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Abstract

The Controllable Variational Autoencoder (ControlVAE)
combines automatic control theory with the basic VAE
model to manipulate the KL-divergence for overcoming
posterior collapse and learning disentangled representa-
tions. It has shown success in a variety of applications, such
as image generation, disentangled representation learning,
and language modeling. However, when it comes to disen-
tangled representation learning, ControlVAE does not delve
into the rationale behind it. The goal of this paper is to de-
velop a deeper understanding of ControlVAE in learning
disentangled representations, including the choice of a de-
sired KL-divergence (i.e, set point), and its stability during
training. We first fundamentally explain its ability to disen-
tangle latent variables from an information bottleneck per-
spective. We show that KL-divergence is an upper bound
of the variational information bottleneck. By controlling
the KL-divergence gradually from a small value to a target
value, ControlVAE can disentangle the latent factors one by
one. Based on this finding, we propose a new DynamicVAE
that leverages a modified incremental PI (proportional-
integral) controller, a variant of the proportional-integral-
derivative (PID) algorithm, and employs a moving average
as well as a hybrid annealing method to evolve the value
of KL-divergence smoothly in a tightly controlled fashion.
In addition, we analytically derive a lower bound of the
set point for disentangling. We then theoretically prove
the stability of the proposed approach. Evaluation results
on multiple benchmark datasets demonstrate that Dynam-
icVAE achieves a good trade-off between the disentangle-
ment and reconstruction quality. We also discover that it
can separate disentangled representation learning and re-
construction via manipulating the desired KL-divergence.

*Corresponding author: Huajie Shao
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1. Introduction

Variational Autoencoders (VAEs) have been widely used
in various applications, such as language modeling, im-
age generation, and representation learning. In particu-
lar, many variants of VAEs, such as 3-VAE [11], Factor-
VAE [17] and 5-TCVAE [6], have been recently proposed
to learn the disentangled representations from the observa-
tions. Disentangled representation learning aims to encode
input data into a low-dimensional space that preserves infor-
mation about the salient factors of variation, so that each di-
mension of the representation corresponds to a distinct and
explanatory factor in the data [3,26,45,46]. Learning dis-
entangled representations benefits a variety of downstream
tasks [8, 11,21,24,27,28], including abstract visual reason-
ing [45], zero-shot transfer learning [5] and image genera-
tion [30,48].

One major challenge of disentanglement learning is
that there exists a trade-off between reconstruction qual-
ity of the input signal and the degree of disentanglement
in the latent representations. To address this issue, re-
searchers have developed a controllable variational antoen-
coder (ControlVAE) [39, 40] that combines control theory
and the basic VAE to control the output KL via dynami-
cally tuning the weight on the KL term in the VAE objec-
tive. While Control VAE shows its good ability to disentan-
gle latent variables, it still remains to explain the rationale
behind it. The question is, why does it perform well on dis-
entanglement learning via controlling the KL-divergence?

In addition, the core component of ControlVAE is
the designed non-linear PI controller, a variant of the
proportional-integral-derivative (PID) algorithm [I, 43].
The PI controller is able to stabilize the output KL-
divergence to a specified value via dynamically adjusting
the weight on the KL term. It thus can achieve a good trade-
off between disentanglement and reconstruction. Since
deep VAE model is complicated, its training may become
unstable after incorporating the PI controller. In automatic
control, tuning the hyperparameters of a PI/PID controller
is regarded as the most challenging task [31]. Hence, ob-
taining a feasible region of the hyperparameters to ensure
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the stability of Control VAE remains a challenging question.

Moreover, ControlVAE does not explicitly provide the
target KL-divergence C (i.e., set point) that can disentan-
gle all the latent factors from observations. Namely, it is
hard for us to tune the target KL-divergence for different
datasets. Another question is, how to choose the set point
of the target KL-divergence for different datasets? Is it pos-
sible to tune them in an unsupervised manner?

Our Contributions: This paper seeks to rethink Con-
trol VAE in order to address the unanswered questions above
for better understanding it. We attempt to offer an explana-
tion of its good performance on disentangled representation
learning via controlling the KL-divergence, analyze the set
point of the target KL.-divergence C', and discuss parameter
tuning of the PI controller to ensure its stability. The main
contributions of this paper are summarized as follows.

* We fundamentally explain why controlling the value of
KL-divergence can learn disentangled representations
from an information bottleneck perspective. We show
that KL-divergence is an upper bound of the mutual
information between inputs and their encodings.

* We propose a new model, DynamicVAE, that lever-
ages an incremental PI controller, hybrid annealing and
moving average to smoothly evolve the desired KL-
divergence along a trajectory that can achieve high-
quality disentanglement and low reconstruction error.

* We analytically derive a lower bound of the set point
for the target KL-divergence of DynamicVAE and
Control VAE.

* We provide theoretical conditions on parameters of the
PI controller to guarantee stability of Dynamic VAE.

 Extensive experiments on benchmark datasets demon-
strate that DynamicVAE achieves higher reconstruc-
tion quality and disentanglement than Control VAE and
the other baselines. Importantly, we discover that the
proposed method can separate disentangled represen-
tation learning and reconstruction optimization.

2. Preliminaries
2.1. Variational Autoencoders (VAEs)

A Variational Autoencoder (VAE) [19,36] is comprised
of an encoder and a decoder. The encoder maps the ob-
served data x into a low-dimensional latent space z while
the decoder attempts to reconstruct the observations by sam-
pling the data from the latent space. However, due to
the intractable posterior inference, the basic VAE model is
trained by optimizing the following variational lower bound
(ELBO):

Loae = Eq, 21x) [log po(x|2)] — D 1(qs(2[x)[p(z)), (1)

Desired KL
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Figure 1. Diagram of the PI controller of ControlVAE.

where pg(x|z) is the reconstruction of the observed data x
given the latent variable z; ¢4(z|x) is a posterior distribu-
tion of latent variable z given x; and p(z) is a prior, such as
the standard Gaussian.

2.2. ControlVAE

ControlVAE [40] is a new framework of VAE that com-
bines control theory with the basic VAE to stabilize the KL-
divergence to a desired value (i.e., set point), as illustrated
in Fig. 1. It designs a PI controller to dynamically tune the
weight 3 in the following 5-VAE [12] objective to balance
the disentanglement learning and reconstruction.

Le =Eq, (a0 [log pe(x|2)] — BDxL(gs(2[x) | p(2)). ()

Different from 3-VAE that assigns a fixed weight to the KL
term, Control VAE adopts a positional PI controller to com-
pute the weight 5 using the actual KL-divergence as feed-
back during training as follows:

t
e(t)) - K; e(j) + Bmin, (3)

§=0

B(t) = Kpo(~

where e(t) = C — Dgr(ge(2|x)||p(2))(t), which is the
difference between desired KL-divergence C' and the actual
one at training step ¢; o(.) is a sigmoid function; [,y is
an application-specific constant, such as 0; K, and K; are
positive coefficients for the P term and I term respectively.
Next, we will describe the basic idea of a PI controller.

2.3. PID Control Algorithm

The PID is a simple yet effective control algorithm that
can stabilize system output to a desired value via feed-
back control [1,43]. The PID algorithm calculates an er-
ror, e(t), between a set point (in this case, the desired KL-
divergence) and the current value of the controlled variable
(in this case, the actual KL-divergence), then applies a cor-
rection in a direction that reduces that error. The correction
is the weighted sum of three terms, one proportional to the
error (called P), one that is the integral of error (called 1),
and one that is the derivative of error (called D); thus, the
term PID. The derivative term is not recommended for noisy
systems, such as ours, reducing the algorithm to PI control.
The canonical form of a PI controller (applied to control
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B(t)) is the following:

t

B(t) = Kpe(t) + Ki Y _ e(j), @)

j=0

where ((t) is the output of a controller, which (in our case)
is the used § during training at time ¢; e(t) is the error
between the output value and the desired value at time t;
K, K; denote the coefficients for the P term and I term, re-
spectively. Eq. (4) may be rewritten in incremental form, as
follows:

B(t) = AB(H) + Bt - 1), )

where ($(0) can be set as needed (as we show later), and:
AB(t) = Kple(t) — e(t = 1)] + Kie(?). (6)

Different from ControlVAE with positional PI controller,
this paper adopts a nonlinear incremental form of the PI
controller, as described later in Section 4.

3. Explanation of ControlVAE’s Ability to Dis-
entanglement Learning

In this section, we offer an explanation about the good
ability of ControlVAE to disentangle the latent variables
from the observations. ControlVAE leverages annealing
method with step function to gradually change the KL-
divergence from a small value to a large target value C.
While it shows excellent performance for the learning of
disentangled representations, the main reason remains un-
clear. The following proposition can help us better under-
stand its good performance through mutual information.

Proposition 3.1. The KL-divergence in the objective of
ControlVAE, D1, (qs(2|x)||p(2)), is an upper bound of
the mutual information (MI) between the observed data x
and the latent variables z, denoted by I(x,z). Namely,

I(x,2) < Epx) [Drr(gs(2[%)[[p(2))]-

Please refer to the proof in Appendix A

According to Proposition 3.1, we can find that control-
ling the desired KL-divergence is equivalent to controlling
the variational information bottleneck (VIB) [33] for infor-
mation transmission. As the capacity of VIB is increased
gradually, the simple and common latent factors in the ob-
served data will transmit the latent channels for reconstruc-
tion. After all the latent factors are disentangled, Con-
trolVAE tends to optimize the reconstruction as the target
KL-divergence is gradually increased to some extend. That
is why ControlVAE can balance disentanglement learning
and reconstruction optimization via dynamically control-
ling the KL-divergence. Inspired by this, below, we try
to improve the ControlVAE to smoothly increase the KL-
divergence along a trajectory for disentanglement learning.

4. The DynamicVAE Model

Motivated by Section 3, we propose a new DynamicVAE
model that controls the output KL-divergence from a small
value to a target value smoothly.

We first review the objective of ControlVAE for disen-
tangled representation learning. The basic idea is to max-
imize the log likelihood and simultaneously stabilize the
KL-divergence to a target value C. It can be formulated
as the following constrained optimization problem:

n;%x Eqg,(z1%) [log pe (x|2)] o
st. Drr(gs(zlx) | p(z)) = C

The prior work [43] has illustrated PI controller outper-
forms the Lagrange Multiplier (LM) for solving the con-
strained optimization problem, since LM may suffer from
oscillation and constraint violations [34]. Hence, Con-
trolVAE designs a PI controller to dynamically adjust
B(t) in the VAE objective in Eq. (2) to stabilize the KL-
divergence to the desired value C":

While ControlVAE can disentangle latent representa-
tions via controlling KL-divergence, sometimes the output
of KL divergence is not very stable during model training,
as shown in Fig. 7 (a). In order to evolve the KL-divergence
smoothly along a good trajectory in a tightly controlled
fashion, we propose a novel DynamicVAE model based on
control theory that can achieve a good trade-off between
disentanglement and reconstruction. To reach this goal, we
need to address the following two challenges:

1. KL-divergence should be increased smoothly from a
small value to a large one. To this end, 3(t) should
dynamically change from a large value to small one
during model optimization. Specifically, at the begin-
ning of training, 5(¢) should be large enough to control
the information bottleneck for disentangling the latent
factors. After that, 3(¢) is required to gradually drop
to a small value to optimize the reconstruction.

2. B(t) should not change too fast or oscillates too fre-
quently. There is an interplay between the output KL-
divergence and 3(t). B(t) is computed from the feed-
back of the output KL-divergence while 5(t) influ-
ences the output KL-divergence during optimization.
When S3(t) drops too fast or oscillates, it may cause
KL-divergence to grow with a large value. Conse-
quently, some latent factors may emerge earlier so that
they can potentially be entangled with each other.

In this paper, we propose methods to deal with these two
challenges, summarized below.

A non-linear incremental PI controller: As mentioned
earlier, we need a large 3(t) in the beginning to change the
KL-divergence smoothly from a small value to a large tar-
get value so that the information can be transmitted through
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the latent channels per data sample. Accordingly, we adopt
an incremental form of the PI controller in Eq. (3), and ini-
tialize it to a large value:

B(t) = AB(t) + B(t — 1), ®)
where
AB(t) = Kplo(—e(t)) — o(—e(t — 1))] — Kie(t). (9

and 3(0) is a large initial value. When the PI controller
is initialized to a large value 3(0), it can quickly produce
a (small) KL-divergence during initial model training, pre-
venting emergence of entangled factors.

Moving average: Since our model is trained with mini-
batch data, it often contains noise that causes 5(t) to os-
cillate. In particular, when () plunges during training, it
would cause KL-divergence to rise too quickly. This may
lead to multiple latent factors coming out together to be en-
tangled. To mitigate this issue, we adopt moving average
method to smooth the output KL-divergence as the feed-
back of PI controller below.

t
y(t) = Y ouyrr(i), (10)
i=t—T

where «; denotes weight and 7' denotes the window size of
past training steps.
Hybrid annealing: Control systems with step (input) func-
tion (i.e., those where the set point can change abruptly)
often suffer from an overshoot problem [38]. An over-
shoot is temporary overcompensation, where the controlled
variable oscillates around the set point. In our case, it
means that the actual KL-divergence may significantly (al-
beit temporarily) exceed the desired value, when set point is
abruptly changed. This effect would cause some latent fac-
tors to come out earlier than expected, and be entangled,
thereby producing poor-quality disentanglement. To ad-
dress this problem, we develop a hybrid annealing method
that changes the set point more gradually, as illustrated in
Fig. 7(b) in Appendix. It combines step function with ramp
function to smoothly increase the target KL-divergence in
order to prevent overshoot and thus better disentangle latent
factors one by one.

The combination of the above three methods allows Dy-
namicVAE to evolve (3(t) along a favorable trajectory to
separate disentanglement learning and reconstruction opti-
mization. We summarize the proposed incremental PI algo-
rithm in Algorithm 1.

4.1. Set Point Guidelines

In this section, we fundamentally analyze how to choose
a set point for the target KL-divergence C' of Dynamic-
VAE (same to ControlVAE). In DynamicVAE, latent fac-
tors transmit through the information bottleneck for the re-
construction of input data. In information theory, one bit,

Algorithm 1 Incremental PI Control algorithm.

1: Input: desired KL C, coefficients Kp, K, Smin, iterations
N, window T’

2: Output: weight 3(t) at training step ¢

3: Inmitialization: 5(0) = 150 (100), yx(0) =0
4: fort =1to N do

5. Sample KL-divergence, yx ()

6 y(t) =X paiyre(i)

7. e(t) + C —y(t)

8:  dP(t) + Kplo(e(t)) — o(e(t — 1))]

9:  dI(t) «+ Kie(t)
10:  if B(t — 1) < Bmin then
11: dI(t) < 0// wind up
12:  endif
13:  dp(t) + dP(t) + dI(t)
14: B(t) «dp(t)+ Bt —1)
15:  if B(t) < Bmin then
16: B(t) < Bmin

17: end if
18:  Return j3(t)
19: end for

also called the information entropy of a binary random vari-
able, is often used to encode data or transmit information.
Hence, we adopt one bit theory to analyze the mutual in-
formation Z(x, z) between the input data x and the latent
variable z, which can be used as a lower bound of the de-
sired KL-divergence for DynamicVAE.

Let M denote the capacity of variational information
bottleneck for the complete reconstruction of N, data sam-
ples. Then we have

2M > N, = M > log, N, an

Therefore, we can derive a lower bound of a set point for
the target KL-divergence C, satisfying

C > M >log, N, (12)

We will further verify this result empirically by conducting
a set of experiments in Section 6.3.

5. Stability Analysis of DynamicVAE

We further theoretically analyze the stability of the pro-
posed DynamicVAE with PI controller. This work is the
first to offer the necessary and sufficient conditions that con-
trol hyperparameters should satisfy in order to guarantee the
stability of KL.-divergence, when (3 is manipulated dynami-
cally during the training process of a (variant of) 5-VAE.

To this end, our first step is to build the state space model
for our control system. Throughout the paper, the state vari-
able at training step ¢ is defined as z(t) = B(t).

Accordingly, the model of incremental PI controller can
be written as:

z(t+1)—a(t) = Kplo(—e(t)) —o(—e(t—1))] - Kie(t), (13)

19253



where error e(t), as shown in Fig. 1(a), is given by e(t) =
C —y(t — 1). Here y(t) is a dynamic model about the time
response of the output KL divergence, yx . (t). According
to [23], stochastic gradient descent (SGD) for optimizing
an objective function can be described by a first-order dy-
namic model. Our experiment, as illustrated in Fig. 1(b),
also shows that the response y(t) in the open loop system
approximately meets a negative exponential function, which
further verifies that our system is a first-order dynamic sys-
tem. We hence use the first-order dynamic model to de-
scribe it below.

Wt ay=agla), (14)
where a is a positive hyperparameter to describe the dy-
namic property, and g(x) is a mapping function between
the actual KL-divergence and 3(t). Since DynamicVAE is
a discrete control system with sampling period T = 1, the
above first-order dynamic model can be reformulated as

y(t) —y(t = 1) +ay(t) = ag(z(t)) =

WO = Tyt =1+ Toge). 9)

Now let 21 (t) = (1), z2(t) = y(t — 1), z3(t) = y(t — 2),
then Egs. (13) and (15) can be rewritten as the following
state space equations.

z1(t+1) = 21(t) — Ki[C — 22(t)] + Kplo(22(t) — O)
—o(z3(t) — C)] £ fr(z1(t), z2(t), w3(t))
gl () + 1iawg(t) (16)
£ fa(@1(t), z2(t), w3(t))

z3(t+1) = 22(t) £ fa(x1(t), z2(t), z3(t))

In order to analyze the stability of the above non-linear
state space model, one commonly used method is to lin-
earize it at an equilibrium point [14]. In this paper, we use
the following equilibrium point:

a* = (a1,23,73) = (g7 '(C),C, 0), (17)

Ig(t + 1) =

where g~ !(-) denotes the inverse function and =3 = x%.
Next, we apply the first-order Taylor expansion to the above
Eq. (16), yielding

X(t+1)=AX(), (18)
where
X(t) = [w1(t) — af, 22(t) — x5, 25(t) — 23", (19)

and A is the Jacobian matrix at equilibrium point z*, as
defined in Eq. (22) in Appendix C. After this linearization,
we can prove the stability of the proposed method as the
modulus of eigenvalue \ of A is smaller than 1, as described
in the following theorem.

Theorem 5.1. Let a > 0 and assume ¢'(x) < 0,Vx > 0.
Then DynamicVAE is stable at the equilibrium point C' if
and only if the parameters of the PI controller, K; and K,
satisfy the following conditions

4(1+a)

ag’(z]

0.5K2ag'(x})? + 2[Kp — 8K;(1 + a)lg'(z]) —8(1+a) <0
K; >0,Kp, >0

Kp+Ki<—

(20)
We provide the detailed proof in Appendix C.

Remark 5.1. The assumption of ¢'(x) < 0,Vzx basically
asks that the KL term in the objective to be a monotonously
decreasing function of the coefficient 3(t), and we also fur-
ther empirically corroborate its validity on two benchmark
datasets as shown in Appendix C.1. In addition, we choose
K, and K; that meet the above conditions (20) to verify the
stability of DynamicVAE in Appendix C.1.

6. Experiments

We evaluate the performance of DynamicVAE and
compare it against existing baselines, including Con-
trolVAE [40], B-VAE g [12], B-VAEp [5], FactorVAE [17],
Lagrange Multiplier (LM) [37], and VAE [19]. We conduct
experiments on multiple benchmark datasets: dSprites [5],
MNIST [7], smalINORB [20], and 3D Chairs [2]. The de-
tailed model configurations and hyperparameter settings are
presented in Appendix D.

6.1. Results and Analysis

Dsprites Dataset: We first evaluate the performance of
DynamicVAE on learning disentangled representations us-
ing dSprites. Fig. 2 (a) and (b) illustrate the comparison
of reconstruction error and the hyperparameter 3(t) (using
5 random seeds) for different approaches. We can observe
from Fig. 2 (a) that DynamicVAE (KL=20) has much lower
reconstruction error (about 11.8) than S-VAE and Factor-
VAE, and is comparable to the basic VAE, LM, and Con-
trolVAE. This is because DynamicVAE dynamically adjusts
the weight, 5(t), to balance the disentanglement and recon-
struction. Specifically, DynamicVAE automatically assigns
a large B(t) at the beginning of training in order to obtain
good disentanglement, and then its weight gradually drops
to about 1 at the end of optimization, as shown in Fig. 2 (b).
In contrast, 5-VAE and FactorVAE have a large and fixed
weight in the objective so that their optimization algorithms
tend to optimize the KL-divergence term (total correlation
term for FactorVAE), leading to higher reconstruction er-
ror. For ControlVAE, it can also dynamically tune [3(¢) to
control the value of KL-divergence, but its disentanglement
performance is worse than DynamicVAE as illustrated in
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(a) Reconstruction loss.

(b) B(1).

(c) KL-divergence.

Figure 2. (a) shows the comparison of reconstruction error on dSprites using 5 random seeds. DynamicVAE (KL=20) has comparable
reconstruction errors to the basic VAE. (b) shows that DynamicVAE turns the weight of 3-VAE into a small value less than 1. (c) shows an
example of DynamicVAE on disentangling factors as the total KL-divergence increases.

Table 1. RMIG for different methods averaged over 5 random seeds. The higher the better. Note that we dismiss that FactorVAE suffers

from total correlation (TC) collapse [17].

Models/Metric pos.x  pos.y  Shape  Scale Orientation RMIG MIG BetaVAE Score
VAE 0.0359 0.0243 0.0116 0.1507 0.0039 0.0452 0.0539 0.8636
Control VAE (KL=20) 0.6802 0.6597 0.0956 0.6040 0.1081 0.4295 0.5233  0.9608
FactorVAE (v = 10) 0.7482 0.7276  0.1383  0.6262 0.1412 0.4763 0.5479  0.9801
B-VAEg (v = 100) 0.5666 0.5763 0.4353 0.3814 0.0631 0.4045 0.4001 0.9940
B-VAEH (B =4) 0.1635 0.1047 0.1391 0.3958 0.0127 0.1632 0.1687 0.8831
Lagrange Multiplier (LM) 0.6234 0.6177 0.0831 0.5850 0.0365 0.3891 0.4706 0.9977
DynamicVAE (KL=20) 0.7166  0.7179 0.2004 0.6530 0.1024 0.4781 0.5578 0.9981

Table 1. Fig. 2(c) illustrates an example of per-factor KL-
divergence in the latent code as the total information capac-
ity (KL-divergence) increases from 0.5 to 20. We can see
that DynamicVAE disentangles all the five data generative
factors, starting from position (x and y) to scale, followed
by orientation and shape.

Next, we use three disentanglement metrics, robust
mutual information gap (RMIG) [9], MIG and BetaVAE
Score [25], to evaluate the disentanglement of different
methods. We can observe from Table 1 that DynamicVAE
has slightly better RMIG, MIG and BetaVAE Score than the
FactorVAE, but it has much lower reconstruction error as il-
lustrated in Fig. 2. However, FactorVAE may suffer from
total correlation collapse [17] which is dismissed in our re-
sults. Moreover, DynamicVAE has higher RMIG, MIG and
BetaVAE Score than 3-VAE and the Lagrange Multiplier
(LM). This is because LM does not inherently ensure con-
vergence as it may suffer from oscillations and constraint
violations [34,43], as shown in training step around 370K
in Fig. 2 (b). Our method also achieves much better dis-
entanglement than ControlVAE for comparable reconstruc-
tion accuracy. Hence, DynamicVAE is able to improve the
reconstruction quality yet obtain good disentanglement.

Qualitatively, we also visualize the disentanglement re-
sults of different models in Fig. 3. We can observe that
DynamicVAE disentangles all the five generative factors on
dSprites. However, Control VAE is not very effective to dis-

entangle all the factors when its KL-divergence is set to a
large value, such as 20. Furthermore, S-VAEg (v = 100)
disentangles four generative factors and mistakenly com-
bines the scale and shape factors together (in the third row).
The other methods do not perform well for disentanglement.

3D Chairs and Other Datasets We also evaluate the
proposed DynamicVAE on the other datasets: 3D Chairs,
MNIST, and smalINORB. Fig. 4 illustrates the disentangled
factors for DynamicVAE on 3D Chairs. We can observe
from it that it disentangles six different latent factors, such
as wheels, leg height, and azimuth. The proposed method
can also disentangle diferent latent factors on smalINORB
dataset as shown in Fig. 10 in Appendix E. Besides, we
demonstrate that DynamicVAE can uncover many different
latent factors on MNIST dataset, as illustrated in Fig. 11
in Appendix E. We can observe that our method achieves
better disentanglement compared to the other approaches.

6.2. Separating Reconstruction and Disentangle-
ment Learning

Additionally, we show that the proposed DynamicVAE
is able to separate the reconstruction and disentanglement
learning into two phases, mitigating the issue of balancing
the trade-off between reconstruction and disentanglement.
Fig. 5 illustrates the RMIG score and reconstruction loss
with the increase of training steps after all the factors are
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Figure 3. Rows: latent traversals ordered by the value of KL-divergence in a descending order. We initialize the latent representation from
a seed image, and then traverse a single latent code in a range of [—3, 3], while keeping the remaining latent code fixed.

disentangled (after 800,000). It can be seen that RMIG
score of our method remains stable as the reconstruction
loss drops. Therefore, the proposed method barely intro-
duces a conflict between reconstruction optimization and
disentangled representation learning.
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Figure 4. Sample traversals for the six latent factors on 3D Chairs.
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Figure 5. Averaged RMIG score and reconstruction loss vary with
training steps.

6.3. Lower Bound of Set Point

Next, we conduct extensive experiments on benchmark
datasets to verify the lower bound of the set point for the tar-
get value C in Section 4.1. In our experiments, we set the
target KL-divergence C' to 20 (using log,), and then mea-
sure the mutual information (MI) between input data x and
latent variable z, Z(x, z). Fig. 6 shows the mutual informa-
tion (using log,) for different benchmark datasets with dif-
ferent number of samples. We can observe from it that when
the proposed model is trained on dSprites with 737, 280 and
3000 data samples, the corresponding MI is about 19.33 and
14.82 respectively. They are very close to the correspond-
ing ground truth: 19.49 and 14.87. We also conduct ex-
periments on dSprites, 3DChairs and MNIST with different
latent factors using same 30, 000 data samples. The results
show their mutual information is about 14.74, 14.70, and
14.95, which are very close to the theoretical ground truth:
14.87. Thus, we can choose the target value C based on the
lower bound in Eq. (12).

201
181
16 ___________________
141

124
—— dSprites_30000

104 j
81 (5
(7
1 <
7‘/ == MNIST_30000

6

4 ot ++++ 3DChairs_30000
%/ ==+ dSprites_737280

2 7

0

Mutual Information(bits)

MNIST_60000
—— 3DChairs_86366

| ¥

0K 250K 500K 750K 1000K 1250K 1500K
Training Steps

Figure 6. Mutual information Z(x, z) for benchmark datasets.
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Table 2. RMIG for different methods averaged over 5 random seeds. The higher is better.

Models/Metric pos.x  pos.y  Shape  Scale Orientation RMIG
DynamicVAE 0.7166  0.7179 0.2004 0.6530 0.1024 0.4781 £+ 0.0172
DynamicVAE-P 0.7376  0.7317 0.0992 0.6400 0.1120 0.4641 £ 0.0240
DynamicVAE-step 0.7209 0.7143  0.0664 0.6218 0.1543 0.4555 £ 0.0355
DynamicVAE-t 0.7152  0.7110 0.0997 0.6267 0.1322 0.4570 £ 0.0182
6.4. Ablation Studies (GANs) [10,32,41]. InfoGAN [22] is the first scalable un-

To compare the performance of DynamicVAE and its
variants, we perform following ablation studies:

* DynamicVAE-P: it uses positional PI controller with no
initialization to a large 3(0), instead of the incremental
PI initialized to a large 3(0), to tune the weight on KL
term in the VAE objective.

* DynamicVAE-step: it solely adopts step function with-
out ramp function for our annealing method.

* DynamicVAE-t: this model directly uses the output KL-
divergence at time ¢ as a feedback of PI controller with-
out using moving average to smooth it.

Table 2 shows the comparison of RMIG score for Dy-
namicVAE and its variants. It can be observed that Dynam-
icVAE outperforms the other methods in terms of overall
RMIG score. We also find that Dynamic VAE-step does not
perform well because the ramp function is removed from
our annealing method, leading to overshoot of PI controller.
As a result, it makes the other factors come out earlier and
entangled to each other. Thus, we can conclude the impor-
tance of adding ramp function for our annealing method. In
addition, we can see that the proposed moving average and
incremental PI control algorithm also play a critical role to
improve the disentanglement.

7. Related Work

Supervised disentanglement learning [18, 29, 35, 42].
This method requires the prior knowledge of some data gen-
erative factors from human annotation to train the model.
Some studies [24, 25, 27] figure out that it is hard to
achieve reliable and good disentanglement without supervi-
sion. For supervised learning, the limited labeling informa-
tion can help ensure a latent space of the VAE with desirable
structure w.r.t to the ground-truth latent factors. In order
to reduce human annotations, researchers tried to develop
weakly supervised learning [4, |3,26] to learn disentangled
representations. However, these methods still require ex-
plicit human labeling or assume the change of the two ob-
servations is small. In practice, it is unrealistic for initial
learners to discover the data generative factors in most real
world scenarios.

Unsupervised disentanglement learning. The re-
cent approaches mainly build on Variational Autoencoders
(VAEs) [19, 49] and Generative Adversarial Networks

supervised learning method for disentangling. It, however,
suffers from training instabilities and does not perform well
in disentanglement learning [ 1], so most recent works are
largely based on VAEs models. The VAE models, such as
B-VAE (8 > 1), FactorVAE and 5-TCVAE [6], often suffer
from high reconstruction errors in order to obtain better dis-
entanglement, since they add a large weight to terms in the
objective. To address this problem, recent studies adopted
the Lagrange Multiplier (LM) method to dynamically adjust
the weight on the KL term [37,44]. However, LM may suf-
fer from oscillations on its way to the steady state, leading to
constraint violations [43] and thus high errors. To mitigate
this issue, researchers proposed Control VAE that leverages
PI control algorithm to ensure better/faster convergence of
KL divergence to a desired value [40]. While ControlVAE
shows the good ability to disentanlement learning, it does
not offer a clear explanation. In this paper, we aim to better
understand ControlVAE and then propose a new Dynam-
icVAE that can achieve better disentanglement yet obtain
lower reconstruction error.

8. Conclusion

This paper aimed to develop a deep understanding of
Control VAE for disentangled representation learning. From
information bottleneck theory, we offered an explanation
about why it performs well on disentanglement learning
via stabilizing the output KL-divergence to different set
points. Then we theoretically derived a lower bound of
the set point for the target KL-divergence. It was further
validated via conducting extensive experiments. In order
to evolve the output KL-divergence smoothly along a good
trajectory, we further proposed a novel model, Dynamic-
VAE, for better disentanglement learning. Specifically, we
leveraged an incremental PI controller, moving average and
a hybrid annealing to stabilize the KL-divergence to sep-
arate the disentanglement learning and reconstruction op-
timization. We further theoretically prove the stability of
the proposed method. The evaluation results demonstrate
DynamicVAE can significantly improve the reconstruction
accuracy meanwhile achieving better disentanglement than
Control VAE and the other baselines.
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