provide this analysis in the supplementary.

We choose the level of centroids to be the lowest level of
the hierarchy such that all levels above have cardinality less
than 1000. This implies that if the dataset is small, thus for
all i, |C(i)| < 1000, then the PCA will directly be computed
on X. The advantage of this approximation is that we can
reduce the computational cost of PCA from O(N · D2) to
O(D2) with N replaced with a factor of 1000.

Once the eigenvectors of PCA are computed, say in a
matrix V , then all points of X and all centroids Ci are pro-
jected from the higher dimension D to the lower dimension
d by multiplying with this single shared matrix. We denote
the projections of such points by a tilde superscript, for ex-
ample c̃

(k)
i for centroids and x̃i for points of the dataset.

3.3. Hierarchical point translation

This is the central part of the algorithm and the goal is
to move the points hierarchically so that they occupy the
projection space Rd following the tree TNNG(X) in a way
that the 1-NN relationships are preserved over all levels.
Once we have a preliminary projection for all points and
centroids, we start from C(l) and consider its projected cen-
troids {c̃(l)i }i≤gl . Those centroids form a Voronoi tessella-

Figure 3. The induction step in building TNNG(X). All 1-NNG
components are mapped to their centroids which form the basis for
the next step.

tion of Rd and an ideal way to place the lower level pro-
jected centroids {c̃(l−1)

i }i≤gl−1
would be to select for each

c̃
(l)
i the centroids of level l−1 which correspond to it, trans-

late them so that they are centered around c̃
(l)
i and finally

spread them to occupy the corresponding Voronoi cell. In
order to perform this process in an efficient and easy to vec-
torize way, we choose to use the already known distance d(l)i

of each c̃
(l)
i to its nearest neighbor in C̃(l) and then scale the

translated, lower level centroids to a d-ball of radius 1
3d

(l)
i .

This distance guarantees that points belonging to neighbor-
ing centroids will not form nearest neighbor relationships
cross-centroids, thus preserving the separation encoded in
TNNG(X). Figure 4 illustrates this process.

Once the points of C̃(l−1) are placed around the points of
C̃(l), we use them to translate the points of C̃(l−2) around
them, the same way as before. This step is repeated until
we reach the level of X which forms the final projection.

There is still one issue we need to address. This is the
fact that though the radius 1

3d
(l)
i guarantees the separation

of neighboring centroids on one step, it could be the case
that the borders of this d-ball are crossed by points moved
on a later step of the iteration (see again figure 4). Below
we compute a shrinking coefficient for this radius, such that
this guarantee still holds for the points moved in later steps.

Lemma 1. Given a d-ball B(c
(k)
i , r) centered on a cen-

troid, all points belonging to c
(k)
i translated with the h-
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NNE algorithm with radii multiplied a factor of 3
5 , lie inside

B(c
(k)
i , r).

Proof. Assume that a factor s is used to reduce the com-
puted radii on each step of h-NNE. On the first step, all
lower level centroids are translated and scaled so that they
lie in a d-ball of radius sr. The worst case scenario for
the next step is that there a two antidiametrical points c(k)1 ,
c
(k)
2 which are nearest neighbors. In that case, the points

of the next step belonging to c
(k)
1 will be placed inside a d-

ball around it of radius 2
3sr since d(c

(k)
1 , c

(k)
2 ) = 2sr. This

means that the largest distance of any of those points to c
(k)
i

is sr + 2
3s

2r. By recursively computing those worst case
scenarios, we get that for infinite steps of the algorithm, the
most distant point will be placed in a distance of at most∑

j∈N

(
2

3
)jsj+1r = sr

∑
j∈N

(
2

3
s)j =

sr

1− 2
3s

(1)

Therefore, in order for all points to lie inside the original
ball B(c

(k)
i , r), we need that sr

1− 2
3 s

≤ r from which we get

that s ≤ 3
5 .

The above bound guarantees that if we place new points
in a ball of radius 3

5 · 1
3 = 0.2 times the distance to the

nearest neighbor, then the nearest neighbors of points will
be restricted in the clusters formed in the NNG hierarchy.
In practice the worst case scenario of antidiametrical points
does not occur so often. Even in low dimensions where
points are more dense one can use radii of 1

3 of the 1-
NN distance or even more without noticeable drop in k-NN
preservation. This can be particularly useful for visualiza-
tion, as it can help make plots more spread on the plane or
3D space.

Point cluster inflation for visualization purposes. The
use of a single linear projection for all points can result in
cluttered point clusters when they are not well aligned to
the global principal components used to project. Though
this has minimal impact to performance, it leads to poorer
visualization which contains artifacts from this initial pro-
jection. In order to enhance the shape of images without
sacrificing speed and without adding new hyper-parameters,
we add the option to inflate potentially squeezed point clus-
ters using six local rotations with angles equally distanced
in the interval [0, π

2 ], followed by a scaling and the inverse
rotation. This results in an output almost equivalent to that
of rotating the clouds to their PCA principal components,
scaling them, and then rotating them back to the original
orientation but much less computationally expensive.

Projecting new points. The projection of new points
can be performed by repeating the same algorithm as be-
fore, just for the individual points and by descending only
the second level of the hierarchy. If x is the new point, we

Figure 4. Voronoi cells of the top level centroids in MNIST. The
circles have radius 1

3
the distance from the nearest neighbor and

the points are projected with a shrinking factor of exactly this fac-
tor of 1

3
. One can notice that the final points cross the boundaries

of the circle. Nevertheless, the density of the data in 2D result to a
situation where no severe overlaps appear.

first identify the closest centroid in C(1) using our ANN al-
gorithm of choice. Then the point is transformed by scaling,
applying the pre-computed PCA and normalizing the posi-
tion of the point relative to the centroid based on the corre-
sponding radius. If point cluster inflation was used in the
original projection, then the relevant rotations and scalings
are also performed before the final normalization step.

3.4. Computational complexity

There are three steps in h-NNE which make up its com-
plexity: the construction of the TNNG(X) tree, the pre-
liminary PCA projection and the hierarchical point trans-
lation. Since each component of the NNG graph contains
at least two points, the height of TNNG(X) is O(logN).
That implies that given that the computation of approximate
1-NN is at least O(N), no matter which method is used,
the total complexity is equal to the complexity of a single
Approximate Nearest Neighbor (ANN) step including any
preparation on the dataset (e.g. building indexing trees) and
querying once on all points of the dataset. We denote the
ANN complexity with O(ANN(N,D)). The PCA projec-
tion step requires O(Dd2), given we have fixed the num-
ber of used samples to a constant number of points. Finally,
the point translation steps are O(N logNd+ANN(N, d)),
again because of the logarithmic height of the tree, the us-
age of group by operations, and the fact we need to compute
nearest neighbors to find the radius of the d-balls where
clusters are expanded. Thus, overall, the algorithm has
O(ANN(N,D) +Dd2 +N logNd) complexity.

The complexity ANN(N) is not easy to compute. In
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Higgs [3] Google News [27] COIL 20 [28] CIFAR-10 [17] F-MNIST [39] ImageNet [10] BBT [5] Buffy [5] MNIST [19, 23]

Type Sensor Text Objects Videos Digits
#Classes 2 - 20 10 10 1000 5 6 10
#Samples 11M 3M 1440 60K 70K 1.2M 200K 206K 70k 8M
Dimension 28 300 16384 3072 784 2048 2048 2048 784 784
Features Measurements Word2Vec Pixels Pixels Pixels ResNet50 ResNet50 ResNet50 Pixels Pixels

Table 1. Datasets of different size ranging from 1400 to 11 million samples in 28 to 16384 dimensions used in experiments.

the worst case scenario, it could be N2 when using linear
search. Some of the older exact methods [7, 29] achieve
N logN complexity, but unfortunately scale exponentially
on D. Approximate methods such as HNSW [24], NNDe-
scent [11] and ScaNN [13] achieve good performance on
real-world datasets but support it with experimental evi-
dence and no complexity bounds. In our current implemen-
tation we use PyNNDescent [25] which is a tuned version
of NNDescent. The empirical complexity of NNDescent
is approximately O(N1.14) for datasets with small intrinsic
dimensionality. Finally, an interesting analysis [4] provides
synthetic families of datasets where NNDescent attains a
complexity of O(N2) and O(N logN) respectively.

4. Experiments

We demonstrate h-NNE on diverse datasets of different
size which cover domains such as sensor data, text, digits,
videos and objects. We first introduce the datasets and per-
formance metrics, followed by a thorough comparison of
the proposed method to current state-of-the-art algorithms.

4.1. Evaluation

Datasets. The datasets are summarized in Table 1. Apart
from some commonly used datasets we also include few
to test against size and dimensions. Altogether, we use 9
datasets ranging from 1440 to 11 million samples in 28
to 16384 dimensions. We provide more details for each
dataset in the supplementary.

Metrics. A well studied issue in dimensionality reduc-
tion is how to balance local and global structure preserva-
tion [9, 16]. Methods like t-SNE are well known for their
local structure preservation. More recent methods such as

h-NNE t-SNE fIt-SNE UMAP PaCMAP

COIL20 0.994 0.998 0.998 0.996 0.985
MNIST 0.983 0.989 0.991 0.958 0.950
F-MNIST 0.981 0.991 0.992 0.977 0.966
CIFAR10 0.907 0.927 0.932 0.829 0.818
BBT 0.982 0.99 0.99 0.966 0.958
Buffy 0.976 0.988 0.99 0.954 0.952
ImageNet 0.928 − 0.956 0.895 0.822
HIGGS 0.849 − 0.979 0.909 0.899
MNIST 8M 0.967 − 0.956 − 0.945

Table 2. Local structure preservation : Trustworthiness.

UMAP [26, 30] and PaCMAP [38] strive to preserve both
local and global structure. We therefore evaluate all meth-
ods on the considered datasets in these two aspects.

Local structure preservation: commonly measured by
leave-one-out cross validation using the k-NN classifier. k-
NN accuracy is a standard evaluation method for dimen-
sion reduction methods as this measures if the classifica-
tion accuracy based on neighborhoods would remain close
to that in the original space. As in previous studies, we use
a 10-fold stratified cross-validation to measure k-NN accu-
racy on a varying number of k values. Another closely re-
lated local structure preservation metric is Trustworthiness.
Trustworthiness [37] penalizes for each point every one
of its k nearest neighbors in the embedding space by the
amount its rank in the original space exceeds k. Trustwor-
thiness is defined as

T (k) = 1− 2

nk(2n− 3k − 1)

n∑
i=1

∑
j∈Nk

i

max(0, (r(i, j)−k))

and is scaled between 0 and 1, with 1 being more trustwor-
thy. We use scikit-learn’s implementation with k = 5.

Global structure preservation: To measure the preserva-
tion of global structure i.e. relative positioning of indi-
vidual neighborhoods Wang et al. [38] proposed a metric
that measures how well the distribution of distances be-
tween class centers in the original space are preserved in
the embedding space. It is obtained by computing the cen-
troids and forming all possible triplets between them. The
metric Triplet Centroid Accuracy measures the percent-
age of triplets whose relative distance in the high- and low-
dimensional spaces maintain their relative order.

h-NNE t-SNE fIt-SNE UMAP PaCMAP

COIL20 0.799 0.778 0.769 0.705 0.758
MNIST 0.671 0.711 0.748 0.804 0.713
F-MNIST 0.925 0.784 0.848 0.848 0.866
CIFAR10 0.911 0.921 0.929 0.927 0.932
BBT 0.644 0.600 0.711 0.556 0.666
Buffy 0.857 0.571 0.543 0.657 0.704
ImageNet 0.604 − 0.639 0.605 0.646
MNIST 8M 0.774 − 0.744 − 0.735

Table 3. Global structure preservation: Centroid Triplet Accuracy.
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Figure 5. Projection on different dimensions: KNN accuracy for 2, 4, 8, 32 and 64 dimensions.

4.2. Comparison with state-of-the-art

We compare with representative current best methods for
unsupervised dimensionality reduction and visualization. t-
SNE [36], owing to its remarkable local structure preserv-
ing properties and long standing follow up work, is a de-
fault choice for 2D visualizations. It has, however, high
compute overhead. We use its optimized version Barnes-
Hut t-SNE [35] in our comparison. Since this still does
not easily scale to data beyond 200K in size, we also in-
clude a much faster and scalable variant FFt-accelerated
Interpolation-based t-SNE (FIt-SNE) [22]. FIt-SNE is the
currently best t-SNE method in terms of speed and perfor-
mance. Of note, t-SNE is limited in that its running time
increases exponentially to the number of dimensions and
though FIt-SNE could in principle support higher dimen-
sions it’s official implementations do not support it. Among
other recent methods, we include the popular UMAP [26]
and a very recent method, PaCMAP [38], which builds upon
the strengths of t-SNE and UMAP.

Table 2 provides the trustworthiness scores of all meth-
ods on the datasets. t-SNE and FIt-SNE both are quite good
with respect to preserving the local structure. h-NNE fol-
lows closely to t-SNE methods in terms of the local struc-
ture preservation. UMAP and PaCMAP perform on par
though slightly worse than h-NNE. We provide the k-NN
classifier accuracy and comparisons in the supplementary.

On the global structure preservation metric as shown in
Table 3 the centroid triplet accuracy for h-NNE embeddings
is on par as well across all datasets. Since these metrics
require ground truth labels of the datasets the results on
Google News dataset cannot be computed. Similarly, the
centroid triplet metric on HIGGS is not evaluated as it has
only two classes. These results indicate that, overall, h-
NNE is highly competitive with these current methods in
terms of both local and global structure preservation.

Projections of varying dimensions. There is no restric-
tion on the target dimension for h-NNE. Figure 5 demon-
strates projection on different dimensions. For this experi-
ment we include 7 datasets and compare with UMAP and

PaCMAP as only these support higher dimensions. Here k-
NN (k = 1) accuracy across different datasets shows that
h-NNE has a consistent upward trend in performance when
moving to higher dimensions.

Computational performance comparisons. Bench-
marks on all datasets were performed on a workstation
with an AMD Ryzen Threadripper 2990X 32-core proces-
sor with 128 GB RAM. Table 4 provides the total run-time
of each algorithm in comparison. As expected t-SNE was
not able to scale on large data size and UMAP ran out of
memory on 8 million 784 dimensional data. PaCMAP and
FIt-SNE - the fast alternative approach to t-SNE which is
a highly optimized and parallelized C++ implementation -
both ran on all datasets. h-NNE has a clear advantage in
terms of speed and it scales really well on the size of the
dataset, reaching speedups well above ten-fold on the larger
datasets. The time efficiency of our method comes from
the approach itself (i.e. not relying on expensive gradient
decent-based embedding optimizations) and could be sped-
up further with similar parallelized implementations. On
the HIGGS data with 11M samples h-NNE takes ∼ 13 min-
utes vs almost 3 hours for FIt-SNE and 4 − 5 hours for
UMAP and PaCMAP. Since all these existing methods need
to build weighted k-NN graphs with the requirement to store
and access pairwise distance floats for their optimizations,
their memory requirement is very high. For instance as op-
posed to h-NNE none of these methods could run on a ma-
chine with 64 GB ram at million scale. For more details on
the computational complexity we refer to section 3.4.

Exploring unlabeled data. We see an advantage of h-
NNE in exploring unlabeled data because of its hierarchical
nature. On the one hand, different clusters of the data are
visually separated, and on the other hand, we have cluster-
labels generated on all levels of the hierarchy. In figure 6 we
color the Google News dataset projection with those cluster-
labels on two different levels and demonstrate a zooming
process where we isolate a cluster of similar word vectors.

Limitations. One limitation of our algorithm is its de-
pendence on the hierarchical NNG structure we build. This
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Dataset #S Dim h-NNE (ours) t-SNE UMAP PaCMAP FIt-SNE

COIL20 1440 16384 00:01 00:08 00:18 00:02 00:07
MNIST 70K 784 00:09 05:28 00:54 00:37 01:24
F-MNIST 70K 784 00:07 05:37 00:58 00:38 01:20
CIFAR10 60K 3072 00:14 08:35 01:02 00:39 02:24
BBT 200K 2048 00:58 57:32 04:08 01:38 04:50
Buffy 206K 2048 00:50 01:01:00 04:18 01:42 05:07
Google News 3M 300 03:34 − 01:19:05 01:14:04 52:16
ImageNet 1.2M 2048 05:11 − 49:10 30:20 39:29
HIGGS 11M 28 12:25 − 03:53:04 05:07:34 02:49:28
MNIST 8M 8M 784 21:52 − − 03:08:47 02:56:14

Framework Python Python Python Python C++

Table 4. Run-time comparison of h-NNE: We report the run time in HH:MM:SS and MM:SS. − denotes out of memory.

Figure 6. The h-NNE visualization of the unlabelled Google News embeddings. On the left, we see the cluster labels on the top level of
the hierarchy. In the middle we zoom into one location and isolate a small cluster using cluster labels from an earlier level of the hierarchy.

structure clusters the data on each level and the final projec-
tion is based on those clusterings. This means that any error
that might occur in those clusterings is directly translated
to reduced quality of the global structure and localization
of the points. On the bright side, those classification errors
can reflect poor separation of classes in the original space,
which is a desired property when one is using h-NNE to
inspect the quality of features generated for datasets.

A second limitation is that our method does not preserve
by design the topology of the original space. The fact that
we use 1-NNs to build our hierarchy implies that any shape
homeomorphic to say S1 will only be preserved if it is con-
tained in a single 1-NN graph component on the lowest level
of the tree and if the PCA projection is preserving its circu-
lar form. As the size of 1-NNG components is usually quite
small this will seldom be the case. In order to remove this
limitation one would need to preserve more local proper-
ties of the data. This would be possible on higher dimen-
sions, but very low dimensions, like 2 or 3, it conflicts with
the preservation of the hierarchical NNG data partitioning
which is capturing a more global structure. Therefore, in
this case we see this limitation more as a trade-off.

5. Conclusions
We have presented an efficient dimensionality reduction

algorithm which utilizes nearest neighbor graph and its hier-
archical groupings of points. Using the hierarchy tree nodes
as anchor positions in a preliminary projected space, we de-
vise a fast mechanism to move the points directly in the
embedding space so that they preserve their local neigh-
borhoods. The embedding process is optimization-free and
does not rely on specifying hyperparameters. This results in
a demonstrably fast and scalable technique which is shown
to preserve both the global and local structure of the data
well. The major benefit that our method offers, in addition
to its speed and quality, is its ability to expose the cluster-
ing structure of the data both in the original and the target
space. This may enable analyzing data at different levels of
its hierarchical groupings. Faster run-time and the ability
to provide clustering labels could be particularly useful for
visualizing large-scale unlabelled data.

We expect that our work will enable the analysis of large
scale data under reasonable time consumption and hope to
trigger interest in the hierarchy-based study of global struc-
tural properties of datasets.
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