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Abstract

The inherent challenge of detecting symmetries stems
from arbitrary orientations of symmetry patterns; a reflec-
tion symmetry mirrors itself against an axis with a specific
orientation while a rotation symmetry matches its rotated
copy with a specific orientation. Discovering such symme-
try patterns from an image thus benefits from an equivari-
ant feature representation, which varies consistently with
reflection and rotation of the image. In this work, we intro-
duce a group-equivariant convolutional network for sym-
metry detection, dubbed EquiSym, which leverages equiv-
ariant feature maps with respect to a dihedral group of re-
flection and rotation. The proposed network is built end-to-
end with dihedrally-equivariant layers and trained to out-
put a spatial map for reflection axes or rotation centers.
We also present a new dataset, DENse and DIverse symme-
try (DENDI), which mitigates limitations of existing bench-
marks for reflection and rotation symmetry detection. Ex-
periments show that our method achieves the state of the
arts in symmetry detection on LDRS and DENDI datasets.

1. Introduction

From molecules to galaxies, from nature to man-made
environments, symmetry is everywhere. Comprehensive
perception and exploitation of real-world symmetry are the
instinctive abilities of humans and animals that have the po-
tential to take intelligent systems to the next level. The fo-
cus of this paper is on the two most primitive symmetries,
reflection and rotation symmetries. The goal of reflection
and rotation symmetry detection is to find a reflection axis
and a rotation center that remain invariant under reflection
and rotation, respectively. Despite decades of efforts [29,
46], symmetry detection methods have been limited to the
well-defined symmetry patterns, and the remedy for real-
world symmetry is still yet to be thoroughly explored. The
simplicity of mathematical concepts of symmetry encour-
aged early approaches to find keypoint pairs that satisfy
pre-defined constraints for symmetry [1,3,32,37,39,43],

(a) image (b) reflection axis (c) rotation center

Figure 1. Symmetry detection examples of our method EquiSym.
(a) an input image, (b) a score map of reflection symmetry axes,
and (c) that of rotation symmetry centers. Best viewed in color.

which leverage hand-crafted local feature descriptors to de-
tect sparse symmetry patterns. Recently, convolutional neu-
ral networks (CNNs) have been successfully applied to de-
tect reflection symmetry and have surpassed the previous
methods by learning score map regression [13] or symmet-
ric matching [38] from data.

The primary challenge in detecting symmetry patterns
lies in the fact that a symmetry manifests itself with an ar-
bitrary orientation and perceiving the pattern requires an
analysis based on the orientation; a reflection symmetry
mirrors itself against an axis with a specific orientation
and a rotation symmetry matches its rotated copy with a
specific orientation. Most methods for symmetry detec-
tion thus involve searching over the space of candidate
orientations of symmetry patterns and also developing a
robust representation that is either invariant or equivari-
ant with respect to rotation and reflection. The early ap-
proaches leverage an equivariant representation by extract-
ing oriented keypoints and performing orientation normal-
ization [1,32,37,39,43]. While this technique has proven ef-
fective for shallow gradient-based features, it cannot be ap-
plied to deep feature maps from standard neural networks,
where rotation and reflection induce unpredictable varia-
tions in representation.

To address the challenge, we propose to learn a group-
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equivariant convolutional neural network for reflection and
rotation symmetry detection, dubbed EquiSym. Recently,
there has been active research on equivariant networks to
incorporate equivariance explicitly for robust and sample-
efficient representation learning [7,9,19,40,44,47]. Un-
like standard neural networks, they induce predictable and
structure-preserving representation with respect to the geo-
metric transformations, e.g., rotation or reflection, which is
eminently suitable for symmetry detection. To detect con-
sistent symmetry patterns over different orientations, we
build a dihedrally-equivariant convolutional network [44],
which is designed to be end-to-end equivariant to a group
of reflection and rotation. The network effectively learns to
output a score map of reflection axes for reflection symme-
try or that of rotation centers for rotation symmetry.

We also present a new dataset, DENse and DIverse
symmetry (DENDI), for reflection and rotation symmetry
detection. DENDI contains real-world images with ac-
curate and clean annotations for reflection and rotation
symmetries and mitigates limitations of existing bench-
marks [4,12,13,27,38]. First, the reflection symmetry axes
are diverse in scale and orientation, while previous datasets
mostly focus on the dominant axes of the vertical or hori-
zontal ones. Second, the rotation centers are annotated to
the objects in polygon and ellipse shape, not limited to the
circular objects. Third, the number of the rotation folds
for each rotation center is annotated, which is the first in
a large-scale dataset. Finally, the number of images is 1.7x
and 2.0x larger than the second-largest reflection and rota-
tion symmetry detection datasets, respectively.

The contribution of our work can be summarized as:

• We propose a novel group-equivariant symmetry de-
tection network, EquiSym, which outputs group-
equivariant score maps for reflection axes or rota-
tion centers via end-to-end reflection- and rotation-
equivariant feature maps.

• We present a new dataset, DENse and DIverse symme-
try dataset (DENDI), containing images of reflection
and rotation symmetries annotated in a broader range
of typical real-world objects.

• We show the outstanding performance of EquiSym
in reflection symmetry detection on SDRW [27],
LDRS [38], and DENDI, and in rotation symmetry de-
tection on DENDI.

2. Related Work
2.1. Equivariant deep learning

Equivariance is a desirable inductive bias that improves
generalization and sampling efficiency. The conventional
convolution is equivariant to translations but not to other
transformations such as rotations and reflections. Group

equivariant CNNs [7,19] use group convolution to learn
equivariant representations for symmetry groups. Marcos et
al. [33] generate and propagate vector fields that maintain
the maximum response along with the corresponding di-
rection throughout the network. Worrall et al. [47] ex-
ploit circular harmonics to obtain rotational equivariance
in a continuous domain. Cohen et al. [9] combine fixed
base filters linearly, resulting in steerable filters with no in-
terpolation artifacts. Equivariant CNNs on homogeneous
spaces [5,6,8,45] are also proposed. The aforementioned
methods consider equivariance to specific transformations
until Weiler et al. [44] provide a general solution of kernel
space constraint for arbitrary group representations of the
Euclidean group E(2). From the perspective of an applica-
tion, Han et al. [16] and Gupta et al. [15] extract rotation-
equivariant feature maps for oriented object detection and
visual tracking, respectively. We leverage E(2)-equivariant
CNNs [44] as a building block of our network to perceive
consistent symmetry patterns across multiple orientations.

2.2. Symmetry detection

Symmetry detection deals with different kinds of sym-
metric patterns such as reflection axis [1,11,13,14,20,32,
37,38,41–43], rotation center [13,20,22,23,32,37,42], and
translation lattice [17,24,28,30,35,42,48].

Sparse prediction. Rotation and translation symmetries
are often formulated as periodic signals and detected by au-
tocorrelation [24,28] in the spatial domain, spectral den-
sity [22,23] and angular correlation [20] in the frequency
domain. Meanwhile, there is a consistent need for an affine-
invariant or equivariant feature descriptor in detecting sym-
metries, as matching the local descriptors is the most com-
mon solution. Loy and Eklundh [32] use SIFT [31] descrip-
tors and normalize each descriptor by its dominant orienta-
tion. Cho and Lee [3] also use SIFT [31] to match feature
pairs and detect symmetry by discovering the clusters of the
nearby matches. Contour and edge features [1,37,39,42,43]
are also useful for determining the boundary of the symmet-
ric object. Lee and Liu [23] propose to solve affine-skewed
rotation symmetry group detection by rectifying the skewed
patterns. In this paper, we tackle the task by data-driven ap-
proach with our proposed dataset. Also, we use the dihedral
group to interpret the symmetries as in many symmetry de-
tection literatures [22,23].

Dense prediction. Recently proposed methods [11,13,
38,41] predict pixel-wise symmetry scores. Fukushima
and Kikuchi [11] build a neural network to extract edges
from images and detect reflection symmetry. Tsogkas et
al. [41] construct a bag of features using histogram, color,
and texture for each pixel and adopt multiple instance learn-
ing when training the model. Gnutti et al. [14] take two
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Figure 2. Illustration of the proposed symmetry detection network, EquiSym. After an input image I passed a group-equivariant encoder
Enc, group-equivariant decoders Decref and Decrot predict intermediate predictions Sref and Srot for rotation and reflection, respectively.
Auxillary tasks for the rotation and reflection symmetry are the order(N) of the rotation fold and the orientation of the reflection axis. The
foreground logits are pooled to Pref and Prot and stacked with the scores Sref and Srot, respectively. The final score Yref and Yrot for
the rotation center and the reflection axis are predicted using a group-equivariant 1× 1 convolution. For details, see Sec.3.

stages of computing the symmetry score for each pixel us-
ing patch-wise correlation and validating the obtained can-
didate axes using gradient direction and magnitude. Funk
and Liu [13] are the first to adopt deep CNNs for detecting
reflection and rotation symmetries. Seo et al. [38] propose
a polar self-similarity descriptor for better rotation and re-
flection invariance. A specially designed Polar Matching
Convolution (PMC) performs region-wise feature matching
to compute the symmetry score, but the model relies heav-
ily on the CNNs. To discover consistent symmetry patterns
w.r.t. geometric transformations of rotation and reflection,
we deploy group equivariant neural networks in our sym-
metry detection model.

3. Proposed Method
The symmetry patterns appearing in an image are in-

variant to the 2D rigid transformations of the image. The
detected symmetry patterns of a transformed input image
should be the same with the transformed detection results
using the original input image. In other words, the reflection
and rotation equivariance is crucial for a symmetry detec-
tion model. To this end, we propose a unified framework for
detecting the reflection and rotation symmetries via equiv-
ariant learning, EquiSym. The overall pipeline is briefly il-
lustrated in Fig.2. Given an input image, a shared encoder
Enc and decoders Decref and Decrot are applied for de-
tecting reflection and rotation symmetries, respectively. We
also perform auxiliary pixel-wise classification tasks, one
for the orientation of the reflection axis and the other for the
order of the rotation symmetry. The intermediate logits and
the corresponding probabilities of the subtasks are denoted
by S and P, respectively. The logits S are integrated with

the sum of the foreground probabilities P to compute the
final score map Y using a 1 × 1 group-equivariant convo-
lution layer. The following sections cover the preliminaries
and the proposed symmetry detection network.

3.1. Preliminaries

Group and equivariance. A group (G, ·) is a set G with
a binary operation ·, where its elements are closed under the
operation. A group has unique identity element and inverse
element and also satisfies the associativity. Equivariance
of a map f : X −→ Y is formalized using a group G and
two G-sets X and Y , where G-set is a mathematical object
consisting of a set S and a group action of G on S. A map
f is said to be equivariant iff

f(g · x) = g · f(x), (1)

for all x ∈ X and all g ∈ G. In 2D image domain, we focus
on an euclidean group E(2), which is a group of plane R2

isometries of translations, rotations, and reflections.

E(2)-steerable feature field. The affine transformations
of the 2D or 3D coordinates are easily done by matrix mul-
tiplications. Unlike low-dimensional feature vectors, the re-
flection or rotation transformation of the high-dimensional
feature vectors are non-trivial. The first step to build a
steerable convolution is to define a steerable feature field
f : R2 −→ Rc that maps a feature vector f(x) ∈ Rc with
each point x of a base plane. Given a group G, a group
representation ρ : G −→ GL(Rc) specifies the transforma-
tion law for shuffling the c channels of each feature vector,
where a general linear group GL is the set of c×c invertible
matrices. Thus, applying transformation on a feature map
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not only moves the target vectors to the new positions but
also shuffles each vector via ρ(g) where g ∈ G. The group
representations of E(2) group are presented in [44].

E(2)-equivariant steerable convolution. To preserve the
transformation law of the steerable feature spaces in CNNs,
equivariance under the group actions is required for each
network layer. Convolutions with the restricted G-steerable
kernels [44] provide an equivariant linear mapping between
the steerable feature spaces. The input and output of the G-
steerable layers are the feature fields with their group rep-
resentations ρin(g) ∈ Rcin×cin and ρout(g) ∈ Rcout×cout ,
where a group element g is specified. A kernel k : R2 −→
Rcout×cin that transforms under ρin and ρout becomes G-
steerable when satisfying a kernel constraint of

k(gx) = ρout(g)k(x)ρin(g
−1), (2)

for every g ∈ G given x ∈ R2. E(2)-equivariant CNNs
solve this constraint to get a basis of the steerable kernels
and comput the convolutional weights, which results in the
smaller learnable parameters compared to the CNNs.

3.2. Symmetry detection network

Reflection and rotation equivariant modules. Since we
aim to establish both reflection and rotation symmetry, we
employ an E(2)-equivariant CNNs of dihedral group DN ,
which contains N discrete rotations by angles multiples of
2π
N and reflections. The encoder Enc consists of an E(2)-
equivariant [16,44] ResNet [18] and an Atrous Spatial Pyra-
mid Pooling(ASPP) [2] module. The decoder Dec is a 3-
layer convolution module. The encoder and decoder de-
signs follow [38] except that all convolution layers are sub-
stituted by the E(2)-equivariant convolution layers. During
the forward computation, the feature fields are transformed
into the predefined fields of the group DN . For the predic-
tions Sref and Srot, the feature fields of the decoders Decref

and Decrot are transformed back to the scalar fields.

Auxiliary classification. Instead of a direct regression of
the symmetry score maps [13,38], we perform relevant sub-
tasks that can lead to the final prediction. The proposed
auxiliary tasks are the pixel-wise classification of the orien-
tation (angle) of the reflection axis and the number of ro-
tation folds. For simplicity, we assign the orientation into
N ref bins dividing 180 degrees. The ground-truth orien-
tation Sref

gt is then quantized to be one-hot. The auxilary
rotation label Srot

gt is the order of the rotational symmetry,
which is annotated with a positive integer in the case of the
discrete rotational symmetry. We allocate ’0’ to the contin-
uous group since its ground-truth order is infinite. The size
of the unique set of the rotation orders in the dataset is de-
noted as N rot. Meanwhile, we add background classes for

the pixels that are neither the axis nor the center. Therefore,
the classifiers predict the scores of channel of N ref + 1 and
N rot + 1. The classification logit S ∈ RH×W×(N+1) is
obtained by

S = Dec(Enc(I)). (3)

The encoder Enc is shared while the decoders Decref and
Decrot are task-specific. Note that we set the group orien-
tation N as the same as N ref to further exploit the equivari-
ance of the equivariant networks.

Symmetry detection. The predicted score maps of the
symmetry axes of the corresponding orientation are present
in the N ref foreground channels of the estimated orientation
Sref , whereas the background channel contains the back-
ground pixels. Similar to reflection, the N rot foreground
channels are the score maps of the rotation centers with
that number of folds. We aggregate the sum of the fore-
ground logits P ∈ RH×W×1 and the intermediate predic-
tion S ∈ RH×W×(N+1) to compute the final prediction
Y ∈ RH×W as

Ph,w =

N∑
k=1

exp (Sh,w,k)∑
c exp (Sh,w,c)

, (4)

Y = convG([P||S]). (5)

Note that || denotes the concatenation operation along the
final channel dimension.

3.3. Training objective

To train EquiSym, we optimize a combination of two
loss terms for localization and classification. Follow-
ing [38], we adopt the focal loss [25] as the localization
loss Lloc for both reflection and rotation score maps. The
classication loss Lcls for the intermediate predictions is the
cross-entropy loss. The final objective L are expressed as

Lloc = Lfocal(Y,Ygt) (6)
Lcls = Lce(S,Sgt) (7)
L = Lloc + Lcls, (8)

The network for reflection and rotation symmetry detection
are denoted as EquiSym-ref and EquiSym-rot, respectively.
To alleviate the class imbalance issue, the loss of the back-
ground class is weighted with w for Lcls. Note that the focal
loss alleviates the class imbalance issue for Lloc.

4. New Symmetry Dataset (DENDI)
We present a new dataset for symmetry detection named

DENse and DIverse symmetry dataset (DENDI) in the fol-
lowing.
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dataset Ref. split Rot. split complexity

SDRW [27] 51 / - / 70 10 / - / 66 low
NYU [4] 239 / - / - - low
SymCOCO [12] 250 / - / - 250 / - / - high
DSW [12] - 200 / - / - low
BPS∗ [13] 959 / - / 240 846 / - / 211 high
LDRS [38] 1,110 / 127 / 240 - high

DENDI 1,750 / 374 / 369 1,459 / 313 / 307 high

* Not available online.
Table 1. Comparison of the symmetry detection datasets.

4.1. Motivation

Limitations in existing datasets. The early reflection
symmetry datasets [4,27] contain small number of images
with few reflection axis and rotation center. Recently pro-
posed BPS [13] and LDRS [38] are large enough to train
deep architectures, but the reflection axes still lack of diver-
sity in terms of the length and orientation. For example,
objects with multiple symmetry axes are often annotated
only by a single dominant axis. Furthermore, no existing re-
flection symmetry datasets take into account the continuous
symmetry group, such as a circle with an infinite number
of reflection symmetry axes. For the rotation symmetry, the
annotations of BPS [13] are limited to the rotation centers
while the pioneer unsupervised methods [22,23] tackle the
rotation folds also.

Proposed dataset. To address the concerns mentioned
above, we present a new dataset for reflection and rotation
symmetry detection that includes a wide range of geome-
tries. We integrate 239 images of NYU [4] and 181 images
of SDRW [27], and collect 2,080 images from COCO [26]
dataset. Both reflection and rotation annotations are labeled
for each image, and we remove images without any labels.
As a result, DENDI contains 2,493 and 2,079 images for
reflection and rotation split, respectively. The sizes of the
symmetry detection datasets are compared in Tab.1. To
add reflection axes with diverse length and orientation, we
annotate objects in common shapes such as circle, ellipse,
and polygons, as well as the part-level symmetries. Also,
the annotators are encouraged to exhaustively label the sym-
metries for each object, including the non-dominant ones,
e.g. the diagonals of a square. For the reflection symmetry
of a continuous symmetry group, we annotate with ellipse-
shaped masks to represent an infinite number of line axes.
For the rotation symmetry, we additionally collect the num-
ber of rotation folds for each rotation center. As a result, the
annotations in DENDI are denser and more diverse com-
pared to the ones in the existing datasets.

4.2. Annotation

Reflection symmetry. A reflection symmetry axis is de-
fined as a line formed by two points following [4,12,13,27,
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Figure 3. Illustration of the generic shapes and their annotations.
(a) and (b) indicate the annotation rules of the reflection and rota-
tion symmetry, respectively. For details, see Sec.4.2

(a)

(b)

Figure 4. The images and labels of the objects with generic shapes.
(a) and (b) indicate the annotations of the reflection and rotation
symmetry, respectively. Best viewed in the electronic version.

38]. In contrast to the existing datasets, we now account for
circular objects. A circular object, which is equivalent to a
filled circle, has an infinite number of reflection symmetry
axes through its center. We propose to annotate the circular
objects with 5 connected points, resembling the shape of the
Arabic number ’4’. We draw a ’4’-shaped annotation from
the circle’s center towards the circle’s boundary in the up,
down, left, and right directions. The annotation rules and
visualizations of the reflection symmetry for generic shapes
are visualized in Fig.3(a) and Fig.4(a), respectively.

Rotation symmetry. We collect the rotation center coor-
dinate, the object’s boundary, and the number of folds (N)
for each object. A circular object is in a continuous rotation
group with infinite folds. Thus, we set the N as 0 for sim-
plicity. We categorize the objects into ellipses and polygons
based on the their shape. Circular or elliptical objects are
marked with ’4’-shaped annotation. We annotate the poly-
gons of V vertices with (V+1) consecutive points. From the
center of the object, we take the vertex closest to 12 o’clock
as the 2nd point and link the vertices of a convex polygon
counter clockwise. Note that the number of the vertices (V)
and the number of the folds (N) not always match. The an-
notation rules and visualizations of the rotation symmetry
for generic shapes are visualized in Fig.3(b) and Fig.4
(b), respectively.

4.3. Statistics

Reflection symmetry. Histograms for scale and orienta-
tion of the reflection axes are presented in Fig.5(a) and
(b). For scale, we measure the length of each line and nor-
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Figure 5. Statistical analysis of DENDI. (a) and (b) represent the reflection symmetry dataset while (c) and (d) indicate the rotation
symmetry dataset. In specific, (a) and (b) are histograms for scale and orientation of the reflection axes, (c) and (d) represent the histograms
of the rotation fold and the number of the rotation centers.

malize it with the length of the image diagonal. With two
points on the line annotation, we can also compute its orien-
tation (tangents). The y-axis of Fig.5(a) and (b) is the ratio
of the number of the axes over the total number of the axes.
The number of axes increases when the length of each axis
decreases, reflecting the characteristics of the real-world en-
vironment. In addition, it can be interpreted that part-level
symmetry is densely annotated compared to other datasets.
Note that our dataset ranks first at all orientations except
for the three orientations that are closest to the vertical di-
rection. Despite the fact that LDRS [38] is also based on
COCO [26], the distribution of the orientation of the axis is
more diverse in our case due to the fact that we particularly
request the annotators not to omit the non-dominant axes.

Rotation symmetry. Histograms of the rotation fold and
the number of the rotation centers are illustrated in Fig.5
(c) and (d). The three most common folds in the dataset
are 2, 0 (continuous), and 4. The result is predictable as
there are many rectangles, circles, and squares in the image.
Note that the dataset contains a notable number of objects
of fold 8, which are mostly the ’STOP’ signs in the road.
The complexity of our rotation symmetry dataset is high, as
shown in Fig.5(d). Even if we clip a few exceptions, a lot
of rotation centers are marked in the images.

5. Experiments
5.1. Experimental settings

Datasets. We use SDRW [27], LDRS [38], and DENDI
to evaluate the reflection symmetry detection model. We
follow the training and evaluation settings of PMCNet [38]
in Tab.4for additional use of NYU [4] and the synthesized
images. For rotation, we only use DENDI which contains
the images of SDRW [27] rotation dataset.

Evaluation. To evaluate EquiSym, we use F1-score com-
puted with the precision and recall as 2×prec×rec

prec+rec . A con-

vention [13,38,41] for measuring the score of the output
score map is morphological thinning [34] and an off-the-
shelf pixel-matching algorithm to compare with the ground-
truth lines, which are also pixel-width. In contrast to the
existing datasets, we take the circular objects into account,
which are annotated with filled circles. As DENDI contains
annotations of filled circles, the thinning operation shrinks
to a single-pixel dot. Therefore, it is inevitable to come up
with a new way to evaluate the predicted score maps. We
dilate the ground-truth score maps of reflection and rotation
symmetries with a maximum distance of 5 pixels follow-
ing [13] where they enlarge the ground-truth dots to 5-pixel
radius circles around the rotation centers. The predicted
score map is also dilated to make the result of the ground-
truth itself become 1. The true-positives are then computed
by pixel-wise comparisons.

Implementation details. As a backbone network, we
adopt the ReResNet implementation of ReDet [16] of depth
50, which is based on PyTorch [36] and e2cnn [44]. The
number of the layers and the structure are the same as the
vanilla ResNet [18]. We pretrain the ReResNet50 for the
image classification task in imagenet-1k [10] following the
procedures in [16]. For the symmetry group to initial-
ize the equivariant networks, we use a dihedral group of
eight orientations (D8). To provide multi-scale contexts,
we also deploy the Atrous Spatial Pyramid Pooling module
(ASPP) [2] which we re-implemented the module by replac-
ing all the vanilla convolutions to E(2)-equivariant convolu-
tions [44]. The number of the classes N ref is 8 and N rot is
21. We train EquiSym for 100 epochs with an initial learn-
ing rate of 0.001 using the Adam [21] optimizer with a batch
size of 32. For details, refer to the supplementary material.

5.2. Ablation studies

Ablation on the equivariant convolution. We study
the effectiveness of the group-equivariant convolution in
Tab.2. With the help of the equivariant convolutions the
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model design choices F1 score
Equiv. Aux. Ref. Rot.

Ref.
55.1 -

X 63.1 -
X X 64.5 -

Rot.
- 17.7

X - 21.2
X X - 22.5

joint X 62.2 22.1
X X 58.7 22.5

Table 2. Ablation on the symmetry detection network in reflection,
rotation, and joint model on DENDI dataset.

F1 scores of 55.1 and 17.7 increase to 63.1 and 21.2 for
EquiSym-ref and EquiSym-rot, respectively.

Ablation on the auxiliary classification. To enhance the
intermediate representation, we perform a relevant subtask
for each branch of symmetry detection and compare them
in Tab.2. Without extra labels, the reflection-only model
achieves the F1 score of 64.5, which is greater than the 63.1
obtained by training solely with the final task. The orien-
tation estimation also requires rotation equivariance, which
enhances the intermediate features. Rotation symmetry de-
tection, on the other hand, requires extra annotation for the
auxiliary task as the original labels are a set of dots. The ro-
tation invariant subtask of classification of the rotation folds
(N) compresses the information of the intermediate feature
so that it can increase the F1 score from 21.2 to 22.5.

Ablation on the joint training. We investigate the effect
of a joint training of the reflection and rotation symmetries
in Tab.2. When training EquiSym- joint, the loss L is
computed for both reflection and rotation symmetries. Joint
symmetry detection network that is trained only with the fi-
nal task achieves comparable F1 scores of 62.2 and 22.1 for
reflection and rotation symmetry, respectively. However,
the auxiliary task do not increase the accuracy of the re-
flection symmetry in joint training scenario. One probable
explanation is that only orientation estimation of the reflec-
tion symmetry axis requires rotation equivariance while the
fold classification only necessitates rotation invariance, re-
sulting in network imbalance.

5.3. Comparison with the state-of-the-art methods

We compare EquiSym with the state-of-the-art methods
in Tab.3and Tab.4. For both reflection and rotation sym-
metries, our proposed EquiSym achieves the state-of-the-
art, showing the effectiveness of the equivariant networks
and the auxiliary classification. While PMCNet [38] is re-
trained on DENDI for a fair comparison, SymResNet [13]

symmetry method F1 score

reflection
SymResNet∗ [13] 30.7
PMCNet† [38] 52.0
EquiSym-ref 64.5

rotation SymResNet∗ [13] 11.9
EquiSym-rot 22.5

†Re-trained on DENDI.
* Evaluated using the weights provided by the authors.

Table 3. Comparison with the state-of-the-art methods on DENDI.

method
train dataset test dataset

mixed
real synth SDRW LDRS

PMCNet [38]
X 61.6 34.8

61.2
X X 68.8 37.3

EquiSym-ref
X 67.4 40.9 71.4
X X 67.1 39.4

Table 4. Comparison of the reflection symmetry detection methods
on the LDRS [38] and SDRW [27]. Note that the real dataset
consists of SDRW, LDRS, and NYU [4] dataset.

is compared using the weights provided by the authors as
fine-tuning SymResNet [13] degraded the performance.

We follow the configurations of PMCNet [38] for the
experiments on SDRW [27] and LDRS [38] in Tab.4The
training images consist of real images from SDRW, LDRS,
and NYU [4] and the generate synthetic images as in [38].
EquiSym-ref achieves the state-of-the-art on LDRS while
the results on SDRW are still comparable. The additional
use of synthetic images is not helpful as proposed in [38].
One possible reason is the imbalance in data distribution
across splits. To mitigate this issue, we construct a new
split denoted as mixed by merging all images and then ran-
domly split the images into train/val/test splits with the ratio
of 4:1:1. EquiSym-ref outperforms PMCNet in that sce-
nario, as shown in Tab.4. All the experiments in Tab.4are
evaluated with the legacy scheme.

5.4. Qualitative results

The qualitative results of EquiSym-ref , PMCNet [38],
and SymResNet [13] on DENDI-ref test are shown
in Fig.6. EquiSym- ref produces dense reflection sym-
metry score maps compared to other methods, including
non-dominant axes such as the diagonal. Furthermore,
EquiSym-ref predicts masks of the circular objects ac-
curately even for the challenging samples where the line
and circles both exist in the ground-truth. We compare
EquiSym-rot with SymResNet on DENDI-rot test in Fig.7.
EquiSym-rot is robust in scale and number of rotation cen-
ters. EquiSym-rot detects symmetry of polygons as well as
circular objects in DENDI-rot, whereas SymResNet mainly
detects circular objects.
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Ground-truth PMCNet[38]SymResNet[13] Ours Ground-truth OursPMCNet[38]SymResNet[13]

Figure 6. Qualitative results of the reflection symmetry detection on DENDI-ref test.

Ground-truth SymResNet[13] Ours Ground-truth SymResNet[13] Ours

Figure 7. Qualitative results of the rotation symmetry detection on DENDI-rot test.

5.5. Limitations

While EquiSym can be jointly trained to produce compa-
rable predictions as the single-branch EquiSym, it has more
room for improvement. Especially, the design of the auxil-
iary task of EquiSym-rot can be explored more to enhance
the accuracy of the reflection symmetry detection.

6. Conclusion

In this paper, we have proposed a novel symmetry de-
tection framework, EquiSym, using equivariant learning to
obtain group-equivariant and invariant scores for both re-
flection and rotation symmetries. In addition, we have intro-

duced a new dataset DENse and DIverse symmetry dataset
(DENDI) for reflection and rotation symmetries. The pro-
posed EquiSym achieves the state-of-the-art on LDRS and
DENDI datasets.
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