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Abstract

We present a novel approach for image-animation of a
source image by a driving video, both depicting the same
type of object. We do not assume the existence of pose
models and our method is able to animate arbitrary ob-
Jjects without the knowledge of the object’s structure. Fur-
thermore, both, the driving video and the source image
are only seen during test-time. Our method is based on a
shared mask generator, which separates the foreground ob-
Jject from its background, and captures the object’s general
pose and shape. To control the source of the identity of the
output frame, we employ perturbations to interrupt the un-
wanted identity information on the driver’s mask. A mask-
refinement module then replaces the identity of the driver
with the identity of the source. Conditioned on the source
image, the transformed mask is then decoded by a multi-
scale generator that renders a realistic image, in which the
content of the source frame is animated by the pose in the
driving video. Due to the lack of fully supervised data, we
train on the task of reconstructing frames from the same
video the source image is taken from. Our method is shown
to greatly outperform the state-of-the-art methods on mul-
tiple benchmarks. Our code and samples are available
at https://github.com/itsyoavshalev/Image-Animation-with-
Perturbed-Masks.

1. Introduction

The ability to reanimate a still image based on a driving
video has been extensively studied in recent years [12, |5,

]. The developed methods achieve an increased degree
of accuracy in both, maintaining the source identity, as ex-
tracted from the source frame, and in replicating the motion
pattern of the driver’s frame. In addition, the recent meth-
ods also show good generalization to unseen identities and
are relatively robust, and have fewer artifacts than the older
methods. The relative ease with how these methods can be
applied out-of-the-box has led to their adoption in various
visual effects.

Interestingly, some of the most striking results have been
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obtained with model-free methods, i.e., that do not rely, for

example, on post-extraction models [10, 11,16, 17,22,25].
This indicates that such methods can convincingly disentan-
gle shape and identity from motion [7, 13].

There are, however, a few aspects in which such meth-
ods still need to improve. First, the generated videos are
with noticeable artifacts. Second, some of the identity of
the source image is lost and replaced by identity elements
from the driving video. Third, the animation of the gener-
ated video does not always match the motion in the driver
video.

Here, we propose a method that is preferable to the ex-
isting work in terms of motion accuracy, identity and back-
ground preservation, and quality of the generated video.
Our method relies on a mask-based representation of the
driving pose and explicit conditioning on the source fore-
ground mask. Source and driver masks are extracted by the
same network. The driver mask goes through an additional
stage that replaces the identity information in the mask.

The reliance on masks has many advantages. First, it
eliminates many of the identity cues from the driving video.
Second, it explicitly models the region that needs to be re-
placed in the source image. Third, it is common to both
source and driver, thus allowing, with proper augmentation,
to train only on source videos. Fourth, it captures a detailed
description of the object’s pose and shape.

Interestingly, unlike many of the previous methods, we
do not rely on GANs [9] to generate proper outputs from
combinations of different inputs. Instead, we employ an
encoder-decoder, in which the identity is manipulated in or-
der to direct the networks toward employing specific parts
of the information from each input. To summarize, our con-
tributions are: (i) An image animation method that gen-
eralizes to unseen identities of the same type, and is able
to animate arbitrary objects better than previous work; (ii)
Innovative use of perturbations over masks, in order to in-
terrupt the driver’s identity, which is then replaced with the
source’s identity by the mask refinement module; (iii) A
comprehensive evaluation of several different applications,
which show a sizable improvement over the current image
animation state-of-the-art.
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2. Related Work

Much of the work on image animation relies on prior
information on the animated object, in the form of ex-
plicit modeling of the object’s structure, e.g., some meth-
ods animate a source image using facial landmarks [27,28],
while [15] developed a human-pose-guided image genera-
tor. However, in many applications, an explicit model is not
available. Our method is model-free and able to animate
arbitrary objects.

There are many model-free contributions in the field of
image-to-image translation, where an image of one domain
is mapped to an analog image of another domain. [ | 1] learns
a map between two domains using a conditional GAN. [22]
developed a multi-scale GAN that generates high-resolution
images from semantic label maps. [10] encodes images of
both domains into a shared content space and a domain-
specific style space. The content code of one domain is
combined with the style code of the other domain, and then
the image is generated using a domain-specific decoder. For
this class of methods, the model is not able to generalize to
other unseen domains of the same category without retrain-
ing. In contrast, for a given type of model (e.g. faces), our
method is trained once, and able to generalize to unseen do-
mains of the same type (e.g. the source and driving faces
can be of any identity).

More related to our method is a method that assumes a
reference frame for each video, and learns a dense motion
field that maps pixels from a source frame to its reference
frame, and another mapping from the reference frame to
the driver’s frame [25]. [16] extracts landmarks for driv-
ing and source images of arbitrary objects, and generates
motion heatmaps from the key-points displacements. The
heatmaps and the source image are then processed to gen-
erate the final prediction.

A follow-up work [17] extracts a first-order motion rep-
resentation, consisting of sparse key-points and local affine
transformations, with respect to a reference frame. The mo-
tion representation is then processed to generate a dense
motion field, from the driver’s frame to the source’s, and oc-
clusion maps to mask out regions that should be inpainted
by the generator. This method, like ours, does not employ
GANSs. The main differences are that our method does not
assume a reference frame, instead of key-points, we gen-
erate objects masks, which are more informative regarding
pose and shape, and our innovative use of perturbations and
the mask refinement module.

Other methods, including [7, 13], learn a part-based dis-
entangled representation of shape and appearance, and try
to ensure that local changes in appearance and shape re-
main local, and do not affect the overall representation. On
the other hand, our method does not assume a predefined
number of parts, and by using perturbations and the mask
refinement module, it is able to better remove the driver’s

identity and inject that of the source.

When a source video is available, video-to-video trans-
lation methods [4, 12] may be used for motion transfer, by
utilizing the rich appearance and pose information of the
source video. Such methods learn a mapping between two
domains and are able to generate realistic results, where the
source video is animated by the driver video. These meth-
ods require a large number of source frames at train time,
and require a long training process for every target subject.
In contrast, our model is able to animate a single source im-
age, which is unseen during training, and employs a driving
video with another novel person.

3. Method

The method consists of four encoder-decoder networks:
the mask generator m, the mask refinement network r, and
the low and high-resolution frame generators ¢ and h. The
networks transform a source frame s and a driving frame d
into the generated high-resolution frame f, where f con-
tains the foreground and background of the source frame s,
such that the pose of the foreground object in s is modified
to match that of the driver frame d. This is done for each
driving frame separately, and at test-time executed through
the following process, as depicted in Fig. 1:

m(s) 9]

mq = m(d) 2
= Prest(1m04) 3)
( (3)7m87mdp) 4

c = {(D(s), m;, my,) (5)

f =h(s,U(my),U(my,.),c), (6)

where upper-cased bolded notations represent untrained op-
erations, including D (U), which is a downscale (upscale)
operator, implemented using a bi-linear interpolation, that
transforms an image of resolution 256 x 256 to an image of
resolution 64 x 64 (or vice versa).

First, m, and m, are generated using the mask gen-
erator m. Next, the identity-perturbation operator Py is
applied on the driver’s mask mg, by setting to zero pix-
els that are smaller than a threshold p. Considering typical
face masks, e.g., the pixels in the areas of the eyes, mouth,
and hair are with low intensities. Removing these pixels by
applying Py, results in a much more generic face, inter-
rupting the driver’s identity. For each driver’s mask, we set
the threshold p to be the median pixel value.

Next, the refinement network r acts to generate the miss-
ing data of the perturbed mask mg, and to replace the
driver’s identity with that of the source. It uses the source’s
frame and mask as a reference.

Finally, the generated frame is being synthesized in a
hierarchical process in which the coarse (low resolution)

3648



d m my
Driving Image Driving Mask

g
Mask
" Generator "

3x256x256 1X64X64

s m m,
Source Image Source Mask

. =
: 57 ] = R >B
E Generator

|

3x256x256 1X64X64

(a) mask generator m

My
Driving
Refined Mask

c
|
E Low-Res Prediction

1x64x64

Low-Res o »: a
mg D(s) Generator !’ s
Source Mask  Source Image _
o | 3x256x256
E E
s B

1X64X64 3x64x64

(c) low-res generator £

My, My,
- M Driving r Driving
Driving Mask Perturbed Mask Refined Mask
. P . Mask
test Refinement
1X64X64 1x64x64 1x64x64
my D(s)
Source Mask Source Image
o oM 3
ﬂ £3
, s
1X64X64 3x64x64
(b) mask refinement network r
U(my,)
Driving ¢

Refined Mask Low-Res Prediction

ol e
> f
) == h High-Res

1x256x256 3x256x256 Prediction

High-Res 5 ". 1

U(m.) N Generator & -
Source Mask Source Image [

3x256%256

(o 3
.

=

. o

)

1X256X256 ’ 3x256x256

(d) high-res generator h

Figure 1. Overview of our method at test time. (a) Source and driving masks m, and m, are generated using the mask generator m. (b)
The identity-perturbation operator Py is then applied to the driver’s mask, and along with a scaled-down version of the source’s image
D(s) and the source’s mask m, they are fed into the mask refinement network r, to generate the driver’s refined mask mg,. (c) The
refined mask m .., the source’s mask m, and the scaled-down source’s image D(s) are fed into the generator ¢, which generate the initial
prediction ¢. (d) The scaled-up refined mask U(mg;), the source image s, the initial prediction ¢, and the scaled-up source’s mask U(m;)

are fed into the generator h, in order to generate the final prediction f.

frame c is first generated using ¢ and is then refined by the
network h. Both generators (¢, h) utilize the mask m to
attend the foreground and background objects in the source
frame s, and to infer the occluded regions that need to be
generated.

The refined driver’s mask my, is the only conditioning
on the frame generation process that stems from the driver’s
frame d. It, therefore, needs to encode the pose of the fore-
ground object in the driving frame. However, this has to
be done in a way that is invariant to the driver’s identity.
For example, when reanimating person A based on a driver
video of person B, the pose of B should be given, while
discarding the body shape information of B. Otherwise, the
generated frame could have the appearance of the source’s
foreground and a body shape that mixes that of the person
in the source frame and that of the person in the driving
frame. The perturbation operator Py is, therefore, de-
signed to interrupt the elements that are associated with the
driver’s identity, which encourages the refinement network
7 to project identity elements from the reference mask (m)

and frame (s). As a result, the proposed identity replace-
ment stage does not modify the general pose of the driver’s
mask, but only replaces the driver’s identity.

3.1. Training

Training is conducted using driving and source frames
from the same video. The reason is that for the type of
supervised loss terms we use, a ground-truth target frame is
required. The main challenge is to keep the model robust
enough for accepting at test time a driving frame d from
another video.

The training pipeline is slightly modified from test time,
in that an augmentation A is applied to the driving frame d,
and that a more elaborate perturbation Py, takes a place.
In addition, since the source and driving frames are of the
same identity, as shown in Fig. 2 both generators ¢ and h
are using the driver’s mask my, instead of using the refined
mask my,., which is used only for training the refinement
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Figure 2. The low-res and high-res generators at train time. Instead of getting the driver’s refined mask mg, as in test time, the two
generators ¢ and h are using the driver’s mask m(A(d)) and its up-scaled version U(m(A(d))), respectively.

network r:
mq = m(A(d)) )
Map = Prain(myg) ¥
mg, = r(D(s), ms, mygp) 9)
c={(D(s),ms,myg) (10)
f = h(s,U(m;),U(mq),c), (11)

where augmentation A is a color transformation that scales
the input’s brightness, contrast, and saturation by a random
value drawn from [0.9, 1.1], and shifts its hue by a random
value drawn from [—0.1,0.1]. The goal of this augmen-
tation is to encourage the generated masks to be invariant
to the input’s appearance, despite the challenge mentioned
above of training on frames from the same video.

Pain performs the following two steps sequentially: (i)
breaks the image vertically (horizontally) into six parts, and
scales each part horizontally (vertically) by a random value
drawn from [0.75,1.25]. Next, it scales the entire output
vertically (horizontally), by a random value drawn from
[0.75,1.25]. (ii) similarly to Pg, sets to zero pixels that
are smaller than a threshold value p, which we set to be the
median pixel value of each mask. The goal of the resizing
operation is to interrupt the driver’s identity by modifying
the proportions of its mask, e.g., in faces, it modifies the
distance between the eyes, which results in an identity per-
turbation, while keeping the general pose. The thresholding
operation eliminates low-intensity pixels (e.g. the bound-
ary of the body, and the hair, eyes, and mouth areas), which
are a major ingredient of the driver’s identity. Without the
listed operations of Py, we experienced a phenomenon
where the mask refinement module r ignores the reference
mask (m) and frame (s), i.e. applying P, encourage the
mask refinement network r to project the elements that are
associated with the source’s identity, which is crucial for the
generation part.

All hyper-parameters values, including these constants,
were selected using cross-validation and fixed throughout
all experiments on all benchmarks.

Loss Terms The model is trained end-to-end using two
loss terms: a mask refinement loss and a perceptual recon-
struction loss. At train time, where the source and driving
frames are of the same identity, the role of the mask re-
finement network 7 is to recover the missing data that was
removed by the operator Py.,;,. Therefore, we minimize the
L1 loss of the driver’s mask m  and its refined mask m,.:

£mask(d) = Ll(mdra md) . (12)

For the image reconstruction loss of the generators £ and
h, following [17] and based on the implementation of [21],
we minimize a perceptual loss using the pre-trained weights
of a VGG-19 model. For two images a and b, the recon-
struction loss terms using the ;' layer of the pre-trained
VGG model are written as:

Lvaa(a,b)j = AVG(|Nj(a) = N;(®)))  (13)

where AVG is the average operator and N;(-) are the fea-
tures extracted using the j*"-layer of the pre-trained VGG
model. For the coarse and fine predictions ¢ and f, and a
driving frame d, we compute the following reconstruction
loss for multiple resolutions:

Lreconstruct = Z Z Lvca (Csv ds)j + Lvce (fs» ds)j
s 7

where input image as, has a resolution s €
[256%,1282,642].  We use the first, third, and fifth
ReLU layers of the VGG-19 model. Note that while VGG
was designed for a resolution of 2242, the first layers are
convolutional, and can be used for an arbitrary input scale.

The combined loss is given by £ = A Lygask +
Ao Lreconstructs fOr weight parameters A; = 100 and A, = 10.
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To avoid unwanted adaptation of the network m, the back-
propagation of L, only updates the weights of the mask
refinement network . When backpropagating the second
part of the reconstruction loss > > Lvca(fs, ds);, only
the generator h is updated. The Adam optimizer is em-
ployed with a learning rate of 2 x 10~* and /3 values of 0.5
and 0.9. The batch size is 16. Following [17], we decay the
learning rate at epochs 60 and 90, running for 100 epochs on
NVIDIA Titan RTX. The mask refinement network r starts
training after we complete the first training epoch, when the
outputs of the mask generator m start to be meaningful.
The architecture of the networks is given in the supple-
mentary materials, which also contain the source code.

4. Experiments

The training and evaluation were done using three dif-
ferent datasets, containing short videos of diverse objects.
Tai-Chi-HD is a dataset containing videos of people doing
tai-chi exercises. Following [17], 3,141 tai-chi videos were
downloaded from YouTube. The videos were cropped and
resized to a resolution of 2562, while preserving the aspect
ratio. There are 3,016 training videos and 125 test videos.
VoxCeleb is an audio-visual dataset consist of short videos
of talking faces, introduced by [14]. VoxCelebl is the col-
lection used, and as pre-processing, bounding boxes of the
faces were extracted and resized to 2562, while preserving
the aspect ratio. It contains an overall number of 18,556
training videos and 485 test videos. The BAIR dataset con-
tains videos of Sawyer robotic arms interacting with ob-
jects [8]. It contains 42,880 training videos and 128 test
videos, where each video consists of 30 frames with a reso-
lution of 2562. We were unable to obtain the UvA-NEMO
dataset [0], which was utilized in some earlier contributions.

We borrow and significantly expand the evaluation pro-
cess of [17]. Our method is evaluated quantitatively and
qualitatively for the tasks of both video reconstruction and
image animation, where the source and driving videos are
of different identities. Additionally, despite being model-
free, we compare to model-based methods in the few-shot-
learning scenario. In this case, our method, unlike the base-
line methods, does not employ any few shot samples.

Multiple metrics are used for evaluation: L1 is the L1
distance between the generated and ground-truth videos.
Average Key-points Distance (AKD) measures the aver-
age distance between the key-points of the generated and
ground-truth videos. For Tai-Chi-HD, we use the human-
pose estimator of [3], and for VoxCeleb, we use the fa-
cial landmark detector of [2]. Missing Key-points Rate
(MKR) measures the percentage of key-points that were
successfully detected in the ground-truth video, but were
missing in the generated video. The human-pose estimator
of [3] outputs for every keypoint an indicator of whether it
was successfully detected. Using this indicator, we mea-

sure MKR for the Tai-Chi-HD dataset. Average Euclidean
Distance (AED) measures the average Euclidean distance
in some embedding space between the representations of
the ground-truth and generated videos. Following [17], we
employ the feature embedding of [16]. Structural Simi-
larity (SSIM) [24]: For VoxCeleb, we compare the struc-
tural similarity of the ground-truth driving frames and gen-
erated images. Cosine Similarity (CSIM): For VoxCeleb,
we measure the identity similarity of the generated and
ground-truth source faces, by comparing the cosine similar-
ity of embedding vectors generated by a face recognition
network [5]. Classification (CLS): For Tai-Chi-HD, we
classify the generated frames using the Detectron2 frame-
work [26], and measure the number of frames classified
as a person. Specifically, we use the X101-FPN COCO
instance-segmentation model. Intersection Over Union
(IOU): For Tai-Chi-HD, we calculate the IOU of the seg-
mentations of the generated and driving videos. The seg-
mentations are generated using the same model we use
for classification. Facial Expression Similarity (FES):
For VoxCeleb, we measure the facial expression similar-
ity of generated and driving frames using the FER clas-
sifier (https://github.com/justinshenk/fer),
which supports seven different emotions.

4.1. Video Reconstruction

The video reconstruction benchmarks follow the training
procedure in that the source and target frames are from the
same video. For evaluation, the first frame of a test video is
used as the source frame, and the remaining frames of the
same video as the driving frames. The goal is to reconstruct
all the frames of the test video, except the first.

L1, AKD, MKR, and AED are compared with the state-
of-the-art model-free methods, including X2Face of [25],
MonkeyNet of [16], and the method suggested by [17],
which we refer to as FOMM. The results are reported in
Tab. 1. Evidently, our method outperforms the baselines for
each of the datasets and all metrics by a significant mar-
gin, except for the AKD measure on the VoxCeleb dataset,
where accuracy was decreased by 2.7%. The most signif-
icant improvement is for the Tai-Chi-HD dataset, which is
the most challenging dataset, because it consists of diverse
movements of a highly non-rigid body.

In order to verify that the improvement over the baselines
is not due to their smaller bottleneck size, we re-trained
FOMM and MonkeyNet on all three datasets, using a wider
bottleneck, and evaluated the video reconstruction task. We
used 365 key-points for FOMM, which are equivalent to
2190 floating-point numbers, and 440 key-points for Mon-
keyNet, which are equivalent to 2200 floating-point num-
bers. As reported in Tab. 2, we saw no improvement.

Next, we follow [28] and compare SSIM and CSIM
with X2Face, Pix2PixHD [23], and the FSAL method [28].
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Tai-Chi-HD VoxCeleb BAIR

Method L1 AKD MKR AED L1 AKD AED LI
X2Face 0.080 17.654 0.109 0.272 0.078 7.687 0.405 0.065
MN  0.077 10.798 0.059 0.228 0.049 1.878 0.199 0.034

FOMM 0.063 6.862 0.036 0.179 0.043 1.294 0.140 0.027
Ours  0.047 4.239 0.015 0.147 0.034 1.329 0.130 0.021

Table 1. Video reconstruction results. MN=Monkey-Net.

Tai-Chi-HD VoxCeleb BAIR
Method L1 AKD MKR AED L1 AKD AED LI
MN — The wider bottleneck model diverged —

FOMM 0.068 8.561 0.043 0.196 0.050 1.525 0.165 0.028
Ours  0.047 4.239 0.015 0.147 0.034 1.329 0.130 0.021

Table 2. Video reconstruction using a wider bottleneck for base-
lines. MN=MonkeyNet

Method ~ #FT SSIM 1 CSIM 4

X2Face 1/8/32  0.68/0.73/0.75 0.16/0.17/0.18
P2PHD  1/8/32  0.56/0.64/0.70  0.09/0.12/0.16
FSAL 1/8/32  0.67/0.71/0.74  0.15/0.17/0.19

Ours 0 0.80 0.70

Table 3. Few-shot learning results for VoxCeleb. Unlike baselines,
we do not perform identity fine-tuning. #FT=number of frames
used for finetuning. P2PHD=Pix2PixHD.

The baselines are evaluated in the few-shot-learning setting,
where models are fine-tuned on a set of size #FT, consisting
of frames of a person that was not seen during the initial
meta-learning step. After the fine-tuning step, the evalua-
tion is done on a hold-out set, consisting of unseen frames
of the same person. The evaluation is done for VoxCeleb
and the results are reported in Tab. 3. As can be seen, our
method generalizes better and outperforms the baselines in
SSIM and even more so in CSIM. This is especially in-
dicative of the method’s capabilities, since (i) we skip the
fine-tuning step for our model (in our case #FT = 0), and
(ii) X2Face and FSAL were designed specifically for faces,
while our method is model-free and generic.

4.2. Image Animation

The task of image animation is to animate a source image
using a driving video. The object and its background in the
source and driving inputs may have different identities and
appearances. In the experiments, the first frame of a source
video is used for encoding the appearance, and all frames of
the driving video are used for driving the object’s motion.
A video is generated where the content of the source frame
is animated by the driving video.

To evaluate the alignment between the generated and
driving videos, we measure AKD, MKR, and IOU for the
Tai-Chi-HD dataset, and FES and CSIM for the VoxCeleb
dataset. AKD, MKR, and IOU are irrelevant for the Vox-

Tai-Chi-HD VoxCeleb
Method AKD] MKR| CLSt IOUT FES?T

X2Face 22799  0.140 0870 0.558  28.0%
MonkeyNet 17.308  0.104 0.852 0.634  38.2%
FOMM 10.218  0.044 0957 0.864 48.4%
Ours 7.809 0.020 0994 0875 52.2%

Table 4. Quantitative evaluation for image animation.

Celeb dataset, because a perfect match may indicate an
identity loss. The reason is that the facial key-points and
segmentations of different people have different ratios, and
therefore cannot be compared. This is not the case for the
Tai-Chi-HD dataset, where the camera is far from the per-
son, and the body proportions are almost identical across
different identities. Measuring CLS for the Tai-Chi-HD
dataset provides differentiation, while for VoxCeleb, our
method and FOMM are both almost 100% accurate, and
the improvement we present is negligible. Measurements
are not available for the Bair dataset, due to the lack of a
pre-trained classifier and a keypoint detector for the Sawyer
robotic arm. For the following experiments, 100 pairs with
different identities were randomly selected from the test set
of each dataset. The quantitative animation results are pre-
sented in Tab. 4 and in Tab. 5. As can be seen, our method
is better for all metrics by a significant margin. See CSIM
analysis for the ablation models in section 4.2.

To evaluate the robustness for different levels of changes
in pose, between source and driving frames, we extend the
AKD, MKR, and FES experiments. Based on the AKD
score between source and driving frames, we split the test
set into three sub-sets, where the first sub-set contains the
frames with the lowest score, and so on. We compare to
FOMM, the most competitive method, and report the re-
sults in Tab. 6. As can be seen, our method better preserves
the driver’s pose and expression, even for large changes.

Sample results compared to the baseline methods are
shown in Fig. 3. For VoxCeleb, our method better pre-
serves the identity of the source, and the facial expressions
of the generated frames are more compatible with that of the
driver. For the Tai-Chi-HD dataset, the baseline methods
tend to generate infeasible poses for the fourth generated
frame, while we do not. Unlike FOMM, we well maintain
environment elements, such as the stick on the top-right of
the generated frame. For the BAIR dataset, the images gen-
erated by our method are the sharpest, and it is the only
method that places the generated object in the right posi-
tion. Note that the samples were selected to match those
of [16], and not by us.

Ablation = The main challenge is to replace the identity
on the driver’s mask with that of the source while keeping
on the driver’s pose. We do that in two steps: (i) the driver’s
identity is interrupted by applying Py, (ii) the refinement
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Model X2Face MN FOMM no_pert no_ref no_id low_res Ours

OpenFace [1] 0.512 0.544 0.620 0.625 0.487 0.522 0.632 0.642
DeepFace [19] 0.528 0.580 0.646 0.648 0.515 0.546 0.658 0.676
DeeplID [18]  0.799 0.827 0.953 0.917 0.756 0.786 0.948 0.963

Table 5. CSIM for VoxCeleb, including the ablation models.

Vox-
Celeb
X2Face
MkeyN
FOMM
Ours
Driver £
Tai- i
Chi SourceN\

X2Face

Ours

BAIR

Figure 3. Sample animation results on the three datasets. We use
the same samples as evaluated by FOMM.

network r acts to replace the driver’s identity with that of
the source. To evaluate the roles of Py and r, we evaluate
three partial methods: no_pert, no_ref, and no_id, where the
first, second, or both steps are removed, respectively.
Ablation and intermediate results generated by our
pipeline are shown in Fig. 4. As can be seen, the generated
masks m¢ and m capture very accurately the object’s pose
and shape, and the mask refinement network r successfully

MMW

FOMM no_pert no_ref
t - W

Mr

=R

Tai-Chi-HD
w

no-id

VoxCeleb
3
S

<~

o .

3

N

‘ g
g
i

FOMM no_pert noref no_id

FOMM no_pert no_ref no_id

Figure 4. Intermediate results generated by our method. The gen-
erated frame f is compared to FOMM and ablation models. From
left to right: the source frame s, source mask mg, the driving
frame d, the driving mask m, the perturbed driving mask mg,
the refined driving mask mg,, the low-res prediction ¢, the high-
res prediction f, FOMM’s result, and the ablations: no_pert drops
Picst, no_ref omits the mask refinement r, and no_id omits both.

apply the source’s identity to the driver’s mask. Comparing
the generated frame f to that of FOMM, we notice that for
the Tai-Chi-HD dataset, the pose of the generated body us-
ing our method is much more compatible with that of the
driver’s, where FOMM'’s model generates a distorted body.

For VoxCeleb, using our method, the identity of the
source is better preserved, as it also reveals a small por-
tion of the teeth, as the driver does. For the BAIR dataset,
unlike FOMM, our method was able to inpaint the occluded
surface, including the white and blue items on the right of
the generated frame. Examining the generated frames of the
ablation models shows that both steps, identity-perturbation
and mask refinement, are critical. The frames generated by
no_pert and no_id have significant traces of the driver’s iden-
tity. This is especially clear for VoxCeleb, on the forehead
area of no_pert and the general appearance for no_id. Sim-
ilarly, for Tai-Chi-HD, the frame generated by no_ref con-
tains traces from the driver’s environment, and for the other
datasets, it generates distorted results.

Next, we evaluated the following ablation models.
no_color_aug, where the color augmentation is eliminated
at train time. h_update_l, where the high-res generator
h keeps updating the weights of the low-res generator £.
h_update_m, where the high-res generator h keeps updating
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Method AKD |

MKR| FES 1

FOMM
Ours 7.809\6.431\7.433\8.909

10.218\8.629\9.958\12.364  0.044\0.042\0.042\0.049
0.020\0.017\0.020\0.025  52.2% \54.3% \53% \49.3%

48.4% \48.9% \50.7% \45.6%

Table 6. AKD and MKR for Tai-Chi-HD. FES for VoxCeleb. All are reported for the Full\ 1* \2™ \ 3™ sets.

Method L1 AKD AED

No_color.aug 0.045 1.863 0.159
H_update.m  0.041 1.829 0.161
H_update_1 0.039 1.412 0.142
Full method  0.034 1.329 0.130

Table 7. Ablation analysis on the reconstruction task for VoxCeleb.

the weights of the mask generator m. The ablation models
were trained on the VoxCeleb dataset and evaluated on the
video reconstruction task. Results are presented in Tab. 7.
As can be seen, using the color augmentation and limiting
the task of the high-res generator h for adding fine details,
helps the model to converge faster.

Next, we analyze the importance of the suggested mod-
ules for identity preservation, using the CSIM between
source and generated frames. The results are shown in
Tab. 5. As can be seen, removing the refinement step
(no_ref, no_id) dramatically degrades the CSIM score, and
applying Py helps 7 to better inject the source’s identity.
It is also can be seen that low_res results in a lower CSIM
score, which verifies the effectiveness of h.

In Fig. 5 we show an example for the visual improvement
of f over c. The environment in both examples and the face
of the man in the left example are much sharper in f. In
addition, we show an example where the generated masks
reflects very well whether the subject is facing back or not.

User study To further qualitatively evaluate our method
and compare it with existing work, we presented volunteers
with a source image, a driving video, and four randomly or-
dered generated videos, one for each baseline method. They
were asked to (i) select the most realistic animation of the
source image, and (ii) select the video with the highest fi-
delity to the driver video. For each of the n = 25 partic-
ipants, we repeated the experiment three times, each time
using a different dataset and a random test sample.

The results, see Tab. 8, are highly consistent with the
quantitative results, and indicate that the quality and the an-
imation of the videos our method generated, contain fewer

c f c f back front

Figure 5. (left) f is sharper than c. (right) back & front masks.

Dataset X2Face MN FOMM no_pert noref no.id Ours

Tai-Chi (0%,0%) (4%.4%) (16%.8%) (2%.2%) (0%.0%) (0%.0%) (18%, 86%)
VoxCeleb (0%.,0%) (6%,4%) (10%,10%) (12%,10%) (0%.0%) (0%.0%) (72%,76%)
BAIR  (0%.4%) (6%.6%) (14%.8%) (20%,16%) (0%,0%) (0%.0%) (60%, 66%)

Table 8. The ratio (Quality, Motion-fidelity) of best videos se-
lected for each method, including ablations. MN=Monkey-Net.

artifacts and are better synchronized with the driver videos.
In addition, it can be seen that the refinement network 7 is
the most important module for quality and for motion, and
that the perturbation operator Py is much more needed in
Tai-Chi-HD and VoxCeleb.

Limitations While better than the baselines, there are ar-
tifacts and identity loss for extreme changes in pose and
shape. Additionally, since the perturbation operator sets to
zero mask’s pixels that are smaller than a threshold p, some
pose information may be lost. Other failure cases are ambi-
guities on generated masks, e.g. for Tai-Chi-HD, when the
hands are overlapped, the generator may struggle to under-
stand which one is on top. This limitation also exists for the
baseline methods including key-points methods.

As a video generation method, considerations should be
made towards the possible use of the generated output in
a harmful way. For example, the generated videos of talk-
ing heads can be used as part of a system for manipulating
speech content. Our hope is that studying such methods
in an open way would enable the mitigation of such risks
through better detection methods and by raising awareness.

5. Conclusions

A novel method for conditionally reanimating a frame
is presented. It utilizes a masking mechanism for encod-
ing pose information. Our method is able to effectively
extract both the source and the driving masks, while accu-
rately capturing the shape and foreground/background sep-
aration, and recovering an identity-free pose representation
of the driver. Our results outperform the state of the art by
a sizable margin on the available benchmarks.
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