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Abstract

Visual vibrometry is a highly useful tool for remote cap-
ture of audio, as well as the physical properties of materi-
als, human heart rate, and more. While visually-observable
vibrations can be captured directly with a high-speed cam-
era, minute imperceptible object vibrations can be optically
amplified by imaging the displacement of a speckle pattern,
created by shining a laser beam on the vibrating surface.
In this paper, we propose a novel method for sensing vi-
brations at high speeds (up to 63kHz), for multiple scene
sources at once, using sensors rated for only 130Hz oper-
ation. Our method relies on simultaneously capturing the
scene with two cameras equipped with rolling and global
shutter sensors, respectively. The rolling shutter camera
captures distorted speckle images that encode the high-
speed object vibrations. The global shutter camera cap-
tures undistorted reference images of the speckle pattern,
helping to decode the source vibrations. We demonstrate
our method by capturing vibration caused by audio sources
(e.g. speakers, human voice, and musical instruments) and
analyzing the vibration modes of a tuning fork.

1. Introduction

Vibrations are all around us, caused by sources ranging
from heartbeats to engines, to music, speech, and ultrason-
ics. These vibrations exhibit various amplitudes (microns
to meters) and frequencies (a few Hz to MHz). As such,
measuring vibrations is an essential tool in many engineer-
ing and scientific fields. However, optically sensing vibra-
tions, especially the low-amplitude high-frequency kind, is
challenging. To make matters worse, indirect damped vi-
brations caused by remote sources (e.g. a speaker vibrating
an object [13]) can be even more subtle. Additionally, these
challenges are harder to overcome when the vibrating sur-
face is far from the imaging system or is itself moving (e.g.
the natural movements of a musician playing guitar).

That said, much progress has been made recently on vi-
sual vibrometry. Passive capture and estimation of small
motions [15, 18, 21, 35–37, 39, 45] of a vibrating surface
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Figure 1. Optically measuring vibrations allows remote capture
of speech, music, and the mechanical vibrations of various ob-
jects, including engines, bridges, and more. We propose a new
method for sensing 2D object vibrations at high speeds, using a
dual-shutter sensor system consisting of two low-speed cameras.
Our system samples vibration with speeds up to 63KHz, for mul-
tiple objects at once and can handle non-static objects. We test our
system by capturing and replaying audio source vibrations (e.g.
speakers, human voice), analyzing the vibrational modes of a tun-
ing fork, and capturing the vibrations of musical instruments.

have been used to extract (a) heart rate and sound from
video [13, 39] and (b) the physical properties of materials
[6,9,12,16] and structures (e.g. buildings and bridges) [10].
However, low-amplitude high-frequency vibrations require
a high-speed video camera with a zoom-lens and bright
lighting to compensate for the short camera exposures.

In contrast to passive approaches, active speckle-based
approaches illuminate a vibrating surface with coherent
light (e.g. laser) and image the resulting speckle [5, 40–42].
The speckle is imaged by focusing in between the surface
and the sensor. A small tilt of the vibrating surface re-
sults in a shift of the speckle, a phenomenon called the
memory effect [3, 42].1 This approach optically magnifies
small-amplitude vibrations and has been used to demon-
strate long-distance audio capture [5, 40, 42]. But, as in

1The memory effect was used for motion tracking [22,47], ego-motion
[17], object tracking [30, 31], environment sensing [43, 44] and more.
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the passive case, high-frequency vibrations would require
expensive 2D high-speed cameras, whose available band-
width limits either the maximum sampling frequency or
the captured video’s spatial resolution. In response, some
works [5,20,40,41] use fast 1D sensors to capture high fre-
quencies, but they can only reconstruct vibrations along one
dimension.

We present a novel imaging system that exploits the
speed of a 1D sensor but still estimates 2D speckle-based
vibrations at high frequencies in a bandwidth-efficient man-
ner. We are inspired by many works [2, 4, 11, 23, 26, 29, 38]
that use a rolling-shutter sensor as a 1D sensor to achieve
imaging at high speeds. With this observation, we make
two important changes to conventional speckle-based vibra-
tion imaging. First, we add a cylindrical lens to spread the
speckle image to cover the entire vertical field of view of
the rolling-shutter sensor. This allows us to extend speckle-
based methods to sample multiple vibration locations si-
multaneously, using a low-speed camera, for the first time.

However, the captured speckle is distorted by the rolling
shutter with unknown shifts at each image row. This distor-
tion makes it hard to recover the 2D vibrations other than
in very specialized situations (specific object motion, tex-
ture, and camera viewpoint resulting in horizontal vibra-
tion) [12]. Thus, we propose using a second co-located
low-speed 2D global-shutter camera that serves two pur-
poses: tracking the appearance of the undistorted speckle
pattern at low frequencies and providing a reference for re-
covering the high-frequency 2D shifts of the rolling-shutter
sensor’s rows. We present an algorithm to recover the un-
known high-speed shifts. This algorithm provides both
the speckle pattern’s macro-motion or drift, along with the
high-frequency vibrations.

Our dual-shutter system can recover vibrations with a
range of amplitudes and frequencies (up to 63 kHz) us-
ing two ‘slow’ cameras (60 and 134 Hz).2 We evaluate
the system by (a) estimating the different known vibration
modes of a tuning fork and (b) recovering high-quality au-
dio by observing the membrane of a speaker. Since the sys-
tem can simultaneously capture multiple vibrating surfaces,
we demonstrate the separation of audio signals from mul-
tiple sources (e.g. musical instruments). The system can
also capture subtle, indirect vibrations of a surface react-
ing to a nearby sound source in better quality than passive
approaches. To measure speckle reliably with low-power
lasers, we attach retroreflective markers on the vibrating
surfaces. Our approach works without markers when the
vibrating surfaces are near and not dark. We believe our sys-
tem makes visual vibrometry of complex high-frequency vi-
brations more efficient and practical for many applications.

2Zhong et al. [46] use a similar rolling-global shutter pair to generate
ground truth frames for rectifying and deblurring rolling-shutter video.

(a) imaging defocused speckle

(b) dual-shutter imaging system schematic

Figure 2. (a) Schematic of standard defocused speckle imaging.
(b) Schematic of our dual-shutter system. We add a cylindrical
lens to spread the speckle into an image-plane column, which is
then relayed onto two cameras having rolling and global shutters.

2. Dual-shutter speckle image formation

A beam of coherent light from a laser creates a small spot
on the surface of a diffusive object. The illuminated spot is
imaged by a camera whose focus plane is located some dis-
tance away from the object surface (see Fig. 2(a)). At each
focus-plane point, the electric field is the sum of contribu-
tions from all the illuminated object surface points. The sur-
face’s microscopic “roughness” adds a nearly random phase
to each contributing surface point, yielding constructive or
destructive interference. This creates a random spatial in-
terference pattern called speckle, whose squared amplitude
at the focus plane is imaged by the camera.

It has been shown that small motions of the vibrat-
ing surface cause the speckle pattern to shift in the focus
plane [17,42]. In specific scenarios, these speckle shifts are
related to the tilts of the vibrating surface [42]. Hence, this
approach is called speckle-based vibrometry.

We make two changes to the standard speckle imaging
described above as is illustrated in Fig. 2(b). First, the
speckle focus-plane image is split using relay optics and im-
aged by two separate sensors having a rolling and a global
shutter, respectively. Second, a cylindrical lens is placed
in front of the primary objective lens. This lens spreads
the speckle pattern along the vertical direction, yielding a
‘speckle column’ that reaches all the rolling-shutter sensor
rows, while occupying only a fraction of the sensor’s im-
age columns (e.g. 150 pixels). Therefore, unlike defocusing
a ‘conventional’ spherical lens or using a bare sensor, our
optical design can sample multiple surface points at once.
Each point yields a separate speckle column that is sampled
using all rolling-shutter rows (see Fig. 1).

Suppose that the rolling- and global-shutter sensors have
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identical resolutions and exposures in the two sensor planes
(blue rectangles in Fig. 2(b)). Then, since both sensors
share the optical path, an identical image is formed on both
sensors. Let I(x, t) be the image intensity in both sensors,
where x ≡ (x, y) is the pixel coordinates and t is the im-
age trigger time. For brevity, our equations below use both
vector x, and the explicit row coordinates y of x. Note that
I(x, t) is a continuous function of time, yielding the image,
in [grayscale] units, that would form at trigger time t.

Let IGS(x, t), and IRS(x, t) denote the global- and
rolling-shutter video frames captured at time t, respectively.
In the global-shutter camera, all sensor pixels collect scene
light simultaneously during the exposure duration, hence:

IGS(x, t) = I(x, t). (1)

Hereafter, we refer to the global-shutter frames as the ref-
erence frames. In a rolling-shutter sensor, the individual
image rows are exposed one after another with a constant
delay D. Thus, the rolling-shutter frame at time t is:

IRS(x, t) = I(x, t+ yD). (2)

Eqs. (1) and (2) describe the spatio-temporal relationship
between the rolling-shutter and global-shutter videos:

IRS(x, t) = IGS(x, t+ yD), y ∈ {0, 1, ..,H − 1}, (3)

where H is the number of rows in the rolling-shutter frame.
Now suppose that both cameras simultaneously start

video capture at their individual frame rates. Let tgsk de-
note the time stamps of K global-shutter reference frames,
where k=0, 1, ..,K−1 is the frame index. Similarly, let trsn
denote the time stamps of N rolling-shutter frames, where
n=0, 1, .., N−1 is the frame index (see Fig. 3).

As discussed above, for small tilts and shifts of the il-
luminated surface, the imaged speckle pattern remains ap-
proximately constant, up to a 2D image-domain shift

u(t) ≡ (udx(t), udy(t)) , (4)

where udx(t) and udy(t) are the x- and y-axis speckle pat-
tern shifts in pixels, respectively. Without loss of generality,
we set u(tgs0 )=(0, 0). Thus, any two reference frames with
indices k1 and k2 are related by image translation:3

IGS(x, t
gs
k1
) = IGS

(
x+ u(tgsk1

)− u(tgsk2
), tgsk2

)
. (5)

Observe that the absolute shift u(tgsk ) of any individual ref-
erence frame can be recovered by integrating all the relative
image translations u(tgsk )− u(tgsk−1):

u(tgsk ) =

k∑
i=1

(
u(tgsi )− u(tgsi−1)

)
, ∀k > 0 (6)

3For scenes having multiple points, Eq. (5) holds for each point’s
speckle column individually.

trs0 trs1 trs2 trs3

trs0 + 3D

tgs0 tgs1 tgs2 tgs3 tgs4 tgs5 tgs6

Figure 3. Dual-shutter camera timing. Both cameras capture video
streams simultaneously. The rolling-shutter camera samples the
scene row by row with a high-frequency of 1/D, while the global-
shutter camera samples the entire scene at once.

Combining Eqs. (3)-(5) we get:

IRS(x, t
rs
n ) = IGS(x, t

rs
n + yD) =

= IGS (x+ u(trsn + yD)− u(tgsk ), tgsk ) . (7)

Let
δunk(y) ≡ u(trsn + yD)− u(tgsk ) (8)

denote the relative shift of every rolling-shutter row y in
IRS(x, t

rs
n ) with respect to the same row in IGS(x, t

gs
k ). In

Eq. (8) the term u(tgsk ) is constant since all global-shutter
frame rows are shifted together at time tgsk . Rearranging
Eq. (8) yields a formula for the speckle image shifts starting
at time trsn and ending at time trsn +HD:

u(trsn + yD) = δunk(y) + u(tgsk ). (9)

Eq. (9) yields an important observation: given any pair of
rolling- and global-shutter frames, we can compute H sam-
ples of the global speckle shifts with a fine temporal reso-
lution of D. All we require to recover the samples using
Eq. (9) are two pieces of information: the shift u(tgsk ), and
δunk(y). The shift u(tgsk ) can be computed using Eq. (6).
In the next section, we discuss how to compute δunk(y).

3. Recovering the 2D speckle translation
In this section, we discuss how to recover speckle shifts

u(t) using Eq. (9). Eq. (9) suggests that a single rolling-
shutter frame, having index n, can yield H temporal mea-
surements of u(t) at a sampling rate of 1/D. Therefore,
given no delay between two consecutive rolling-shutter
frames, capturing N consecutive frames yields a recording
of NHD seconds duration.

Recovering u(trsn + yD) requires selecting an appropri-
ate reference frame k. Note that in principle, any reference
frame k should suffice. However, object macro motion may
yield little to no spatial overlap between the speckle pat-
terns of IRS(x, t

rs
n ) and IGS(x, t

gs
k ), causing the estimation

of δunk(y) to fail. Therefore, one must select a reference
frame whose timestamp tgsk is close to trsn .
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First, IRS and IGS are cropped to the speckle column be-
longing to the object point we wish to recover (see Fig. 4(a)
and (b)). Let ĪRS(x, t

rs
n ) and ĪGS(x, t

gs
k ) denote the result-

ing cropped videos. For brevity, let ûnk(y) denote the re-
covered shifts resulting from using reference frame k:

ûnk(y) ≡ δûnk(y) + û(tgsk ). (10)

We use phase correlation to compute the shifts between ev-
ery pair of consecutive reference frames ĪGS(x, t

gs
k ), and

use Eq. (6) to yield û(tgsk ) ∀k [14].
Borrowing notation from [28], let V={vm}M−1

m=0 denote
a discrete set of M possible 2D row shifts, having some
sub-pixel resolution and maximum span.4 Define the set
of all row shifts for frame n as U = {δunk(y)}∀y , where
δunk(y)∈V . Then we recover U by minimizing the loss:

E(U)=
∑
y

[1−Sy (δunk(y))]+λ
∑
y,y′

Vy,y′(δunk(y), δunk(y
′)),

(11)
where, the data term Sy(δunk(y)) ≤ 1 quantifies the

similarity of row y in ĪRS to all M possible shifts of
row y in ĪGS. The term Vy,y′(δunk(y), δunk(y

′)) en-
forces smoothness by providing a penalty when neighbor-
ing rows y, y′ have differing shifts [7]. We set Vy,y′ =
∥δunk(y)− δunk(y

′)∥22. We compute Sy(vm) using the
zero-normalized cross-correlation operator ZNCC(., .) [8]:

Sy(vm) = ZNCC
(
ĪRS(x, t

rs
n ), ĪGS(x+ vm, tgsk )

)
. (12)

Finally Û is recovered using

Û = argmin
U

(E(U)) . (13)

But solving Eqs. (11)-(13) directly for large M is com-
putationally expensive, as it requires computing correla-
tions with a large ‘dictionary’ of possible shifts. Thus, we
additionally implement and use an efficient coarse-to-fine
approach for solving Eq. (13) which computes correlations
in the Fourier domain (see supplementary for details).

3.1. Merging multiple reference frames

In the above description, shift recovery for frame n re-
lied on a single reference frame. However, as illustrated in
Fig. 5, due to large amplitude vibrations or large object mo-
tions, a single reference may not be enough to recover the
relative translations for all H rows, yielding partial recovery
of u(trsn + yD). Therefore, we use P ≥ 1 reference frames
to estimate û(trsn + yD), as described below.

Let Rn = {k0, k1, .., kP−1} denote the set of indices of
reference frames chosen to recover frame n. For scenes
having large low-frequency motions (e.g. hand-held instru-
ments), Rn consists of the P temporally closest frames to

4For example, choosing a 0.1 pixel resolution with a ±40 span yields
the set V={(−40,−40), (−40,−39.9), (−39.9,−40), .., (40, 40)}.

(a) input rolling-shutter distorted speckle column

(b) global-shutter reference (representative) frame

(c) recovered row shifts in both x and y axes

Figure 4. 2D speckle motion recovery. (a) Cropped rolling-shutter
speckle column belonging to a single scene point, rotated by 90
degrees. (b) Single global-shutter reference frame, captured at a
time instance closest to the frame in (a). (c) Recovered 2D shifts
of each row in (a) using 15 reference frames (including frame (b)).

trsn . For mostly static scenes, we construct Rn using frames
close to trsn , that ‘cover’ the largest 2D speckle domain; see
supplementary for details. First, shifts ûnk(y) are computed
for every reference frame k ∈ Rn. Then, the shifts from all
reference frames are merged using a weighted average:

û(trsn + yD) =
∑

k∈Rn

Wnk(y)ûnk(y). (14)

Each reference frame’s per-row weights Wnk(y) are com-
puted using the similarity measures of the recovered shifts:

Ŝnk(y) ≡ Sk
y (ûnk(y)), (15)

where we added the superscript k to Sy to denote the simi-
larity function computed for reference frame k. We set:

Wnk(y) = exp
(
γŜnk(y)

)
/

∑
k∈Rn

exp
(
γŜnk(y)

)
, (16)

where we set γ=50. Eqs. (14) - (16) ensure that each row
takes its recovered shift from the reference frames that ex-
hibited good similarity. When most reference frames con-
tribute good recoveries, Eq. (14) has the additional benefit
of reducing the noise of the recovered signal by averaging.

4. Prototype and implementation details
Fig. 6 shows our prototype. The system consists of a

rolling- and a global-shutter camera which image the same
scene through a set of relay, objective and cylindrical lenses.
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(a) speckle recovery illustration

(b) individual recoveries

(c) merged recovery

Figure 5. Using multiple reference frames for recovery. (a) In
this illustration, the speckle pattern’s 2D image motion follows
the white arrow. During this motion, our system captures three
global-shutter frames (dashed rectangles) and a single rolling-
shutter frame (green rectangles are individual rows). None of the
reference frames contains overlap with all the rows of the rolling-
shutter frame, and therefore no single frame can be used to re-
cover the shifts for all rows. (b) Shows the x-axis shift recov-
ered separately using each of the reference frames. Observe that
rolling-shutter rows that contain little-to-no overlap with the refer-
ence frames yield noisy recoveries. (c) Our method merges well-
recovered signal portions from the multiple recoveries.

The scene is illuminated by a 532nm 4.5mW laser in a coax-
ial configuration using a beam-splitter seen in the left of
Fig. 6. The utilized laser has relatively low power – that of
standard laser pointers widely used in classrooms. There-
fore, unless stated otherwise, we boost the signal in all ex-
periments by attaching a small patch of retro-reflective tape
on the surfaces we seek to measure. To capture multiple
points, we spread the laser into dots by placing a diffrac-
tion grating in the cage between the laser and beam-splitter.
Please see the supplementary material for a full parts list.

In Section 2, we assumed that both cameras have iden-
tical resolutions and are optically aligned. In practice, the
captured images differ due to both geometric (e.g. homog-
raphy, horizontal flip) and radiometric distortions. In fact,
both cameras need not have the same sensor resolution. In
our prototype, the rolling- and global-shutter images have
resolutions of 1280x944 and 2056x1542, operating at 64.7
FPS and 134 FPS, respectively. Therefore, we need to ac-
curately calibrate the mapping between both sensors.

Calibration includes capturing a static speckle scene, de-
tecting and matching feature points in both frames, and
computing the parameters of the desired mapping model.
We used a 3rd-degree smooth bi-variate spline interpolation
to compute the mapping. The mapping was computed lo-
cally per each cropped laser-point speckle column. Please
see the supplementary material for more details.

We set an 18us exposure time in both cameras (unless
stated differently). We reduce the rolling-shutter camera’s
region-of-interest (ROI) by 40 pixels on the top and bottom
of the frame so that the horizontal field-of-view of the refer-
ence camera is slightly larger than that of the rolling-shutter

Figure 6. Dual-shutter camera prototype.

one. This prevents the first and last rows from shifting out-
side the field of view captured by the reference camera. Fi-
nally, we set hyperparameters P =15 reference frames and
λ = (1000,100) for the coarse and fine levels in Eq. (11),
which yields a run time of 6 sec per frame.

5. Experimental evaluation
We demonstrate our method by capturing and replaying

vibration caused by audio sources (e.g. speakers, human
voice), analyzing the vibrational modes of a tuning fork, and
capturing the vibrations of musical instruments. For refer-
ence, we use a high-fidelity microphone to simultaneously
record the resulting sound in most experiments. Please ex-
amine supplementary material to hear the recordings [1].

5.1. Capturing audio signals

In Fig. 7 we point the camera at the membranes of two
speakers. First, (Fig. 7 top row), we record one speaker
playing a series of tones using a single un-split laser point.
Examining the microphone and our system’s recording, one
might notice that the microphone could not ‘pick up’ the
low frequencies (65Hz and 33Hz). This is because a typ-
ical microphones’ frequency response is less sensitive at
the lower frequencies [19]. Fig. 7(d) shows the Lissajous
curves for three of the eight played tones. Observe that the
speaker membrane vibrates differently between the three
tones, suggesting that the three frequencies create different
membrane vibration modes. In the bottom row of Fig. 7,
we split the laser using a diffraction grating and measure
a point on both speaker membranes simultaneously. Here,
the left and right speakers are playing reversed chirp signals
(up-chirp and down-chirp). While the microphone records a
mixed signal (Fig. 7(g)), our system measures each speaker
separately, yielding unmixed recordings (Fig. 7(h-i)).

In Fig. 8(a) we recreate an experiment similar to Davis
et al. [13]. We point the system at a chips bag (with a retro-
reflective patch) and play the audio file used by Davis et
al. Despite the different setups, which makes a direct and
fair comparison difficult, it is evident both auditorily and
from the spectrograms that our system recovered the orig-
inal audio with higher fidelity. The intelligibility [33] and
PESQ [24] scores were [0.44, 0.73] and [1.06, 1.14], re-
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experimental setup (a) tones input (b) microphone (tones) (c) recovered tones (d) Lissajous curves

(e) input chirp left (f) input chirp left (g) microphone (chirps) (h) recovered left (i) recovered right

Figure 7. Speaker membrane experiments. Top row: A single speaker is playing eight octaves of the note C (C1 to C8). The speaker’s
vibrations are simultaneously recorded using our system (using a single laser point) and a microphone. (a) A spectrogram of the input
signal sent to the speaker. (b) Microphone spectrogram. (c) A spectrogram of the x-axis speckle shifts recovered by our system. Observe
the difference in frequency response between (b) and (c): namely, the microphone is tuned for high-frequency sensitivity, while our system
has a mostly flat response. (d) Lissajous curves of three different notes show that the speaker membrane has different physical vibrations
at different frequencies. Bottom row: (e-f) The left and right speakers are playing down-chirp and up-chirp signals, respectively. (g) The
microphone records a mixture of both speaker signals and is unable to tell them apart. (h-i) Our system records each speaker separately
(x-axis shifts shown here) and thus is able replay each channel individually.

spectively, where ours is the second score (higher is better).
In Fig. 8(b), we compare to a 1D speckle sensing system

using the method of Wu et al. [40] for signal recovery. The
1D system consists of a high-end line sensor [34], mounted
with the same laser and objective lens used in our proto-
type.5 Using both systems, we simultaneously capture a
speaker mounted on a rotating stage and playing a 523Hz
tone. The played tone’s Lissajous curve (green curve in
Fig. 7(d)) suggests that the speckle motion is predominantly
along a single direction. Thus, rotating the speaker allows
us to test the robustness of signal recovery with respect to
different speckle shifts directions.

Fig. 8(b) shows that 1D speckle sensing performance
strongly depends on the direction of the 2D speckle shifts.
Fig. 8(b)’s left subplot shows that 1D sensing works
well when the speckle motion is mostly aligned with the
line sensor’s direction (x-axis). However, when a non-
negligible y-axis motion component exists, the recovery
breaks (Fig. 8(b) middle plot). Conversely, for the same
speaker orientation, our method recovers motion in both
axes correctly (Fig. 8(b) right plot).

5.2. Remote recording of musical instruments

We use our system to record musical instruments re-
motely. In Fig. 9(top), we record a violin played by a musi-
cian. We recover the speckle pattern’s macro-motion span-
ning thousands of pixels and the audio vibrations spanning
only several pixels. Note that our approach could handle the
natural motions of the instrument as it is being played.

5Note that the sensor sizes and effective focal lengths of the objective
lenses are different between the systems.

In Fig. 9(bottom), we record two musicians simulta-
neously playing different scales on acoustic guitars. The
laser beam is split to illuminate both guitars. The micro-
phone records both guitars yielding an unpleasant dissonant
recording, while our system records each guitar separately.

5.3. Analyzing vibrational modes of a tuning fork

We analyzed the vibrational modes of a 426Hz tuning
fork. As shown in Fig. 10, we strike the fork with a mallet
and measure its 2D vibrations at three points placed along
the fork’s arm. The generated vibrational modes depend on
the strike’s strength, striking position along the fork, mallet
tip material, and how the fork is held [32]. While a micro-
phone can detect various acoustic frequencies produced by
the various modes, it does not provide any information on
the modes’ type of motion. Conversely, by plotting the si-
multaneous vibration of multiple points, we can determine
the kind of motion generating the mode. The measured fre-
quencies are verified using a microphone (Fig. 10(d)).

In Fig. 10(a), the fork is struck near its head (near point
2) with a rubber-tipped mallet, mainly exciting its ’funda-
mental’ mode. The fork arm’s motion can be observed by
the vibration along the x-axis, whose amplitude increases
from point 0 to point 2. Striking the fork with a metal bar
(Fig. 10(b)), additionally induces the ’clang’ mode, which
is about 6.26× higher than the fundamental [25]. The clang
mode vibrations are visible in the x-axis as a high-frequency
modulating the fundamental mode. The clang mode induces
an opposite phase between points 0 and 2 since these sur-
face points tilt in opposite directions, while point 1 is ap-
proximately stationary. Hitting the fork harder (Fig. 10(c))
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input signal Davis et. al. [13] our

(a) chips bag speech experiment

(b) rotating speaker experiment

Wu et al. [41] Wu et al. [41] our

Figure 8. Comparisons with related methods. (a) We attempt to reproduce the chips bag experiment of Davis et al. [13]. We vibrate a chips
bag using a nearby speaker and recover the speaker’s input audio. A small retro-reflective marker is attached to the chips bag for better laser
reflectivity. We play the “Marry had a little lamb...” audio file used by Davis et al., and compare the resulting spectrograms between our
method and the recovered audio obtained by Davis et al. Observe that our method recovers the audio with significantly improved fidelity
(see supplementary material for audio comparison). Note that Davis et al. used a high-speed camera with a zoom lens and illuminated
the chips bag with a strong light source. In comparison, we use a low-power laser, a marker and our low-speed dual-shutter system. (b)
Comparison to 1D speckle sensing for a speaker tone [41]. Left: 1D sensing works well for x-axis only motion. Middle: But, for shifts
having a non-negligible y-axis component, the reconstruction breaks. Right: We recover shifts in 2D, yielding correct waveforms.

experiment setup
microphone recovered y-axis shifts

microphone first guitar recovery second guitar recovery

Figure 9. Capturing vibrations of instruments. Top row: We point the system at a musician playing a violin. The chromagrams of the
microphone recording and the recovered audio are shown. The recovered audio is taken as the y-axis shifts for all experiments. The
right-most plot shows the recovered y-axis shifts, wherein the instruments’ musical vibrations are tiny compared to the instruments’ global
motion. Bottom row: Here, we record two musicians playing two guitars simultaneously. The microphone records a mixture of both
instruments, while our system records each instrument separately and is unaffected by the other instruments’ sound.

yields an additional high-frequency in-plane mode as seen
in point 1’s x-axis vibrations. The sensing point positions
shown in Fig. 10(top) allow the measuring of the fork’s in-
plane vibrations. Out-of-plane vibrations can be analyzed
by measuring the fork’s arm from above.

5.4. Sensitivity study

We examined our system’s sensitivity to tilts and
transversal motion by shining a laser spot at an optomechan-
ical stage, capable of precision tilts and transversal shifts.
We measured a linear relationship between small tilts and
transversal motions to the shifts of the imaged speckle pat-
tern. The measured sensitivity to tilts was 950 and 1475

pixels/degree for the x- and y-axis, respectively, while the
sensitively to the transversal motion was 43 and 61 pix-
els/mm for the x- and y-axis, respectively. The 1.5× factor
difference in sensitivity between the axes stems from the
higher optical magnification resulting from the cylindrical
lens. See supplementary for plots.

6. Limitations and societal impact
Light efficiency. The performance of our method depends
on the amount of light reflected from each surface point.
Our prototype used a low-power laser and we enhanced
light efficiency using retro-reflective tape. The supplemen-
tary material shows additional experiments that test our sys-
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(a) 2D vibrations of fork activated using a rubber tip

(b) activation using a metal tip (x-axis only)

(c) activation using a metal tip (harder) (d) microphone

clang mode
2585Hz

fundamental
426Hzexperimental setup

Figure 10. Analyzing the vibrational modes of a tuning fork. A 426Hz fork’s vibrations are recorded using three laser points as shown
in the top-left image. Each sub-figure shows a representative sample of x- and y-axis motions along with spectrograms of each axis. (a)
Striking the fork with a rubber-tipped mallet mainly excites the fundamental mode, seen in the x-axis as in-phase vibrations of all three
points. (b) Striking the fork with a metal rod additionally excites the clang mode. (c) An even stronger strike excites an additional higher
in-plane vibration mode. (d) Spectrogram of the microphone, which measures a sum of all mode frequencies.

tem without the retro-reflective markers. A higher-power
laser [5, 42] can make the tape unnecessary, however, eye
safety issues may arise for applications involving humans.
Dense vs. sparse. Our method trades off spatial resolution
for temporal resolution by sampling each time measurement
using a single sensor row instead of the full sensor. While
this makes our method more bandwidth efficient, a disad-
vantage is the inability to recover dense motion fields [13].
Number of simultaneous measurements: As seen in
Fig. 1, each measured point occupies a horizontal frac-
tion of the sensor plane. Thus, the number of simultane-
ous points is limited by the sensor’s width. As analyzed in
the supplementary material, narrowing the speckle column
per point (e.g. by changing the camera focus) increases the
number of possible points. But, as the columns get nar-
rower, the number of pixels per-point per-row decreases,
potentially reducing correlation accuracy. Moreover, the
vertical speckle makes some sensing arrangements infea-
sible (e.g. two points on the same image column).
Handling object macro-motions: We demonstrated two
types of applications: recording audio (e.g. guitar, chips
bag, speaker) and sensing vibrational modes (tuning fork).
For the first type, our system is robust to macro motions as
long as at least one laser point hits the vibrating surface. For
example, for a typical guitar, one laser point allows a lateral
movement range of about 13cm (half its narrowest dimen-
sion). The second type requires sensing particular points of
interest, and here, object motion is unsupported by our pro-
totype. Future methods could use a galvo-mirror to track
and maintain the laser spot on the particular object point.
Our method also assumes that the reference camera is fast
enough to capture the speckle’s macro-motion. But fast and

large object motions may yield no speckle overlay between
consecutive reference frames, degrading performance.
Rolling-shutter dead-time: Rolling-shutter sensors typi-
cally exhibit a slight delay between the last row of a frame
and the first row of the subsequent frame. This ‘dead-time’
has an insignificant effect when sensing low-frequency vi-
brations but may introduce noise at higher frequencies with
wavelength comparable to the dead-time’s duration (0.5ms
in our camera). Using our method with a line-sensor instead
of a rolling-shutter can prevent the dead-time [5, 27].
Societal impact: Optically detecting vibrations can be use-
ful in many scientific and engineering fields but could po-
tentially create privacy concerns. For example, laser micro-
phones were used to eavesdrop on distant conversations.

7. Conclusion

We present a new bandwidth-efficient approach for
high-speed visual vibration sensing using two low-speed
cameras. Our system can handle non-static objects and
sense multiple simultaneous points (e.g., multiple musical
instruments). Future works may improve signal quality
using learning-based signal recovery that imposes learned
priors on speech and music signals. We envision possible
future applications like remotely and individually recording
all instruments of an orchestra or monitoring many factory-
floor machinery using just a single static camera.
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