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Figure 1. Real vs synthetic data. We compare synthetic images from different generative models with real images from the low-

density (1.a.i) and high-density (1.a.ii) neighborhoods of the data manifold, respectively. In 1.b we show uniformly sampled images

from BigGAN [4] and in 1.c we display images generated using the conventional uniform sampling process from the diffusion model

(DDPM [10, 17]). While diffusion model achieves much higher diversity than GANs, uniform sampling from them rarely generates sam-

ples from low-density neighborhoods. (1.d) Our framework guides the sampling process in diffusion models to low-density regions and

generates novel high fidelity instances from these regions.1

Abstract

Our work focuses on addressing sample deficiency from

low-density regions of data manifold in common image

datasets. We leverage diffusion process based generative

models to synthesize novel images from low-density re-

gions. We observe that uniform sampling from diffusion

models predominantly samples from high-density regions of

the data manifold. Therefore, we modify the sampling pro-

cess to guide it towards low-density regions while simulta-

neously maintaining the fidelity of synthetic data. We rigor-

ously demonstrate that our process successfully generates

novel high fidelity samples from low-density regions. We

further examine generated samples and show that the model

does not memorize low-density data and indeed learns to

generate novel samples from low-density regions.

1ImageNet [8, 29] has no explicit category for humans, though one

might be present in some images. Thus generative models might generate

synthetic images that include a human. We further conduct a rigorous anal-

ysis to validate whether the network has memorized any such information

from training samples.

1. Introduction

Most common image datasets have a long-tailed distribu-

tion of sample density2, where the majority of samples lie in

high-density neighborhoods of the data manifold. Samples

from low-density regions often comprise novel attributes

(Figure 1a) and have higher entropy than high-density sam-

ples [1]. However, due to their lower likelihood, curating

even a small amount of such samples requires a dedicated

effort [16].

Our goal is to leverage generative models to generate

synthetic images from low-density neighborhoods. A nat-

ural requirement for this task is that the model should gen-

eralize to low-density regions. While generative adversarial

networks (GANs) excel at generating high-fidelity samples,

they have poor coverage, thus struggle to generate high-

fidelity samples from low-density regions [4] (Figure 1b).

In contrast, autoregressive models have a high coverage but

2We refer to the long-tail w.r.t. sample density for each class. It is

different from the long-tailed distribution over classes [24], i.e., when some

classes are heavily underrepresented than others.

11492



fail to generate high fidelity images [7]. We use diffusion-

based models due to their ability to achieve high fidelity and

high coverage of the distribution, simultaneously [17, 26].

In training diffusion models, the goal is to approximate

data distribution, which is often long-tailed. Diffusion mod-

els excel at this task, as we observe that the density distri-

bution of uniformly sampled instances from the diffusion

model is very similar to real data.

Thus uniform sampling from these models leads to an

imitation of real data density distribution, i.e., a long-tailed

density distribution, where it generates samples from high-

density regions with a much higher probability than from

low-density regions (figure 1c). To alleviate this issue, we

first modify the sampling process to include an additional

guidance signal to steer it towards low-density neighbor-

hoods. However, at higher magnitudes of this signal, the

generative process is steered off the manifold, thus generat-

ing low fidelity samples. We circumvent this challenge by

including a second guidance signal which incentives diffu-

sion models to generate samples that are close to the real

data manifold.

Since a very limited number of training samples are

available from low-density regions, it is natural to ask

whether diffusion models are generalizing in the low-

density regions or simply memorizing the training data. Af-

ter all, recent works have uncovered such memorization

in language-based generative models [5, 6]. We conduct

an extensive analysis to justify that diffusion models do

not show signs of memorizing training samples from low-

density neighborhoods and indeed learn to interpolate in

these regions. We make the following key contributions.

• We propose an improved sampling process for dif-

fusion models that can generate samples from low-

density neighborhoods of the training data manifold.

• We validate the success of our approach using three

different metrics for neighborhood density and provide

extensive comparisons with the baseline sampling pro-

cess in diffusion models.

• We show that our sampling process successfully gen-

erates novel samples, which aren’t simply memorized

training samples, from low-density regions. This ob-

servation from our sampling process also uncover that

despite a limited number of training images available

from low-density regions, diffusion models success-

fully generalize in low-density regions.

2. Related work

Diffusion-based probabilistic models [10, 17, 26] and its

closely related variants [38, 39] are likelihood-based mod-

els that learns data distribution by learning the reverse pro-

cess of the forward diffusion process. Following latest ad-

vances [10], diffusion models achieve state-of-the-art per-

formance, outperforming other classes of generative mod-

els, such as Generative adversarial networks (GANs), VQ-

VAE [28], and Autoregressive models [7] on various met-

rics in image fidelity and diversity [10, 26]. Some of the

key factors behind their success are the innovation on the

architecture of the diffusion models [10, 17], simplified for-

mulation for the training objective [17], and use of cascaded

diffusion processes [10, 18, 26].

Sampling from diffusion models is quite slow since it re-

quires an iterative denoising operation. Reducing this over-

head by developing fast sampling techniques is a topic of

tremendous research interest [19, 21, 37, 42]. Orthogonal

to this direction, our interest is in sampling data from low-

density neighborhoods. We further show that our sampling

approach can be easily integrated with fast sampling tech-

niques.

To measure neighborhood density around a sample, we

use the Gaussian model of training data in the embedding

space of a pre-trained classifier. Modeling images in em-

bedding space is a common approach, particularly due to

their alignment with human perception [45], in numerous

vision applications, such as outlier detection [32] and in-

stance selection [9].

Across generative models, given a distribution learned

by the model, there have been previous attempts in sampling

from a targeted data distribution. Discriminator rejection

sampling (DRS) and its successors [2, 11] consider rejec-

tion sampling using the discriminator in a generative adver-

sarial network (GAN). Similarly, Razavi et al. [28] exploits

a pre-trained classifier to reject samples that are classified

with low confidence. Most often the goal is to filter out

low fidelity samples, thus improving the quality of synthetic

data. In contrast, our goal is to generate high fidelity sam-

ples from low-density regions of the data manifold. These

samples are rarely generated by the model under uniform

sampling, thus sampling them using a naive classifier-based

rejection sampling approach leads to high-cost overheads.

We instead opt to modify the generative process of diffu-

sion models to guide it towards low-density neighborhoods

of the data manifold.

The most closely related work to ours is from Li et

al. [23], which smoothes class embeddings of a BigGAN

model to generate diverse images. In contrast, we focus

on diffusion-based generative models. We also demonstrate

the limitation of their approach with diffusion models in

Appendix A.6.

3. Low-density sampling from diffusion models

In this section, we first provide an overview of the sam-

pling process in diffusion-based generative models. Next,

we describe our modification in the sampling process for

low-density sampling.
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3.1. Overview of diffusion models

Denoising diffusion probabilistic models (DDPM) [17]

model the data distribution by learning the reverse process

(generative process) for a forward diffusion process. The

forward process is often a Markov chain with Gaussian

transitions, i.e., q(xt|xt−1) := N (xt;
√
1− βtxt−1, βtI).

Given a large number of timesteps (T ), this diffusion pro-

cess sufficiently destroys the information in input samples

(x0) such that p(xT ) := N (xt;0, I).
Reverse or generative process is also assumed to be a

Markov process with Gaussian transitions that learns the

inverse mapping, i.e., p(xt−1|xt), at each time step. This

process is usually modeled with a deep neural network, pa-

rameterized by θ, that learns the Gaussian transition such

that pθ(xt−1|xt) := N (xt−1;µθ(xt, t),Σθ(xt, t)).

pθ(x0) = p(xT )
T
∏

t=1

pθ(xt−1|xt) (1)

The model is trained by maximizing the variational lower

bounds on the negative log likelihood over the training data.

In order to sample synthetic data from diffusion models,

we first sample a latent vector xT ∼ N (0, I) and iteratively

denoise it using the following procedure in reverse process.

xt−1 = µθ(xt, t) +Σθ(xt, t)z, z ∼ N (0, I) (2)

We refer to this approach as baseline sampling process.

3.2. Generating synthetic images from low-density
regions on the data manifold

In this section, we present our approach to generating

samples from low-density regions of data manifold using

diffusion-based models.

3.2.1 Identifying low-density regions on data manifold

Given a data distribution q(x), low-density regions or

neighborhoods are part of the data manifold that have sig-

nificantly lower sample density than the others. To develop

techniques to sample from these regions, the first step is to

characterize them.

Limitation of likelihood estimates from the diffusion

model. A natural choice to characterize manifold den-

sity is to use the likelihood estimate from the diffusion

model itself (Equation 1). After all, we expect the likeli-

hood of getting a sample from high-density regions being

higher than the low-density regions. However, due to its

intractability for diffusion-based models, the likelihood es-

timates from the model are only an approximation of exact

likelihood [17, 36]. We find that these likelihood estimates

are not a reliable predictor of manifold density as they fail

to align with multiple commonly used metrics or with hu-

man judgment (Appendix A.2). This trend aligns with a

similar limitation of likelihood estimates in autoregressive

models [25].

We shift our focus to discriminative models since they

are well-known to learn meaningful embeddings that align

with human perception for images [45]. We measure the

manifold density by estimating the likelihood of data in the

embedding space. Let (g ◦ f)(.) be a discriminative model,

where f extracts embeddings for the input image and g is

the head classifier, most often a linear model. We model

embeddings of each class using a Gaussian model and es-

timate the log-likelihood of a given image (xi) with class

label yi from this model. We refer to the negative log-

likelihood as Hardness score (H).

H(x, y) =
1

2

[

(f(x)− µy)
T
Σ−1

y (f(x)− µy)

+ ln(det(Σy)) + k ln(2π)
]

(3)

µy and Σy refer to sample mean and sample covariance

for embeddings of class y and k is the dimension of embed-

ding space. We provide further analysis in Appendix A.3

to justify that the decrease in manifold density leads to an

increase in hardness score.

To sample from low-density regions, our approach is to

guide the diffusion model to generate samples with high

hardness scores, i.e., equivalent to achieving low likelihood

in the correct class. We maximize the following contrastive

guiding loss for this task.

Lg1(xi, yi) = log





exp(H(xi, yi)/τ)
∑C

j=1
exp(H(xj , j)/τ)



 (4)

where τ is the temperature and C is the total number of

classes.

This formalization of guiding loss function is fairly

similar to cross-entropy loss on output softmax probabili-

ties, i.e., (g ◦ f)(.). Thus we also consider an equivalent

loss function where instead of hardness score, we minimize

the output softmax probability in the correct class.

Incorporating guiding loss in sampling process. The next

step is to guide the sampling process to low-density regions

by minimizing the log-likelihood of generated samples at

each time step. We modify the sampling process as follows.

xt−1 = µθ(xt, t) + Σθ(xt, t) z

+ αΣθ(xt, t)∇∗Lg1(xt−1, y)
(5)

where z ∼ N (0, I), ∇∗ refers to normalized gradients, and

α is a scaling hyperparameter. We normalize gradients to

disentangle the choice of scaling hyperparameter, α, from

the diffusion process time steps, t (Appendix A.4). This

formulation of sampling process is similar to Dhariwal et

al. [10], with the modification that our loss function is de-

signed to guide towards low-density regions and that we use

normalized gradients.
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3.2.2 Maintaining fidelity when minimizing likelihood

We find that the sampling process in Equation 5 is highly

successful at smaller values of α. However, with higher val-

ues of α, the guidance term dominates the Gaussian transi-

tion term from the diffusion model and steers the sampling

process off data-manifold, thus generating very low fidelity

images (as illustrated in Figure 2). Its effect is exacerbated

by model distribution often not being a good approximation

of data distribution in low-density regions, in particular, due

to the reason that a very limited number of training samples

are available from low-density regions.

Figure 2. An illustration demonstrating that small α values

successfully guide the sampling process to low-density regions

(lighter colors) on the data manifold. However, at large values of

α, using additional guidance (by using a non-zero β) from the bi-

nary discriminator (Eq. 7) helps in staying close to data manifold.

We provide a demonstration of it in figure 3.

We include another term in the sampling process to com-

pel it to stay close to the data manifold. In particular, we

train a binary discriminator, with hardness score H ′, that

distinguishes between synthetic and real samples. While

sampling, we enforce synthetic images to stay close to the

real data manifold by maximizing the following loss value.

Lg2(xi) = −log





exp(H ′(xi, 1)/τ)
∑

1

j=0
exp(H ′(xj , j)/τ)



 (6)

Here class zero and one represents synthetic and real im-

ages, respectively. In low-density regions, where model dis-

tribution is likely a poor approximation of real data distri-

bution, this objective forces the diffusion model to generate

samples that are closest to the real data manifold. Our final

sampling process is following.

xt−1 = µθ(xt, t) +Σθ(xt, t) z

+ αΣθ(xt, t)∇∗Lg1(xt−1, y)

+ βΣθ(xt, t)∇∗Lg2(xt−1)

(7)

where z ∼ N (0, I), ∇∗ refers to normalized gradients,

and α, β are scaling hyperparameters. To further demon-

strate the combined effect of α and β, we provide synthetic

images with a grid search over both hyperparameters in Fig-

ure 3. We also detail our final approach in Algorithm 1.

Algorithm 1: Sampling from low-density regions.

Input : Class label (y), α, β
Function : Normalize (u) : return u/∥u∥
xT ∼ N (0, I)
for i← T to 1 do

if t > 1 then
z ∼ N (0, I), s← I

else
z← 0, s← 0

end

u1 = αΣθ(xt, t)Normalize
(

∇Lg1 (xt−1, y)
)

u2 = βΣθ(xt, t)Normalize
(

∇Lg2 (xt−1)
)

xt−1 = µθ(xt, t) +Σθ(xt, t) z+ s(u1 + u2)
end

return x0

4. Experimental results

Experimental setup. We use a U-Net-based architec-

ture with adaptive group normalization for the diffusion

model [10]. We consider the encoder from U-Net for the

classifier architecture. Both classifier and diffusion model

are conditioned on the diffusion process timestep. We con-

sider T = 1000 for the diffusion process. When sampling,

we use 250 timesteps, as it speeds up the sampling process

while incurring negligible cost in the image quality.

We consider two commonly used image datasets:

CIFAR-10 [22] and ImageNet [8]. When training the bi-

nary discriminator, H ′, we first uniformly sample synthetic

images equal to the size of the training dataset, i.e., 50K

β

α

Figure 3. Controlling hardness and fidelity. Effect of increasing

α (y-axis) and β (x-axis) on synthetic images. Increasing α forces

the model to sample from low-density regions while β forces the

sampling process to stay close to real data manifold. Salient im-

pact of β includes improving foreground semantics to correctly

represent the class and preserving background information.
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images for the CIFAR-10 dataset and 1.2M images for the

ImageNet dataset. We conduct a hyperparameter search for

α and β between 0.01 and 1.0. In most analyses, we sam-

ple 50K synthetic images for ImageNet and 10K synthetic

images for the CIFAR-10 dataset, i.e., equal to the size of

validation set for each dataset. We provide additional ex-

perimental details in Appendix A.1.

When sampling we optimize the likelihood estimate, i.e.,

hardness score, calculated in the embedding space of the

U-Net encoder model. To measure generalization to other

representation spaces, we consider multiple other models

to calculate hardness scores post sample generation. We

present results with the ResNet-50 model in the main paper

and the rest in the Appendix B.1.

4.1. Generating synthetic data using proposed α-β
guided sampling process

Validating the effect of hyperparameter α and β. Our

sampling process is designed such that we can sample im-

ages from the low-density regions by increasing α and im-

proving the fidelity of these images using β. Our first goal

is to validate the desired effect of both hyperparameters.

While using β = 0, we first increase α value from 0
to 1.0 and measure the hardness score of sampled images

at each value (Figure 4a). Our results demonstrate that in-

creasing α shifts the hardness score distribution to the right,

i.e., higher probability of sampling images that have lower

estimated likelihood.

Next we fix α = 0.5 and increase β from zero to two.

We use precision [30] to measure the fidelity of synthetic

images. It broadly measures the fraction of images that are

realistic or equivalently, the coverage of synthetic data by

the support of training data distribution. Our results show

that increasing β does improve the realism of generated syn-

thetic images (Figure 4b).

Finally, we analyze the joint effect of parameters α and

β. We perform a grid search over both α and β and gener-

ate images for each pair of values. To avoid the impact of

stochasticity, we use the same seed for all runs of the sam-

pling process. We present the sampled images in Figure 3.

These visualizations validate our argument that solely in-

creasing α to very high values degrades image fidelity. This

is because a higher value of α encourages sampling of low-

likelihood images. However, the model can satisfy this con-
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(a) α increases the hardness score.
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Figure 4. Validating effect of hyperparameters. Quantitative

results validating the desired effect of hyperparameters α and β.

straint by simply generating a poor-quality image. Increas-

ing β addresses this issue, in particular on high values of α,

where it restores the key attributes of the image thus effec-

tively moving it closer to the data manifold. We find that a

1 : 1 ratio between α and β strikes a modest trade-off be-

tween sample hardness and fidelity and use α = β = 0.5
for further experiments.

Comparing our sampling process with the baseline sam-

pling process. We compare the synthetic images gener-

ated from the baseline and our sampling approach in Fig-

ure 5, 6. We use identical experimental setup, including

seeds for random number generators, for both sampling pro-

cesses thus leaving guidance terms to be the only factor im-

pacting final images. Images from our approach are visually

distinguishable from the baseline approach since the diffu-

sion model introduces significant changes in the foreground

object semantics and background to satisfy the constraints

on hardness and fidelity. We provide additional visualiza-

tions in Appendix B.3.

4.2. Quantitative comparison of neighborhood den-
sity

To validate that our sampling process does generate data

from low-density regions, we quantitatively compare the

manifold density in the neighborhood of synthetic images

with different baselines.

Metrics to measure neighborhood density. We use hard-

ness score as the first validation metric since we maximize

it in the sampling process. However, our sampling process

might maximize hardness score without actually moving

the sampling process to low-density regions. Thus we con-

sider two additional metrics, namely Average nearest neigh-

bor (AvgkNN) and local outlier factor (LOF) [3] to further

validate the success of our approach. AvgkNN measures

density using proximity to nearest neighbors. We choose

five nearest neighbors, which is a common choice [9]. In

contrast, the local outlier factor improves on the nearest-

neighbor distance metric to compare density around a given

sample to density around its neighbors. Higher values of the

local outlier factor indicate the sample lies in a much lower

density region than its neighbors. We calculate all distances

in the feature space of a ResNet50 network which is pre-

trained on the ImageNet dataset. We ablate on the choice

of feature extractor in Appendix B.1 and show that our con-

clusions don’t change with this choice. For this analysis,

we sample 50K synthetic images using recommended val-

ues of α and β from Section 4.1. We compare our approach

with three baselines 1) BigGAN-deep 2) Real images from

the ImageNet validation set and 3) synthetic images gener-

ated using baseline sampling from the DDPM model. We

present our results in Figure 7.

All three metrics validate the success of our approach.

Under all three metrics, our sampling process has a higher
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(a) Water tower (b) Academic robe (c) Tiger beetle

Figure 5. Comparing samples from proposed and baseline sampling process. We compare synthetic images from our proposed

sampling approach (top) with the baseline sampling process (bottom) on the ImageNet dataset. We use identical random seed for both

stochastic sampling processes. Therefore, generation of each pair of images among the two approaches starts from the identical latent

vectors and the only difference is the additional guidance terms in our approach.

(a) Automobile (b) Truck

Figure 6. Comparison on CIFAR-10 dataset. We compare synthetic images from the baseline sampling process (left) with our proposed

sampling approach (right) on the CIFAR-10 dataset. We use the identical seed for random number generators for both processes.

probability of generating synthetic images from low-density

neighborhoods. It also validates the claims that the sam-

ple density in real data itself follows a long-tail distribution

and an unmodified sampling process, i.e., baseline sampling

process, from diffusion models closely approximates this

distribution. In comparison, BigGAN samples are predom-

inantly from low-density regions. Among the three met-

rics, the difference between our approach and baseline is

most significant in AvgkNN distance. When ablating on the

choice of the guidance loss function, we find that under suf-

ficient hyper-parameter ablation, one can obtain equivalent

results when optimizing likelihood in embedding space or

softmax probabilities after the logit layer (Appendix A.5).

Equivalent reduction in computational cost. Assume

that we want to sample images from low-density neighbor-

hoods, i.e., the hardness score of each synthetic sample is

greater than a threshold. A naive rejection sampling-based

approach is to sample images uniformly at random and re-

ject images that do not satisfy the criterion. However, due

Table 1. Reduction in sampling cost. Comparing the sample

generation time of our method with uniform sampling. Each entry

represents the time taken (in days) to generate 5K 256× 256 res-

olution synthetic images from the corresponding hardness score

range on a single A100 GPU.

Score-range 200− 240 240− 280 280− 320

Baseline 1.99 5.74 16.79
Ours 1.88 (×1.1) 2.03 (×2.8) 2.78 (×6.0)

11497



150 200 250 300
Hardness score

0.000

0.005

0.010

0.015

De
ns

ity
BigGAN
Real

DDPM (baseline)
DDPM (ours)

(a) Hardness score

0.00 0.25 0.50 0.75 1.00
Average kNN distance

0

1

2

3

De
ns

ity

BigGAN
Real

DDPM (baseline)
DDPM (ours)

(b) AvgkNN distance

0.9 1.0 1.1 1.2
LOF

0

5

10

De
ns

ity

BigGAN
Real

DDPM (baseline)
DDPM (ours)

(c) Local outlier factor

Figure 7. Comparing neighborhood density. We measure the density in the neighborhood of a given set of instances using three different

metrics. All three metrics share a common trend: while baseline sampling generates synthetic samples that have similar density distribution

as real data, our sampling process generates samples from low density neighborhoods with higher probability.

to the long-tail nature of sample density, the likelihood of

a sample being from low-density regions is low, thus we

would need to reject many samples to curate desired sam-

ples. Due to the iterative nature of the sampling process,

generating synthetic data from diffusion models is com-

putationally expensive, thus making rejection sampling a

highly computationally costly approach (Table 1). Our ap-

proach does not depend on rejection sampling, thus it is up

to 2− 6× faster than the former approach (Table 1).

5. Is our sampling process generating memo-

rized samples from training data?

Since a limited number of samples are available from

low-density regions in our long-tailed datasets, the genera-

tive model might memorize these samples and fails to gen-

erate novel samples from these regions. Therefore we con-

duct a rigorous analysis to identify whether our sampling

process is exploiting any memorization that might be hap-

pening in diffusion models.

Figure 8. Is low-density synthetic data being memorized? Pairs

of synthetic and real images with smallest euclidean distance in

the feature space. In each pair, left and right image correspond to

synthetic and real image, respectively. Our search space for these

examples includes all pairs of 50K synthetic images and 1.2M real

images. While the synthetic images share multiple attributes with

the nearest real image, they are not identical to the real images.

Figure 9. Is low-density synthetic data novel? For each synthetic

image, we analyze the class label of five nearest neighbors from

real data. While each synthetic image has high fidelity and cor-

rectly represents the class, it often lies closer to samples of other

classes in feature space. Even when the class label is not different,

the synthetic image differs significantly from closest real samples.

Analyzing nearest-neighbor distance. We argue that if

training data is being memorized, synthetic images will be

substantially similar to training data. We measure this simi-

larity by euclidean distance in the embedding space of well

trained image classifiers. Thus, if a synthetic image is sim-

ply memorized from training data, its nearest-neighbor dis-

tance from real data will be very small.

We sample 50K images using our sampling approach and

measure their nearest neighbor distance from 1.2M real im-

ages in the training set of the ImageNet dataset. We com-

pare these values with the nearest neighbor distance for real

data in the validation set. If our approach has memorized

training samples, its nearest neighbor distance should be

much smaller than real samples. However, the average dis-
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tance for our samples is 0.42, much higher than 0.29 for real

samples. It supports our hypothesis that our sampling pro-

cess is not simply generating memorized training samples.

Analyzing synthetic-real data pairs for signs of memo-

rization. Moving beyond comparing distribution statistics,

now we analyze individual samples for signs of memoriza-

tion. In particular, our goal is to manually analyze synthetic

images and their closest neighbors for signs of memoriza-

tion. Even more, we want to analyze pairs that would have

the highest likelihood of being memorized, i.e., synthetic

samples which are closest to real data. Across all 60B pairs

(50K×1.2M) of synthetic and real images, we manually an-

alyze the top-500 pairs with the smallest pairwise distance.

We observe that while images in these pairs share mul-

tiple attributes, such as object shape, texture, and identity,

they are not being memorized. Instead, they are some se-

mantic variation of the real images, highlighting that the

diffusion model learned the data manifold instead of mem-

orizing these samples. We present the top twelve pairs in

figure 8 and the rest of them in Appendix B.2.

Novel samples from low-density regions. To validate that

our sampling process is indeed generating novel images

from low-density regions, we also consider the class label

of its nearest neighbors from real data. In multiple cases, we

find that the nearest neighbors have different class label than

the synthetic sample. We provide few such examples in Fig-

ure 9. This phenomenon likely arises due to poorly learned

representation by the embedding extractor in low-density

regions, primarily due to the scarcity of training samples in

these regions.

6. Discussion

We present an improved version of the sampling pro-

cess in diffusion-based generative models that enables sam-

pling from low-density neighborhoods of the data manifold.

We achieve this by guiding the sampling process using two

additional classifiers at each timestep. Our sampling pro-

cess successfully generates novel samples from low-density

regions. Our work also identifies another compelling ad-

vantage of diffusion models. Despite being trained on a

small number of samples from low-density regions, diffu-

sion models successfully interpolate in these regions, i.e.,

don’t memorize the training data from these regions.

We analyze the impact of our guiding loss by juxtapos-

ing samples from baseline and our sampling process (Fig-

ure 5, 6). These results demonstrate that the generative

model exploits novel transformations in response to guiding

loss objectives. We further analyze this effect, by progres-

sively increasing α while keeping all other parameters fixed

(Figure 10). Higher values of α forces the model to gener-

ate low-likelihood samples. We find that the network some-

times exploits transformations such as photometric changes,

zoom, viewpoint, and switching the background to reduce

Figure 10. Progressive sampling. We incrementally increase α

across different runs of the sampling process. It highlights how

the guiding loss progressively moves the synthetic images to low

density regions.

the likelihood of synthetic samples.

The sampling process in diffusion models iterates for

hundreds of steps to generate a single sample. This chal-

lenge is often solved using a fast sampling process, which

trades off sample quality for speed [19, 37]. To demonstrate

that our approach can also integrate with fast sampling tech-

niques, we integrate our modified sampling process with the

fast sampling approach from Song et al. [37]. We find no

strikingly different trade-off between fidelity and sampling

steps for the baseline and our approach (Appendix A.7). At

a very low number of sampling steps, such as ten, both ap-

proaches struggle to generate high-quality images. How-

ever, with increasing the number of timesteps, the fidelity

of both baseline and our approach quickly improves.

7. Limitations and broader impact

We guide the sampling process by navigating the data

manifold through the feature space of image classifiers.

While proximity in feature space of deep neural networks

aligns with human perception [45], deep neural networks

are also well known to be biased towards certain attributes,

such as texture [12] and background [34, 44]. Our sam-

pling process can exploit these biases, such as by simply

removing the background, to induce a large change in the

likelihood in feature space. We also conduct an examina-

tion to investigate signs of memorization and whether our

sampling process is exploiting them. While we didn’t ob-

serve any memorization on the ImageNet dataset, diffusion

models might memorize samples on even more complex

and non-curated datasets than ImageNet. In event of such

memorization, our sampling process might exploit it.

Deep neural networks often struggle to generalize to

novel and rarely observed samples from the distribution [16,

20]. We believe that our work can further assist in improv-

ing the distributional robustness of these networks. Our

sampling process also reveals that diffusion models suc-

cessfully generalize to low-density regions of data manifold

which further strengthens the argument that these models

hold the potential to provide tremendous benefits in repre-

sentation learning [13, 33].
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