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Figure 1. Generative pretraining for Multimodal Video Captioning. Multimodal Video Captioning takes visual frames and speech transcribed by
ASR as inputs and predicts a caption. The example on the left (a) demonstrates that using both modalities jointly is beneficial to generate an accurate
caption, i.e., red words are present in the visual input whereas blue words correspond to the concepts in the ASR. Our new multimodal video generative
pretraining (MV-GPT) uses a future utterance in time from the video stream as a captioning target (b). This objective can be applied to unlabeled
data (e.g., HowTo100M), which comes with ASR but no captions, and results in effective joint-pretraining for both a multimodal encoder and decoder.

Abstract

Recent video and language pretraining frameworks lack
the ability to generate sentences. We present Multimodal
Video Generative Pretraining (MV-GPT), a new pretraining
framework for learning from unlabelled videos which can
be effectively used for generative tasks such as multimodal
video captioning. Unlike recent video-language pretraining
frameworks, our framework trains both a multimodal video
encoder and a sentence decoder jointly. To overcome the lack of
captions in unlabelled videos, we leverage the future utterance
as an additional text source and propose a bidirectional genera-
tion objective – we generate future utterances given the present
mulitmodal context, and also the present utterance given future
observations. With this objective, we train an encoder-decoder
model end-to-end to generate a caption from raw pixels and
transcribed speech directly. Our model achieves state-of-the-art
performance for multimodal video captioning on four standard
benchmarks, as well as for other video understanding tasks
such as VideoQA, video retrieval and action classification.

1. Introduction
A long-standing goal of the AI community is the devel-

opment of conversational multimodal systems that can both
reliably perceive the world and effortlessly communicate with
humans. An emerging benchmark of progress in this field is
the task of multimodal video captioning [17,32] - which tests

both abilities; a successful model must not only accurately
understand ‘multimodal’ streams of input video (including the
speech and the video frames), but also generate coherent natural
language descriptions of the content.

Unsurprisingly, a major challenge in the field of vision and
language learning is the lack of large-scale, manually annotated
data. Annotating captions for videos is time intensive, expensive
and subjective (with low inter-annotator agreement [17]) – this
is in contrast to fields such as image classification where fully
annotated datasets are orders of magnitude larger [15,41,56].
To overcome this limitation, there has been a flurry of recent
works that pretrain their video-language models on instructional
videos [32, 33, 42, 44, 45], a domain where the speech is
particularly well aligned to visual content. Recently introduced
datasets such as Cooking312K [45] and HowTo100M [34]
leverage such instructional videos with associated captions
from ASR (automatic speech recognition) to learn joint
video-and-text embeddings [33, 44] or to train multimodal
video encoders [27,42]. However, the models in these works
often do not contain a decoder, lacking the ability to generate
sentences, and thus only the video encoder is transferred to the
downstream tasks – indeed for the case of video captioning, the
decoder is often learned from scratch [45,47,63]. While one
can still initialize the decoder using independently pretrained
weights such as those from a GPT-2 [37] model, we observe
that this strategy is suboptimal and performance is significantly
improved by optimizing the encoder and the decoder jointly.

For the task of multimodal video captioning, we require a

17959



Figure 2. Multimodal Video Generative Pretraining (MV-GPT) framework. During pretraining, our network (which consists of modality specific
encoders, a multimodal encoder and a sentence decoder) is trained with a new bi-directional objective. 1) Forward generation (FG, blue ): Given
input frames and present utterances from a video clip, we predict a future utterance and 2) Backward generation (BG, red ): Given input frames
and a future utterance, predict the current utterances. Both losses are applied to a triplet consisting of video frames, present utterances and a future
utterance. To allow our model to recognise the different configurations, we attach distinct special classification tokens CLS1 and CLS2 to the
input text for FG and BG respectively, as well as distinct BOS1 and BOS2 (beginning of sentence) tokens to the decoder for sentence generation.

model that can both encode multimodal videos (i.e. frames and
textual inputs) and generate captions. Using multimodal infor-
mation as input can greatly improve the quality of the generated
captions (as illustrated in Figure 1a). However, learning such
an encoder-decoder model jointly from unlabelled data is par-
ticularly challenging, as it requires two streams of textual data –
naturally occurring transcribed speech accompanying the video
for the encoder, and target sentences for the decoder – whereas
unlabelled videos only come with a single stream of speech
(Figure 1b). Recent works [17,23,32] have attempted to solve
this problem with a denoising autoencoder - wherein the input
speech to the model is artificially ‘noised’, i.e. random words
are masked out [17, 23, 32]. The decoder is then tasked with
simply reconstructing either the masked phrases or the original
unmasked text, where the supervisory signals are provided only
from the masked words. In these frameworks, additional losses
are often required to strengthen the pretraining supervision, such
as multimodal input alignment [32] and segment ordering [17].

In our framework, we introduce a novel stronger loss. We
leverage future utterances as another source of textual data
and train a model to generate these entirely unseen sentences
as depicted in Figure 1b. To alleviate the problem that future
utterances are not temporally aligned, we propose a backward
generation objective where present aligned utterances are
generated given future utterances. Experimental results show
that a model pretrained with this bidirectional generation
objective effectively transfers to multimodal video captioning
and outperforms the state of the art by a margin.

We make the following contributions: (i) We propose a
novel pretraining objective for multimodal video captioning
that requires no manually annotated captions, and instead uses
utterances sampled at different times in the same video. Our
objective is bidirectional in time – i.e. we not only generate
future utterances but also the present ones from the future; (ii)
By using two sources of textual data, we are able to jointly train
the entire encoder-decoder model. This is unlike previous works
which pretrain only the (multimodal) encoder, thereby lacking
the ability to generate captions [27, 42, 45]; (iii) Our encoder

is trained from raw pixels and words directly, in contrast with
existing methods that rely on pre-extracted visual features
limiting transfer to new domains [17,23,32]; (iv) We achieve
state-of-the-art results on four video captioning benchmarks
– YouCook2, ViTT, MSR-VTT and ActivityNet-Captions –
consistently outperforming existing methods by significant
margins; and finally (v) Our pretraining objective yields strong
multimodal video representations, which achieve state-of-the-art
performance on other video understanding tasks such as
VideoQA, video retrieval and action classification.

2. Related Work
Video captioning. Early works in video captioning consisted of
rule-based methods [10,22], where subjects, verbs and objects
(SVO-triplets) detected from the video were combined into
sentence templates. Later work moved away from rule-based
methods by framing captioning as a machine translation
task [4,39,46], which developed the common encoder-decoder
paradigm of today for the task – the encoder processes a set
of video features and accumulates its hidden state, which is
then passed to a decoder for producing a caption. Early works
implemented the visual encoder as a 2D CNN (either frozen
or finetuned) applied to video frames, which was then naturally
extended to 3D CNNs [6,53], to better capture motion dynamics,
with temporal aggregation over the entire video typically per-
formed using attention strategies [9]. Given the computational
challenge of using expensive 3D CNNs applied to dense frame
inputs (typically 30 fps), most of these works operated on
pre-extracted features, only learning the fusion of features in
the encoder. Unlike such works, we address this problem using
a transformer-based encoder applied to raw pixels [3], sampled
at a coarse rate to better capture long range context.
Pretraining with weakly paired data. Existing video
captioning datasets [17,55,62] are orders of magnitude smaller
than video classification datasets [20]. As a source of weakly
paired video and language data, a number of works have
used the visual frames and the Automatic Speed Recognition
(ASR) transcripts of unlabelled videos to pretrain video
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representations [27, 33, 42, 44, 45, 63]. These approaches
learn multimodal representations by formulating proxy tasks
such as masked language/frame modeling [42,45], video-text
matching [27,33] or segment ordering [27]. While these studies
show improvements on visual representation [33,44,45,47] or
multimodal video representation [27,42,63] learning, they are
designed for discriminative tasks only, and lack the generation
capability. Pretraining techniques for generative tasks such as
ours, are fewer. While [23] use multimodal translation as a gen-
erative objective, their encoder is limited to accept visual inputs
only. Works that use multimodal inputs to the encoder, train
with masking losses – wherein words or phrases are masked
and the objective is to reconstruct the original sentences [23,32]
or the masked targets [17] using an autoregressive generator. In
contrast, we make use of utterances outside of the clip boundary,
which are simply ignored in previous works. We leverage future
utterances as a second source of textual data, and propose a
bi-directional generation objective where the model generates
the future utterance given the current utterance and vice versa.
While we also use a masked language modelling loss, this is
simply in addition to our primary generative bidirectional loss.

3. Method
Our objective is to pretrain a model that can effectively

encode multimodal videos (visual frames and transcribed
speech) as well as decode natural language sentences. This
will allow us to use the model for multimodal captioning. In
this section, we first describe the pretraining losses used to train
the encoder and decoder jointly from unlabelled videos. We
then describe our model, which consists of modality specific
encoders, a multimodal encoder and a text decoder (Figure 2).

3.1. Pretraining Objectives and Losses

Our framework is designed to take advantage of unlabelled
instructional video data, which consists of video frames and
utterances often linked to the visual content [34]. As mentioned
earlier, our framework requires two textual streams – an input
to the encoder and a captioning target for the decoder. Because
unlabelled videos do not have captioning targets, we instead
propose a simple objective – our model is trained to generate
a future utterance in the video given the current video context
and current utterances (forward generation). This gives us two
sources of textual supervision, the current utterance allows us
to learn how to optimally fuse modalities in the video encoder,
while the decoder is tasked with predicting a new utterance it
has never seen before. However, our goal is video captioning,
and not ‘predicting the future’. To enable our model to generate
text corresponding to the present video context, we also add in
an additional backward generation loss – where the model must
generate the current utterance given the current video frames
and a future utterance (backward generation). This encourages
generated sentences to be temporally aligned (and hence more
tightly coupled) with the visual inputs.

3.1.1 Bi-directional Utterance Generation

Given a large set of unlabelled videos, we extract short clips
consisting of visual frames F = {f1,...,fNf

} and transcribed
speech utterances U = {u1, ... , uNu

} aligned with F . For
each clip, we also consider the immediate future utterance
W = {w1,...,wNw

} where ui and wj are tokenized words in
the transcribed utterances. Note that we use the term ‘utterance’
to refer to a single sentence of transcribed speech.
Forward Generation: Our model is trained to generate a
future utterance W given clip frames F and present utterances
U . Formally speaking, we formulate our forward generation
objective to minimize the negative log-likelihood of the true
future utterance W , where the loss function given by the chain
rule is LFG=−

∑Nw

i=1logP(wi|w1,...,wi−1,F,U). This loss en-
courages the pretrained model to effectively encode temporally
aligned multimodal inputs to predict the future utterance.
Backward Generation: We now apply the same loss as
above, albeit in the backward direction. Namely, the model
is tasked with generating present utterances U aligned
with video frames F , conditioned on future utterances W
and F . As in the forward generation, we also minimize
the negative log-likelihood of the true present utterance
LBG=−

∑Nu

i=1logP(ui|u1,...,ui−1,F,W). Note that the visual
input F is temporally aligned with the decoder output U . This
loss function encourages the network to generate a caption
related to the visual contents.

3.1.2 Masked Language Modeling

As an additional supplementary loss, we also train with a masked
language modeling (MLM) loss [11] LMLM(X) where X is the
input utterance on which the masking is applied. We apply this
loss on both the forward and backward input utterances, i.e. as
LMLM(U) andLMLM(W). Note that these losses are computed
independently from the above bidirectional generation losses.

Unlike UniVL [32] where the MLM loss is applied to the
outputs of the encoder, we apply it to the outputs of the decoder.
This encourages the self attention layers in the decoder to focus
on further multimodal contextualization of the textual tokens
(since each masked token prediction requires knowledge of
neighbouring context). As we show in the experiments, this
leads to performance gains.

3.2. Model

Our model consists entirely of transformer blocks, and is
trained end-to-end directly from pixels and word tokens.

3.2.1 Modality Specific Encoders

Given a multimodal video input consisting of the visual frames
F = {f1,...,fNf

} and text inputs X = {x1,...,xNx}, we first
extract features from the individual modalities independently.
Note here that the textual input X is the aligned utterance U
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in general (for computing the forward generation loss and for
downstream captioning tasks) but is set to W when computing
the backward generation loss.
Textual Encoder: We extract Nx contextualized textual embed-
dings E={ei} from the input text using a BERT [11] encoder.
Visual Encoder: Unlike previous approaches [17, 32, 42, 45]
where visual features are pre-extracted by models pretrained
on different datasets, we extract the visual features directly
from pixels. We use the recent transformer-based video encoder
ViViT [3], in particular, the tubelet embedding scheme and
the factorized encoder architecture. For the tubelet embedding
scheme we first extract spatio-temporal 3D tubes from the
visual input volume resulting in S×T token embeddings where
S and T correspond to the numbers of tokens in the spatial and
temporal dimensions, respectively. Then, the spatial transformer
first takes each group of S embeddings from the same temporal
index with a special CLS token embedding, and the temporal
transformer models interactions between the output CLS
embeddings of the individual spatial groups with another CLS
embedding resulting in T+1 visual features V ={vj} – see [3]
for further details.

Unlike 3D CNN visual encoders which operate on
consecutive frames extracted at high frame rates (30 fps), our
visual encoder can operate on coarsely sampled frames (1 fps),
thus significantly reducing compute. This allows us to train
the visual encoder end-to-end, and helps adapt our features
across the domain gaps between pretraining and downstream
datasets. It also allows the easy adoption of off-the-shelf video
augmentation directly to RGB frames, which is useful for
small-scale downstream benchmarks.

3.2.2 Multimodal Encoder

Once the two sets of textual features E and visual features
V are extracted, our multimodal encoder fuses multimodal
information using the co-attentional transformer used in [31,42].
Each layer consists of two streams where each stream is a
stack of two transformer blocks. In the textual stream, we first
contextualize the features E using a cross-attention transformer
block attending to the visual features V . Then, the output
features are further contextualized by another transformer
block with self-attention. The first transformer block performs
inter-modality contextualization through a cross-attention
process whereas the second transformer block carries out
intra-modality contextualization through a self-attention process.
In the same way, the visual stream V attends to the textual
stream. Our multimodal encoder repeats this process R times
resulting in the output multimodal features Ê and V̂ .

3.2.3 Sentence Decoder

As shown in Figure 2, given multimodal video features
C=Ê∪V̂ as context, we autoregressively generate the output
sentence Y conditioned on this context using a transformer

decoder. To generate token yi, we first encode the previous
generated tokens Yi={y0,...,yi−1} with a look-up table and a
positional embedding to produce Hi={h0,...,hi−1}. We then
encode the context C and the previous embedded tokens Hi

using a single transformer. The outputs of this transformer are
C̃∪H̃i, where H̃i = {h̃0,...,h̃i−1}. Note that C̃ refers to the
multimodal input embeddings obtained from the decoder and is
used for computing the MLM loss as discussed in Section 3.1.2.
We then predict the next token yi from h̃i−1 by a linear
projection with a softmax: yi = argmax(softmax(Φh̃i−1)),
where Φ ∈ Rν×d is the linear projection matrix and ν is the
vocabulary size. The first word h0 is set using the special BOS
(beginning of sentence) token, and tokens are generated until a
special EOS (end of sentence) token is generated. In practice,
each iteration requires only a single forward pass on the decoder
transformer with the aid of causal masking introduced in [48].

3.2.4 Input and Output Configurations

Pretraining: Since our pretraining objective is bidirectional,
each triplet (F,U,W) consisting of the visual frames F , the
present utterances U and the future utterance W is processed
by the network twice. For forward generation, the model
takes F and U as inputs and generates W , and it generates
U given F and W , in backward generation. To enable the
model to recognize the different configurations, we attach
distinct, special tokens CLS1 and CLS2 to the input text
for the forward and backward generation losses respectively as
illustrated in Figure 2. Similarly, we feed distinct BOS1 and
BOS2 tokens to the decoder to initiate sentence generation.
Finetuning for captioning: In downstream video captioning
datasets, video clips (consisting of frames F and aligned
utterances U) are manually annotated with a natural language
caption. During finetuning, we attach the CLS1 token to
U (as is done in forward generation), since U is an aligned
utterance, but for generation we feed in the BOS2 token (as
is done in backward generation to predict the present utterance),
so that we also generate a temporally aligned caption.

3.2.5 Implementation Details

For our text encoder, we adopt the BERT-Base architecture
with uncased wordpiece tokenization [11]. Our visual encoder
uses the corresponding ViViT-Base configuration with a 1-layer
temporal transformer and a tubelet size of 16×16×4 [3]. Our
multimodal encoder consists of 2 layers following [42] and
finally, the decoder is based on the GPT-2 (117M parameters)
architecture [37] but we modify it to take both multimodal input
context C and a BOS token allowing conditional generation
(the original GPT starts generation immediately by taking the
first word as its input and only conditions on text). We initialize
the text encoder and the decoder with the standard BERT and
GPT-2 weights respectively pretrained on large-scale unlabelled
corpora [11, 37]. Similarly, we initialize our visual encoder

17962



using the pretrained weights on Kinetics 400 in [3] unless
otherwise specified. Our model is pretrained end-to-end using
the Adam optimizer [21] for 1.5M iterations with the batch
size of 2048. For more detailed hyperparameters and training
strategies for pretraining and finetuning, please refer to the
supplementary materials.

4. Experiments

In this section, we first demonstrate our results on four
different benchmarks for multimodal video captioning. We then
also show that our pretrained model has the ability to generalise
to other video understanding tasks such as video question
answering (VideoQA), video retrieval and action classification.

4.1. Multimodal Video Captioning

4.1.1 Datasets and Evaluation Protocols

We use HowTo100M [34] as our pretraining dataset, and
evaluate on four downstream captioning benchmarks.
HowTo100M [34] consists of 1.2M instructional videos from
YouTube. Transcribed speech is obtained using the YouTube
ASR API [1]. Following [42], we extract 53M triplets of frames,
current utterances and future utterances for pretraining.

YouCook2 [62] is the most widely adopted benchmark for
multimodal video captioning and contains 2,000 cooking videos
for 89 different dishes with 14K video clips. Each video clip
is annotated with a single captioning sentence.

Video Timeline Tags (ViTT) [17] was created to better reflect
the distribution of instructional videos in the wild. It consists
of 8,169 videos, 5,840 of these videos for training and the
remaining videos for validation and testing. Videos are divided
into 7.1 segments on average, with each segment accompanied
by a short timeline tag.

MSR-VTT [55] is a standard benchmark with 10K open
domain video clips for video captioning. The duration of
each video clip is between 10 and 30 seconds, and 20 natural
language descriptions are manually annotated per clip.

ActivityNet-Captions [24] is a standard dense video captioning
benchmark consisting of 100K temporally localized sentences
for 20k videos. We follow the standard splits with 50/25/25%
examples for training, validation and test sets. To evaluate
our model’s ability to predict captions, we use ground truth
temporal proposals following [24].

We pretrain a single model on HowTo100M, which is
then transferred to all four captioning benchmarks through
finetuning. We report results using the following established
metrics: BLEU-4 (B-4) [35], CIDEr (C) [49], METEOR
(M) [5] and ROUGE-L (R-L) [29]. For ViTT, we measure
BLEU-1 (B-1) instead of BLEU-4 following [17].

PT Losses PT parts B-4 C M R-L

No PT – 13.25 1.03 17.56 35.48
Baseline PT E 16.13 1.46 21.76 41.50
CoMVT [42] E 14.46 1.24 18.46 37.17
M-MASS [17] E+D 19.03 1.88 24.00 45.10
UniVL [32] E+D 19.95 1.98 25.27 46.81
MV-GPT (Ours) E+D 21.26 2.14 26.36 48.58

Table 1. Comparisons to existing pretraining losses on YouCook2.
PT stands for pretraining. PT parts indicates which part of the model
are pretrained, encoder (E) or both encoder and decoder (E + D). We
reimplement the loss functions of existing methods but use our model
and training strategies for fair comparison.

FG BG MLM-E MLM-D WD B-4 C M R-L

No PT 13.25 1.03 17.56 35.48
✓ 16.13 1.46 21.76 41.50

✓ ✓ 20.65 2.05 25.81 47.22
✓ ✓ 20.77 2.09 25.90 47.41
✓ ✓ ✓ 20.82 2.10 26.20 48.22
✓ ✓ ✓ 20.89 2.11 26.42 48.30
✓ ✓ ✓ ✓ 21.26 2.14 26.36 48.58

Table 2. Ablation on YouCook2 showing the effect of our different
loss components in pretraining. FG: Forward Generation loss. BG:
Backward Generation loss. MLM-E/MLM-D: Masked Language
Modelling loss applied on encoder outputs (E) or decoder outputs (D).
WD: Weight Decay. No PT: No pretraining with any of these losses.

4.1.2 Results

In this section we ablate some key design choices, in particular
the backbone and objective functions used in MV-GPT, and
explore the impact of the end-to-end training. Finally, we
compare our model to the state of the art.
Pretraining Losses: We implement a simple baseline, which
consists of a masked language modelling loss given visual
frames and ASR as input (Baseline PT). We also reimplement
three state-of-the-art pretraining losses: (i) CoMVT [42],
(ii) UniVL [32] and (iii) M-MASS [17]. For a fair comparison,
we use our model architecture for all experiments, varying the
loss function only. For the methods which pretrain the encoder
only, we initialise the decoder with public GPT-2 weights [37].
For ‘No PT’, the encoder is not pretrained either, but is initialized
with public BERT and ViViT pretrained on ImageNet21k.

Table 1 compares these different losses. We can observe that
pretraining the encoder only brings moderate gains over training
from scratch, for all the losses investigated. This performance
is greatly improved by pretraining both the encoder and
decoder jointly. Finally, we observe that our approach MV-GPT
outperforms existing joint pretraining losses.
Effect of each Loss Term in MV-GPT: Table 2 shows the effect
of each term in our loss function. The forward generation (FG)
loss already provides strong supervision. When applying the
masked language modelling loss on the decoder outputs (MLM-
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Arch. Weights from / Trained on E2E B-4 C M R-LPT FT

YouCook2

S3D S3D [53] / Kinetics 19.65 1.93 24.47 45.79
S3D MIL-NCE [33] / HowTo100M 20.02 1.96 24.98 46.65

ViViT ViViT [3] / Kinetics 19.54 1.93 24.42 45.93
ViViT MV-GPT / HowTo100M ✓ 21.77 2.20 26.97 49.29
ViViT MV-GPT / HowTo100M ✓ ✓ 21.26 2.14 26.36 48.58
ViViT MV-GPT / HowTo100M ✓ ✓† 21.88 2.21 27.09 49.38

MSR-VTT

ViViT MV-GPT / HowTo100M ✓ 47.04 0.55 36.80 62.99
ViViT MV-GPT / HowTo100M ✓ ✓ 48.92 0.60 38.66 64.00

Table 3. Ablation on YouCook2 with different visual encoder
configurations. E2E: End-to-end training including the visual encoder.
PT: Pretraining. FT: Finetuning. † Freeze the visual encoder at the
beginning and tune end-to-end once converged during finetuning.

D) instead of the encoder outputs (MLM-E), performance is
slightly improved due to the additional input contextualization
provided by the decoder. Adding the backward generation (BG)
loss provides a boost across all metrics. Additionally, we observe
that adding weight decay (WD) [25] brings additional gains, and
we report our scores in this full setting for the rest of the paper.
Visual Encoder and End-to-end Training: In Table 3, we
first compare the ViViT [3] encoder to commonly used S3D
features [53]. When both encoders are trained on Kinetics and
fixed for multimodal pretraining and finetuning, they show
comparable scores despite the large complexity of S3D due
to the high frame rate required (30 fps vs. 1 fps for ViViT).
Using HowTo100M to train a visual encoder, we observe large
gains with both architectures as expected given the similarity
in the domains – HowTo100M and YouCook2 are both
instructional video datasets. However, we observe larger gains
with ViViT where the visual encoder is optimized for generative
losses within our framework and jointly trained with the other
components thanks to the low complexity of the ViViT encoder.
These results show the benefits of end-to-end pretraining.

We further investigate the effects of end-to-end training for
finetuning. For YouCook2, we observe slight performance
degradation when naively finetuning the network end-to-end
from the beginning (row 4 to 5). This degradation is overcome
by initially freezing the visual encoder and starting end-to-end
training after convergence, which gives us a minor gain (row
6). These results indicate that our pretrained visual encoder
already captures strong representations for inputs in a similar
domain, and end-to-end finetuning is less critical in this case.
However, we observe more significant gains on MSR-VTT
since end-to-end finetuning becomes crucial given a larger
domain gap (row 7 to 8).
Pretraining with Random Initialization: We also investigate
the ability of the model to learn from scratch. We initialize
the model either entirely randomly or using pretrained BERT,
ViViT and GPT-2 weights. Table 4 shows that with random

Initialization MV-GPT Pretraining B-4 C M R-L

Random 10.93 64.56 12.88 29.03
Random ✓ 20.78 2.09 25.83 47.76

Public weights 13.25 1.03 17.56 35.48
Public weights ✓ 21.26 2.14 26.36 48.58

Table 4. Ablations on YouCook2 showing the effect of initialization
and pretraining. Public Weights: Initialization with public BERT,
GPT-2 and ViViT weights.

Method PT parts Inputs B-4 C M R-L

VideoBERT [45] E V 4.04 0.49 11.01 27.50
ActBERT [63] E V 5.41 0.65 13.30 30.56
MART [26] – V 8.00 0.36 15.90 –
AT [14] – T 8.55 1.06 16.93 35.54
DPC [43] – V+T 2.76 – 18.08 –
AT+Video [14] – V+T 9.01 1.12 17.77 36.65
DECEMBERT [47] E V+T 11.92 0.58 20.01 40.22
VideoAsMT [23] E+D V 5.30 – 13.40 –
M-MASS [17] E+D V+T 12.04 1.23 18.32 39.03
UniVL [32] E+D V+T 17.35 1.81 22.35 46.52
MV-GPT (Ours) E+D V 16.71 1.53 21.43 41.56
MV-GPT (Ours) E+D T 16.71 1.56 20.88 40.19
MV-GPT (Ours) E+D V+T 21.88 2.21 27.09 49.38

Table 5. Comparison to SOTA on YouCook2 for video captioning.

Method PT parts Inputs B-1 C M R-L

M-MASS [17] E+D V+T 22.37 0.82 11.00 31.40
MV-GPT (Ours) E+D V+T 37.89 1.04 26.75 34.76

Table 6. Comparison to SOTA on ViTT for video captioning.

initialization, our method still performs very well (row 2),
outperforming the model initalized with public BERT, GPT-2
and ViViT weights (row 3). Note that the pretrained ViViT
weights were obtained from training on the fully supervised
dataset Kinetics. Also, pretraining entirely from scratch even
approaches the case where all parts of the model are intialized
using public weights and pretrained (row 4).
Multimodal vs. Single Modality: In Table 5, we show results
with text only and visual only inputs (we only feed the CLS
token for the omitted modality). It is clear that both modalities
are complementary and performance is best when combining
both. Additionally, to assess the contribution of the visual
modality, we test a model pretrained with text inputs only. Even
when this pretrained model is finetuned with both modalities,
the performance is significantly lower compared to a pretrained
multimodal model (last row in Table 2): there is a 25% relative
drop on all 4 metrics (e.g., 1.43 vs. 2.14 in CIDEr). When
finetuned with text inputs only, the scores drop further (e.g., to
1.20 in CIDEr). These results confirm the importance of the
visual inputs during pretraining.
Comparisons to the State of the Art: Finally, we compare
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Transcript:
This makes a really good
source. So about twenty
five spice you like it.
That’s about 4 teaspoons

Generated captions

GT: pour in spicy sauce

No-PT: pour some sauce over the pasta

MV-GPT: add sriracha to the bowl

Transcript:
So by considering the
whole host of nature and
nurture influences, we
can take a broader view
of mental health ...

Generated captions

GT: a man in a brown blazer discussing mental health

No-PT: a man in a blue shirt is talking

MV-GPT: a man in a suit is talking about mental health

Transcript:
You can take one like
this.

Generated captions

GT: a person is riding a ski lift and speaking to us

No-PT: a man is driving a motorcycle

MV-GPT: a man is walking in the woods

Figure 3. Qualitative example on YouCook2 (first row) and MSR-VTT (last two rows) including a failure case (last row). GT: Ground-truth
caption. No-PT: No multimodal pretraining. MV-GPT: Our model pretrained on HowTo100M.

Method PT parts Inputs B-4 C M R-L

OA-BTG [60] – V 41.40 0.47 28.20 –
MGSA [9] – V 42.40 0.48 27.60 –
POS+CG [50] – V 42.00 0.49 28.20 61.60
POS+VCT [16] – V 42.30 0.49 29.70 62.80
SAM-SS [8] – V 43.80 0.51 28.90 62.40
ORG-TRL [61] – V 43.60 0.51 28.80 62.80
VNS-GRU [7] – V 45.30 0.53 29.90 63.40
DECEMBERT [47] E V 45.20 0.52 29.70 64.70
VideoAsMT [23] E+D V 41.70 – 28.50 –
UniVL [32] E+D V+T 41.79 0.50 28.94 60.78
MV-GPT (Ours) E+D V+T 48.92 0.60 38.66 64.00

Table 7. Comparison to SOTA on MSR-VTT for video captioning.

Method B-4 M

DCEV [24] 1.60 8.88
DVC [28] 1.71 9.31
Bi-SST [51] – 10.89
HACA [52] 2.71 11.16
MWSDEC [38] 1.46 7.23
MDVC [19] 1.46 7.23
BMT [18] 1.99 10.90
MV-GPT (Ours) 6.84 12.31

Table 8. Comparison to SOTA on ActivityNet-Captions for video
captioning with ground-truth action proposals.

MV-GPT to existing methods on all four datasets. Table 5
compares our method to the state of the art on YouCook2,
where we outperform all prior work including works pretrained
on HowTo100M. On ViTT (Table 6), the gap is even larger,
with our model advancing the state-of-the-art by 15% (absolute)
compared to M-MASS in B-1 and M scores.

Despite the domain gap between instructional videos in

HowTo100M and general online videos in MSR-VTT, our
model outperforms all existing work as shown in Table 7.
Although UniVL also pretrains both the encoder and the
decoder on HowTo100M, our method achieves relative
improvements of over 31% thanks to our end-to-end training.
Similarly, Table 8 shows that our pretraining method achieves
state-of-the-art performance on ActivityNet-Captions despite
the significant domain gap.
Qualitative Results: We show examples from YouCook2 and
MSR-VTT in Figure 3. The first example illustrates that our
model can use the visual modality to infer the term ‘sauce’ de-
spite the ASR error ‘source’ and further recognizes its name
‘sriracha’. Similarly, the second example illustrates that our
approach manages to take into account both modalities jointly.
Finally, we show a failure case in the last row in which our model
fails to capture the concept ‘ski lift’. A possible explanation is
that the concept of a ski lift may be rarely seen in the pretrain-
ing dataset, a problem which may be alleviated by collecting
more diverse pretraining videos, or incorporating external object
knowledge through the use of pre-trained object detectors.

4.2. Non-generative Video Understanding Tasks

Although MV-GPT is a generative model and is particularly
designed for multimodal video captioning, we also find
that our pretraining technique learns a powerful multimodal
video encoder that can be transferred easily to multiple video
understanding tasks. In particular, we show results on VideoQA,
video retrieval and action classification. For details on each task
please refer to the supplementary materials.
VideoQA: We use MV-GPT as an encoder (no BOS token
is fed to the decoder so it only contextualizes the input tokens;
see supplementary materials for details) and the average pooled
input embedding is fed to a two-layered MLP classifier to

17965



predict the answer. The question is simply concatenated to the
ASR inputs. Following the standard protocols in [42,57], we
measure the answer prediction accuracy on MSRVTT-QA [54]
and ActivityNet-QA [59].

Table 9 compares the accuracy of MV-GPT to existing
methods that are pretrained on HowTo100M [34]. Even though
MV-GPT is not designed for this particular task, our model
slightly outperforms the previous state-of-the-art VQA-T [57]
(which is specifically designed for VideoQA) on both datasets.
Video Retrieval: The common practice for retrieval is to train
a video-text joint embedding using discriminative losses only,
typically in the form of a standard NCE loss [13], where each
video clip has a single corresponding textual caption. Here
we investigate whether our generative pretraining loss can
provide a boost to performance. Since each example forms two
inputs-target triplets in our bidirectional framework, we apply
NCE losses on both (Bi-NCE). We then add our generative
pretraining loss to this framework and report results in Table 10.
We evaluate our model with and without ASR to compare fairly
to existing works. We report recall at k={1,5,10} (R@k) and
median rank (MdR) on MSR-VTT [55] following the standard
9K retrieval splits [58].

Our first observation is that our Bi-NCE serves as a strong
baseline pretraining method for retrieval. We show that adding
our generative losses further improves performance by a relative
6.3% in R@1, yielding state-of-the-art performance. Finally,
adding ASR to our multimodal encoder further improves
performance by a significant margin (+ 4%).
Action Classification: We test the visual encoder of MV-GPT
on action classification following [3]. We evaluate models using
top-1 classification accuracy on Kinetics 400 and 600 [20]. Note
that we adopt the ViViT-Base architecture with factorized en-
coder following [3], however we use a tubelet size of 16×16×4
instead of 16×16×2 to reduce complexity. We compare our
model with two different initializations for the visual encoder:
random and pretrained weights on ImageNet21k. The baseline
models are finetuned on the evaluation benchmarks immediately
from these initializations whereas we first post-pretrain models
in our MV-GPT framework and finetune for action classification.

Table 11 demonstrates that MV-GPT is an effective pretrain-
ing strategy for the visual encoder. High-capacity transformer
models like ViViT are challenging to train from scratch, and
overfit easily as shown in the first row. However, ViViT ini-
tialized from an MV-GPT visual encoder trained from scratch
performs substantially better, obtaining absolute improvements
of 24% on Kinetics-400 (a standard video classification bench-
mark). This number is close to the performance of ViViT inital-
ized with ImageNet-21K pretraining, as done by the original au-
thors [3] (note that ImageNet-21K was created with high manual
annotation cost, while we used no labels at all during pretrain-
ing). Finally, initialising the MV-GPT visual encoder with these
same ImageNet-21K weights, and then pretraining the MV-GPT
visual encoder weights on HowTo100M achieves the best results,

Method MSRVTT-QA ActivityNet-QA

SSML [2] 35.1 –
MAR-VQA [64] – 34.6
DECEMBERT [47] 37.4 –
CoMVT [42] 39.5 38.8
VQA-T [57] 41.5 38.9
MV-GPT (Ours) 41.7 39.1

Table 9. Comparison to SOTA on MSRVTT-QA and ActivityNet-QA
for video question answering. Our method is comparable to other
works, even those designed specifically for the task of VideoQA. We
compare models pretrained on HowTo100M.

Method With ASR R@1 R@5 R@10 MdR

UniVL [32] 21.2 49.6 63.1 6
MMT [12] 26.6 57.1 69.6 4
AVLnet [40] 27.1 55.6 66.6 4
SSB [36] 30.1 58.5 69.3 3
HiT [30] 30.7 60.9 73.2 –
No PT 3.5 8.0 12.1 114
Bi-NCE 31.6 59.0 70.2 3
MV-GPT (Ours) 33.6 61.2 73.6 3
No PT ✓ 5.6 13.3 18.4 92
Bi-NCE ✓ 33.7 61.6 73.0 3
MV-GPT (Ours) ✓ 37.3 65.5 75.1 2

Table 10. Comparison to SOTA on MSR-VTT for video retrieval.
We compare models pretrained on HowTo100M. R@k: Recall at k.
MdR: Median rank.

ViViT initialization Kinetics-400 Kinetics-600

Scratch 50.14 55.47
MV-GPT† 74.20 77.10
ImageNet21k [3] 78.90 80.62
ImageNet21k + MV-GPT† 80.40 82.42

Table 11. Action classification results on Kinetics with different
ViViT initializations. MV-GPT† refers to a model initalised with our
MV-GPT pretraining on HowTo100M with no manually annotated
labels. We use a factorized encoder ViViT-Base following [3], but use
a tubelet size of 16×16×4 instead of 16×16×2.

improving upon the initialisation of [3] by 1.5% and 1.8% on
Kinetics-400 and Kinetics-600 respectively, which is the current
state of the art on this dataset with this particular architecture.

5. Conclusion
We present a novel generative pretraining framework for

multimodal video captioning. Our bi-directional generative
objective jointly trains an encoder for multimodal inputs and
a decoder to generate meaningful captions, by using utterances
sampled at different times in unlabelled videos. The model is
trained end-to-end both during pretraining and finetuning, and
achieves state-of-the-art results on multiple video captioning
benchmarks as well as on other video understanding tasks,
namely VideoQA, video retrieval and action classification.
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