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Abstract

Self-explaining deep models are designed to learn the la-
tent concept-based explanations implicitly during training,
which eliminates the requirement of any post-hoc explana-
tion generation technique. In this work, we propose one
such model that appends an explanation generation mod-
ule on top of any basic network and jointly trains the whole
module that shows high predictive performance and gen-
erates meaningful explanations in terms of concepts. Our
training strategy is suitable for unsupervised concept learn-
ing with much lesser parameter space requirements com-
pared to baseline methods. Our proposed model also has
provision for leveraging self-supervision on concepts to ex-
tract better explanations. However, with full concept su-
pervision, we achieve the best predictive performance com-
pared to recently proposed concept-based explainable mod-
els. We report both qualitative and quantitative results with
our method, which shows better performance than recently
proposed concept-based explainability methods. We re-
ported exhaustive results with two datasets without ground
truth concepts, i.e., CIFAR10, ImageNet, and two datasets
with ground truth concepts, i.e., AwA2, CUB-200, to show
the effectiveness of our method for both cases. To the best of
our knowledge, we are the first ante-hoc explanation gener-
ation method to show results with a large-scale dataset such
as ImageNet.

1. Introduction
Recent years have seen an exponentially increasing in-

terest in explainability of decisions of Deep Neural Net-
work (DNN) models across domains including biometrics,
healthcare, autonomous navigation and many more. Exist-
ing efforts in computer vision including occlusion-based,

Figure 1. Illustration of the proposed framework. Our framework
offers a way to train models that can not only predict but also ex-
plain their predictions. It can be easily integrated with existing
backbone networks. Compared to existing techniques, it provides
the flexibility to incorporate different forms of supervision (includ-
ing weaker forms of supervision like self-supervision) whenever
available or feasible.

gradient-based and Shapley value-based efforts largely per-
form post hoc analysis [23, 27, 36], of an already trained
model to identify what a DNN model looked at in an in-
put image while making a prediction. While this is useful,
the separation of explanation from prediction is not ideal.
When an explanation goes wrong, it is not trivial to under-
stand if the explanation method is incorrect, or if the model
itself relied on spurious correlations to make a prediction.
This has paved the need for ante hoc methods that jointly
learn to explain and predict, and thus learn inherently inter-
pretable models.

Efforts on envisioning interpretable learning models by
Rudin [25] and Lipton [18] have stressed on the importance
of implicitly interpretable methods over post hoc explana-
tions in elaborate terms. In a more recent exposition, Rudin
et al [26] identified ten challenges of interpretable machine
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learning, which also highlighted the need for placing con-
straints into models to learn with better interpretability dur-
ing training itself. The last few years have seen a few efforts
in ante hoc methods that explain through concepts, which
are learned during the training of the DNN itself such as
Self-Explaining Neural Networks [1], Concept Bottleneck
Models [14], Concept-based Model Extraction [12], and
Concept Whitening [2]. Learning concepts during training
provides a natural pathway for ante hoc explanations that
are global (concepts that are most activated on a dataset or
a class) or local (concepts that are most activated for pre-
diction on given input image). Existing methods however
either require concept-level supervision to train the model
[14], or require a significant number of additional parame-
ters in the network [1], which prohibits their use in deeper
models more commonly used in practice.

In this work, we propose a new method towards learn-
ing ante-hoc explanations via concepts, that: (i) can be
added easily to existing backbone classification architec-
tures with minimal additional parameters; (ii) can provide
explanations for model decisions in terms of concepts for
an individual input image or for groups of images; and (iii)
can work with different levels of supervision, including no
concept-level supervision at all. This is achieved by an ar-
chitectural modification added to a backbone network along
with additional loss terms that allow such ante hoc learning.
Importantly, we show that our framework allows learning
of concepts with no supervision, self-supervision as well as
full supervision at a concept-level. An overview of our pro-
posed model is shown in fig.1.

Our key contributions in this work can be summarized as
follows:
• We propose a simple and effective method that jointly

learns to predict and explain (through concepts) in an ante
hoc manner (i.e. learning to explain during training itself,
as opposed to post hoc explainability methods popularly
used today).

• Our method can learn to explain through concepts with
different levels of supervision: (i) with no concept-
level supervision; (ii) through weak supervision (self-
supervised learning of concepts); as well as (iii) with
concept-level supervision.

• We perform a comprehensive suite of experiments to
study accuracy and explainability of our method on mul-
tiple benchmark datasets quantatively and qualitatively,
and show ablation studies on different choices made in
the method. In this context, we introduce a metric based
on concept intervention for ante hoc explainable models
such as ours.

• Our method outperforms existing methods on accuracy
and explainability metrics, and achieves these results with
negligible computational overhead over baseline models
with no explanation component.

2. Related Work
The main objective of concept learning is to obtain a

lower-dimensional representation that faithfully explains
the downstream tasks, such as - object classification.
Unsupervised Concept Learning: Most of the existing
methods generate meaningful explanations in an unsuper-
vised manner, i.e., when ground truth concepts are not avail-
able for the dataset. Such methods either work as a post-hoc
approach on a trained model [13] or learn an inherently in-
terpretable model [1, 33]. TCAV [13] leverages the direc-
tional derivatives with intermediate model features to quan-
tify the importance of a user-defined concept towards final
model predictions. Though this method doesn’t require full
concept annotations, the explanations are generated based
on the prior knowledge of concepts over the data points.
Zhou et al. [38] proposed a method to decompose the model
prediction in terms of projections onto concept vectors us-
ing the model generated saliency by CAM [37]. Another
recent method [33] leverages Shapley values to quantify the
sufficiency of a set of concepts in explaining the model pre-
dictions through completeness measure of the concepts. Be-
ing a post-hoc explainability method, it works on trained
deep networks. Unlike our method, it doesn’t allow a user
to intervene on the concepts to explore the interactions be-
tween concepts and the class predictions.

The first fully-unsupervised ante-hoc concept learning
method, SENN [1], employs a concept encoder h(x) with
corresponding relevances θ(x) for an image x and outputs
the final logit as θ(x)Th(x). SENN is trained, following
a joint training approach, with cross-entropy loss for the
logits and a stability loss to enforce closeness of the sim-
ilar concept relevances i.e. θ(x). Similar to SENN, our
method also uses a concept encoder to extract concepts.
But, we replace the heavy relevance network with a couple
of simple, fully connected networks that generate explana-
tions and perform classification.
Supervised Concept Learning: Methods such as concept
bottleneck models (CBM) [14] divides the complete model
into two parts. The first part is a function g : X → C,
that generates an intermediate concept representation c from
an image x, which is followed by the label predictor part
f : C → Y to output a class label from c. The model pre-
dicts a class label for an image x by computing f(g(x)).
This model is trained with both concept and class label
supervision, either training individual parts sequentially or
both parts jointly. Kazhdan et al. proposed CME [12], a
post-hoc data-efficient version of CBM, that captures in-
termediate representations from a pre-trained model to im-
prove the sensitivity to the dependence between the con-
cepts and the final prediction. Concept whitening (CW) [2]
proposed a method to plug an intermediate layer in place
of the batch-normalization layer of any pre-trained CNN
model that helps in concept extraction by constraining the
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latent layer output to represent a target concept. As opposed
to CBM, we decouple the process of generating explana-
tions and predictions. This helps us to learn concept-based
explanations without losing much in predictive performance
and enables the user to use the model with different levels
of supervision.
Self-Supervised Concept Learning: Different self-
supervised methods have been proposed to help learn bet-
ter representations and boost classification accuracy. Tasks
such as predicting the relative position of image patches
[5], predicting rotation angle [9], recovering color chan-
nels [34], solving jigsaw puzzle games [20], and discrim-
inating images created from distortion [6] have been exten-
sively used in recent years. Another class of methods recon-
struct images from corrupted versions or just part of it such
as denoising autoencoders [28], image inpainting [21], and
split-brain autoencoder [35]. Contrastive learning is another
paradigm where representations are learned in such a way
that similar data points are brought closer, and dissimilar
data points are pushed further away [29] in the representa-
tion space. Predicting natural ordering or topology of data
has also leveraged as pretext tasks in video-based [8,19,30],
graph-based [11, 32], and text-based [4, 22] self-supervised
learning. While self-supervision has been used to learn bet-
ter model representations, their utility for learning concept-
based explanations hasn’t been explored in the past. In
our work, we explore how self-supervision can be used for
learning better concept-based explanations.

3. Method
Let X denote the input space, and Y the output space,

we assume that the training instances (or examples) D =
{xi, yi}Ni=1 are sampled i.i.d from the source distribution
P defined over X × Y . We also assume that X = Rd,
and Y = {y ∈ {0, 1}M ,

∑M
j=1 y

k = 1}, where M is the
number of classes, and y is an one-hot encoded vector.

We propose a generic framework to incorporate ante-
hoc explanation (or self-explanation) modules into existing
deep learning pipelines. In this paper we demonstrate it for
a classification task. In practice, for classification tasks we
learn a Deep Neural Network fθ = {ηθe(.), gθc(.)} which
consists of a base encoder (or a feature extractor) ηθe(.), that
extracts the representation the representation vectors which
are fed into a classifier function gθc(.) (a classifier function
takes the latent representation z = ηθe(xi), and then pre-
dicts the label). Typically the base encoder & the classifying
function are trained together by optimizing for θ = {θe, θc}
such that the output of the network ỹi = fθ(xi) minimizes
a loss LC(ỹi, yi) over the set of training instances D.

To incorporate implicit learning of interpretable con-
cepts, in addition to the existing components of classi-
cal classification pipelines described previously, we intro-
duce a concept encoder Ψθce(.) which takes the repre-

sentation ηθe(.) and learns a set of intepretable concepts
{ψ1, . . . , ψC} (where C is the number of concepts), to ex-
plain the predictions provided by fθ. In general, concepts
are low dimensional representation that can be character-
ized as C ∈ RK×d, i.e. every concept c ∈ Rd belongs to
one of the total k ∈ K concepts. In our work, we learn one-
dimensional concepts, i.e., our setup uses k concepts, with
every concept is represented by a scalar value.

To encourage the model to learn concepts {ψ1, . . . , ψC}
that capture the semantics of the input image xi we pass the
concepts to a decoder hθd(.) which reconstructs the image
x̂i. We then add a loss LR(xi, x̂i) which measures the re-
construction error to the overall loss L. LR penalises the
model fθ, if the concepts aren’t suffice to generate an accu-
rate reconstruction x̂i of the input image xi. In our paper,
we use an L2 loss.

Since the concepts {ψ1, . . . , ψC} explain the prediction
of a DNN fθ. Ideally, they should be informative enough
by themself to predict the input instance xi correctly. To
enforce that the learnt concepts not only explain the pre-
diction but are also informative, we penalize the model fθ,
if the predictions sθcce(Ψθce(.)) (where sθcce is a classifi-
cation function which predicts the class labels taking the
concepts as input) based on the concepts {ψ1, . . . , ψC} and
prediction by the DNN fθ differs. We enforce that the con-
cepts learned should be individually informative by adding
a fidelity loss LF to the overall loss L.

Taking the proposed modifications into consideration,
the overall loss LO of the model can be written as follows:

LO = LC(yi, ỹi) + αLR(xi, x̂i)

+ βLF (fθ(xi), sθcce(Ψθce(xi)))
(1)

In practice, most data sets seldom include annotations
of concepts (or attributes) that could be used to learn a
self-explaining model. However, few exceptions contain
concepts (or attributes) that the models can leverage while
learning to explain their predictions. The majority of exist-
ing frameworks either work when only annotation of con-
cepts is available, or data sets don’t contain any additional
annotations, but not both. Often it is neither trivial nor effi-
cient to incorporate alternate forms for supervision in these
existing frameworks. In comparison, our framework offers
the flexibility to incorporate different forms of supervision
whenever available easily. To illustrate this, we demonstrate
how to incorporate i) complete supervision (supervised
learning of interpretable concepts), ii) zero-supervision (un-
supervised learning of interpretable concepts), and iii) a
weaker form of supervision that is cheaply available like
self-supervision.

By default, our framework works with data sets where
the annotation of concepts isn’t available. In cases when
they are available, we can easily incorporate them into
the learning process by adding a loss LE(Ψθce(xi), axi)
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Figure 2. An overview of our proposed framework (concept activations denote images that maximally active each concept)

(where axi
is the concept (or attribute) annotation of xi).

LE(Ψθce(xi), axi
) would penalize the model if the con-

cepts learned aren’t similar to the annotation in the data set
for the corresponding instance. We then train the model by
optimising θ such that the output of the network ỹi = fθ(xi)
minimizes a loss LO + µLE over the training set.

Even when direct supervision isn’t available for con-
cepts, it is possible to learn a robust set of high fidelity
interpretable concepts {ψ1, . . . , ψC} by leveraging the un-
derlying structure of the data by incorporating supervisory
signals obtained directly from the data itself. This technique
is popularly known as self-supervision. In our framework,
we incorporate self-supervision as an auxiliary task with a
loss LSS , and the auxiliary task shares the parameters with
our model until the concept encoder Ψθce(.). In this paper,
we choose rotation prediction as an auxiliary task. The task
involves rotating the image by one of 0, 90, 180, or 270
degrees and predicting the rotation angle ri as a four-way
classification problem through an auxiliary head. We can
also easily incorporate other self-supervision tasks into our
framework.

As opposed to existing techniques where the branch for
the auxiliary task uses the output of feature extractor (or
base encoder) for the self-supervision tasks, in our case, we
use the output of the concept encoder Ψθce(.). In turn, this
helps us to ensure that the set of interpretable concepts from
the concept encoder Ψθce(.) always respects the underlying
structure of the data and has high fidelity. To estimate LSS

we pass the output of the concept encoder Ψθce(.) through a
classifier function ζθss(.) that predicts the angle of rotation,
we then compute cross-entropy between ζθss(.) and ri. Like
in other cases, we jointly train the model and the auxiliary
head by optimizing θ such that the output of the network
ỹi = fθ(xi) minimizes a loss LO + γLSS over the training
set. In cases where ground truth annotations of concepts
aren’t available, and an auxiliary self-supervision task isn’t

used µ, and γ are respectively set to 0.

L
′

O = µLE(Ψθce(xi), axi
) + γLSS(ri, ζθss(.))

Even though our framework incorporates additional
components to existing deep learning backbones (or
pipelines), we can discard most of them after the training.
We only retain the sub-network (or module) to generate ex-
planations in addition to the ones on standard deep learning
pipelines (i.e., feature extractor and the classifier function)
during the prediction time. Hence, compared to existing
self-explaining models, the additional cost incurred by our
framework is relatively insignificant.

4. Experiments
We show that our framework achieves competitive

predictive accuracy compared to standard classification
pipelines, as well as meaningful explanations. We report re-
sults with our method on CIFAR10, ImageNet, AwA2 and
CUB-200 with different levels of concept supervision ac-
cording to availability of ground truth concepts i.e. unsu-
pervised manner on CIFAR10 [15], ImageNet [3] and with
concept supervision on AwA2 [17], CUB-200 [31]. We also
report results with AwA2, CUB when our model is trained
without concept supervision to show the effectiveness of
our method in both cases, i.e., with and without concept
supervision. We consider SENN [1] and CBM [14] as our
baselines considering the basic methods for unsupervised
and supervised concept learning. The implementation of
our method is publicly available at this link.
Dataset Details: The CIFAR-10 dataset [15] consists of
32x32 colour images in 10 classes, each with 5000 train im-
ages and 1000 test images per class. The ImageNet dataset
[3] is comprised of more than 1 million images and 1,000
object classes of natural images. AwA2 dataset [17] con-
sists of 37322 images of total 50 animals classes with 85
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numeric attribute. The other attribute dataset we considered
is CUB-200 [31], an image dataset with photos of 200 bird
categories with a total of 6033 images and 312 attribute an-
notations for each image.
Architecture Details: We use ResNet18 [10] as our back-
bone network for all datasets, as there is no standard archi-
tecture followed in the literature related to concept learning.
The backbone network resembles to fθ = {ηθe(.), gθc(.)}
as given in Sec.3. The output of the feature encoder ηθe(.)
is also passed to the concept encoder Ψθce(.) which is a sin-
gle fully connected layer, that outputs a set of interpretable
concepts {ψ1, . . . , ψC} where C is the number of concepts.
We considered 10 and 100 concepts for CIFAR10 and Ima-
geNet respectively. The number of concepts (or attributes)
for AwA2 and CUB-200 is 85 and 312, respectively. We
kept the number of concepts the same for fair comparison
while training our model with these datasets for both un-
supervised concept learning and learning with concept su-
pervision. The classification function sθcce that predicts the
class labels, taking the concepts as input, is also a single
fully connected layer. The number of parameters of the
concept encoder and the classification network, taking the
concepts as inputs, vary for different datasets based on the
number of concepts and classes. We implement the decoder
hθd(.) as a set of deconvolution layers.
Storage and Time Complexity: The architecture proposed
by SENN requires a vast number of parameters with both
the concept and relevance encoder contributing to it. Our
model alleviates this issue by removing the relevance net-
work altogether and adding the concept classification net-
work that serves a similar purpose. However, the decoder
network is required to make the concepts capture sufficient
information to reconstruct the image. Hence, our overall
network requires ∼60% of the space and training time com-
pared to SENN. Compared to CBM, our method requires
∼1.5 times the space and training time. For example, the
training times required for one epoch on CIFAR10 are 4.2s,
6.9s & 11.3s for CBM, Ours & SENN methods with batch
size 128 in one Tesla V100 GPU. This is due to a decoder
that enables our framework to support cases when concept
supervision isn’t available, which CBM doesn’t. Our ap-
proach takes almost similar inference time as CBM as we
don’t use the decoder network during inference and concept
extraction. Please note that these storage and time measure-
ments during training are with ResNet18 backbone archi-
tectures, and the gap with CBM will further reduce with
more complex backbone networks.
Predictive Performance: Table 1 reports the predictive
performance of our method as well as the baseline meth-
ods with CIFAR10, ImageNet, AwA2, and CUB datasets.
As CBM requires concept supervision, we can’t use this
method for CIFAR10 and ImageNet. An unsupervised ver-
sion of our method outperforms SENN significantly for all

Baselines OURS
Dataset SENN CBM w/o sup w sup
CIFAR10 84.50 NA 91.68 NA
ImageNet 58.55 NA 65.09 NA
AwA2 76.41 81.61 81.04 85.70
CUB-200 58.81 64.17 63.05 65.28

Table 1. Accuracy (in %) of different methods on CIFAR10, Ima-
geNet, AwA2 and CUB-200 datasets using ResNet18 architecture
as concept (or base) encoder. (w=with, w/o=without)

the datasets. CBM, being a method with concept supervi-
sion, performs slightly better than our unsupervised version.
Our approach, with concept supervision, beats CBM by a
large margin. Please note that the predictive performance
by our method, reported in table 1, is solely based on the
backbone network fθ(.). We decoupled the main predic-
tion task and concept extraction so that our model doesn’t
sacrifice much of the predictive performance and still can
produce meaningful explanations.

4.1. Quantitative Evaluation

We evaluate and compare the concept-based explana-
tions generated by our method with other state-of-the-art
frameworks like SENN and CBM. We consider metrics of
interpretability that assess the effectiveness of additional
losses we use in our framework. Apart from the existing
metrics such as faithfulness, fidelity, and explanation error,
we also perform interventions on the generated concepts to
illustrate their meaningfulness. Fig. 3 shows examples of
interventions that lead to the model changing its prediction
when we intervene on the top concept. Besides the predic-
tive performance, our method consistently outperforms the
baseline methods in all the other explainability metrics as
explained below.
Faithfulness Metric: In practice, we want the concepts
learned to be meaningful and faithfully explain the model’s
predictions. To evaluate how faithful the explanations gen-
erated by different frameworks are, we measure the predic-
tive capacity of the generated concepts, i.e., from the output
of sθcce , in our case. This metric represents the capabil-
ity of the overall concept vector to predict the ground truth
task label. It is similar to other measures such as explicit-
ness [24] and informativeness [7] used to measure feature
disentanglement.

Baselines OURS
Dataset SENN [1] CBM [14] w/o sup w sup
CIFAR10 84.50 NA 90.86 NA
ImageNet 58.55 NA 59.73 NA
AwA2 76.41 81.61 79.29 83.30
CUB-200 58.81 64.17 61.49 62.59

Table 2. Comparison of faithfulness (in %, predictive perfor-
mance solely based on concepts) of concepts generated by differ-
ent methods on CIFAR10, ImageNet, AwA2 and CUB-200 data
sets. (w=with, w/o=without)
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Figure 3. Successful examples of test-time intervention, where intervening on a single concept changes the model prediction (from ŷ to
ŷI ) to the correct label on bottom examples and to the incorrect label on top examples, for AwA2 (left) and ImageNet (right).

Fidelity Metric: Fidelity measures the fraction of the data
points where the model prediction matches the prediction
from the interpretation. It is widely used to measure how
well the generated explanations approximate the model
[16]. This metric does not apply to methods where the inter-
preter is directly used to provide model prediction, such as
SENN and CBM. Table 3 reports all the comparative results
for all the datasets. We use fidelity loss LF during training
which justifies the high fidelity score for our models.

OURS
Dataset w/o sup w sup
CIFAR10 99.11 NA
ImageNet 90.22 NA
AwA2 97.84 97.19
CUB-200 97.52 95.87

Table 3. Comparison of fidelity (the % of match between model
prediction and the prediction through the interpretation.) of con-
cepts generated by different methods on CIFAR10, ImageNet,
AwA2 and CUB-200 data sets. (w=with, w/o=without)

Explanation Error: In data sets like CUB and AwA2,
where ground truth concepts are available, we also measure
how close are the concepts learned to the ground truth. We
compute the L2 distance between the concepts learned and
the ground truth concepts to measure the alignment. From
table 4, we can observe that the concepts generated by our
method is most aligned to the ground truth concepts. While
this should be the case for methods with concept supervi-
sion, our method without concept supervision also performs
better than SENN, which illustrates our method’s effective-
ness in learning concept-based explanation even when an-
notations for concepts (or attributes) aren’t available.

Dataset AWA2 CUB
SENN 0.99 1.34
CBM 0.91 1.17
OURS (w/o sup) 0.97 1.29
OURS(w sup) 0.89 1.14

Table 4. Comparison of explanation error (we measure the mis-
match using L2 distance, hence lower the better) between con-
cepts generated by different methods and the ground truth con-
cepts (or attributes) on AwA2 and CUB-200 data sets. (w=with,
w/o=without)

Intervention on Concepts: To study the concepts’ useful-
ness, we scale their values in the [0, 1] range, select those
above the threshold value ω, set the concepts to 0, and then
predict the label solely based on the intervened concept vec-
tor. A change in the prediction means that the concepts ze-
roed are essential for explaining the model’s decision. We
repeat this procedure for all the instances in the test set
and measure the predictive performance solely based on the
generated concepts. A lower value indicates that the con-
cepts generated are faithfully explaining the models’ deci-
sions. Ideally, the predictive ability of the concepts gen-
erated by methods like SENN and CBM should be higher.
Since, in their cases, the interpreter (or the explainer) is di-
rectly used to generate the model prediction, the predictive
performance based on concepts generated should be lower.
But, you can observe from table 5 the predictive perfor-
mance after the intervention is the lowest for the proposed
framework.

Baselines OURS
Dataset SENN CBM w/o sup w sup
CIFAR10 66.57 NA 43.19 NA
ImageNet 43.91 NA 34.52 NA
AwA2 61.39 40.29 37.61 35.92
CUB-200 47.22 36.11 34.38 32.59

Table 5. The effect of interventions (accuracy in % after interven-
tion, lower the better) on concepts generated by different methods
for CIFAR10, ImageNet, AwA2 and CUB-200 data sets. (w=with,
w/o=without)

4.2. Qualitative Results
Qualitative results are significant for methods that ex-

plain models through concept-based representations. We
generate explanations corresponding to every concept as the
most representative images from the dataset. We present
results from CIFAR10 and ImageNet datasets in the main
paper and move the rest to the Appendix due to space con-
straints. The top concept activations generated for Ima-
geNet are presented in Fig.4. We can observe that ev-
ery concept captures homogeneous characteristics from the
dataset that mostly corresponds to a class or similar class
type. For example, ψ7 represents concepts of faces for chee-
tah and some other similar types of cat species.
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Figure 4. A subset of 10 concept activations learnt by our framework on ImageNet. All these examples were correctly predicted by the
model, and it can be seen that the each concept captures a certain set of homogeneous properties corresponding to a class. For ImageNet,
we observe that the learned concepts are shared across the classes. For instance, ψ7 is shared between tiger, cheetah, and different types of
cat classes, and ψ6 is shared among different forms of wolf and dog classes.

Figure 5. Effect of decoder for CIFAR10 dataset. We can see the without the decoder & the corresponding reconstruction loss the concept-
based explanations (on the right) doesn’t capture any homogeneous property and are hard to understand, unlike the case where decoder is
present (on the left)

For data sets like CIFAR10, where there isn’t much inter-
section of higher-level attributes across classes, we observe
that each learned concept only corresponds to characteris-
tics (or features) from a single class. In comparison, for
data sets like ImageNet, where there is a lot of intersec-
tion between the higher-level attributes of different classes,
we observe that the learned concepts are shared across the
classes. For instance, ψ7 is shared between tiger, cheetah,
and different types of cats classes, and ψ6 is shared among
different types of wolf and cat classes (refer Figs 4 & 5).

4.3. Global Explanations

An advantage of concept-based explanation methods
compared to others is that they provide local as well global
explanations. We identify class-concept (or attribute) pairs

with a high proportion of co-occurrence to generate global
explanations. We consider CIFAR10 and AwA2 for our ex-
periments to explain the effectiveness of our method in gen-
erating such global explanations on datasets without and
with ground truth concepts. Simply analyzing these can
reveal helpful information about the generated concepts.
For instance, based on samples, we can see that (from
Fig.6) concept ’ocean’ is a distinguishing attribute for class
killer+whale of AwA2. Similarly, ψ1 represents a distinc-
tive concept for cat class of CIFAR10 (from ψ1 to ψ5 of
Fig.5 on the left).

5. Ablation Studies
Importance of Self-supervision: As discussed in Sec.3,
our framework enables us to incorporate self-supervision on
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Figure 6. Example class-attribute pair analysis on AwA2 and
CIFAR10 datasets with high global relevance (proportion of co-
occurrence)

Baseline OURS
Dataset SENN w/o sup w self-sup
CIFAR10 84.5 91.68 91.28
ImageNet 58.55 65.09 64.84
AwA2 76.41 81.04 79.89
CUB-200 58.81 63.05 61.93

Table 6. Comparison of predictive performance (accuracy in %) of
models on different methods on CIFAR10, ImageNet, AwA2 and
CUB-200 data sets with and without self-supervision. (w=with,
w/o=without)

the set of concepts easily, and this helps us to improve the
quality of concepts by leveraging the underlying structure
of the data. Our experiments use rotation prediction as the
auxiliary self-supervision task for CIFAR10 and ImageNet
datasets due to the unavailability of ground truth concepts.
To compare the quantitative and qualitative performance
with unsupervised concept training, we train our model with
self-supervision for AwA2 and CUB datasets too. Table
6 reports the predictive performances of our method (with
self-supervision on concepts and without any supervision)
and SENN, as these methods don’t require any ground truth
concepts. Please note that the self-supervision is performed
only on the concepts. Hence, this doesn’t improve the pre-
dictive performance but rather enhances the faithfulness of
the learned concept-based explanations. From table 7, we
can observe that self-supervision is improving the predic-
tive performance through the concepts, and this, in turn, val-
idates our hypothesis that leveraging the underlying struc-
ture of the data can the quality of concepts.
Importance of Reconstruction Error: A decoder im-
proves the quality of the concepts by enforcing sufficiency,
i.e., making them capable of faithfully reconstructing the
image. In other words, this compels the set of concepts to
capture all the image information and make the set of con-
cepts complete. We measure the effect of the decoder by
training our model for the CIFAR10 dataset without the de-

Baseline OURS
Dataset SENN w/o sup w self-sup
CIFAR10 84.50 90.86 90.93
ImageNet 58.55 58.73 60.28
AwA2 76.41 79.29 79.77
CUB-200 58.81 61.49 61.81

Table 7. Comparison of faithfulness (in %) (predictive capacity of
the generated concepts) of concepts generated by different meth-
ods on CIFAR10, ImageNet, AwA2 and CUB-200 data sets with
and without self-supervision. (w=with, w/o=without)

coder, keeping all the other model parts unchanged. We
generate the explanations of the trained model and present
them in fig. 5. For comparing with the complete model (i.e.,
our model with decoder), we add explanations generated by
our complete model in the same figure. The first and the
last five columns are explanations generated by our com-
plete model and the model without a decoder, respectively.
These examples support our claim about the importance of
decoder for learning better concepts. Please note that the
model without a decoder performs slightly better than our
complete model, but sacrificing a little bit of predictive per-
formance can be justified to gain trust in the model.

6. Conclusion
In this work, we propose a new framework towards

learning ante-hoc concept-based explanations that: (i) can
be added easily to existing backbone classification architec-
tures with minimal additional parameters; (ii) can provide
explanations for model decisions in terms of concepts for an
individual input image or groups of images; & (iii) can work
with different levels of supervision, including no concept-
level supervision at all. Even though our framework in-
corporates additional components to existing deep learning
backbones (or pipelines), we can discard most of them after
the training. We only retain the sub-network (or module)
to generate explanations in addition to the ones on stan-
dard deep learning pipelines (i.e., feature extractor and the
classifier function) during the prediction time. Hence, com-
pared to existing self-explaining models, the additional cost
incurred by our framework is relatively insignificant. We
performed a comprehensive suite of experiments to study
the accuracy and explainability of our method on multiple
benchmark datasets both quantitatively and qualitatively.
Our approach consistently outperforms the baseline meth-
ods in all the datasets. In addition to this, we also per-
formed ablation studies to illustrate the importance of ad-
ditional components added by our method.
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