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Abstract

Federated learning (FL) is a distributed learning
paradigm that enables multiple clients to collaboratively
learn a shared global model. Despite the recent progress,
it remains challenging to deal with heterogeneous data
clients, as the discrepant data distributions usually pre-
vent the global model from delivering good generalization
ability on each participating client. In this paper, we pro-
pose CD2-pFed, a novel Cyclic Distillation-guided Channel
Decoupling framework, to personalize the global model in
FL, under various settings of data heterogeneity. Differ-
ent from previous works which establish layer-wise per-
sonalization to overcome the non-IID data across different
clients, we make the first attempt at channel-wise assign-
ment for model personalization, referred to as channel de-
coupling. To further facilitate the collaboration between
private and shared weights, we propose a novel cyclic dis-
tillation scheme to impose a consistent regularization be-
tween the local and global model representations during the
federation. Guided by the cyclical distillation, our chan-
nel decoupling framework can deliver more accurate and
generalized results for different kinds of heterogeneity, such
as feature skew, label distribution skew, and concept shift.
Comprehensive experiments on four benchmarks, including
natural image and medical image analysis tasks, demon-
strate the consistent effectiveness of our method on both lo-
cal and external validations.

1. Introduction
Deep learning techniques have received notable attention

in various vision tasks, such as image classification [7], ob-
ject detection [31], and semantic segmentation [25]. Yet,
the success of deep neural networks heavily relies on a
tremendous volume of valuable training images. One possi-
ble solution is to collaboratively curate numerous data sam-
ples from different parties (e.g., different mobile devices
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Figure 1. Illustration of different parameter decoupling manners
for model personalization in Federated Learning. The previous
approaches combine local and global parameters in a layer-wise
mechanism, including LG-Fed [22] in low-level input layers (a)
and FedPer [2] in high-level output layers (b). Instead, we achieve
model personalization via channel-wise decoupling (c).

and companies). However, collecting distributed data into a
centralized storage facility is costly and time-consuming.
Additionally, in real practice, decentralized image data
should not be directly shared, due to privacy concerns or
legal restrictions [1, 39]. In this case, conventional central-
ized machine learning frameworks fail to satisfy the data
privacy protection constraint.

Therefore, the data-private distributed training
paradigms, especially Federated Learning (FL), have
received an increasing popularity [3–5,19,24,28,36,47,50].
To be more specific, in FL, a shared model is globally
trained with an orchestration of local updates within data
stored at each client. A pioneering FL algorithm named
Federated Average (FedAVG), aggregates parameters at the
central server by communication across clients once per
global epoch, without explicit data sharing [28]. Compared
with local training, the federation on a larger scale of
training data has demonstrated its superiority to boost the
generalization ability on unseen data, with the orchestration
of distributed private data [6, 28].
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However, data heterogeneity is one of the most funda-
mental challenges faced by FL. The concept of independent
and identically distributed (IID) is clear, while data can be
non-IID in many ways, e.g., feature skew, label distribution
skew, or concept shift [11]. Previously, sharp performance
degradation was observed on FedAVG with unbalanced and
non-IID data. This ill-effect is attributed to the weight di-
vergence, which can be quantified by the earth mover’s dis-
tance between distributions over classes [49]. Although
each client can train a private model locally by optimizing
the objective with no information change among each other,
it would inevitably result in overfitting and a poor general-
ization ability on new samples. As suggested in [28], simply
sharing a small subset of data globally greatly enhances the
generalization of FedAVG. However, this scheme cannot be
directly applied to real-world tasks due to the violation of
privacy concerns.

Consequently, researchers have sought to train a collec-
tion of models that is stylized for each local distribution to
enable stronger performance for each participating client
without requiring any data sharing [49], which is known
as personalized federated learning PFL [37]. Various ap-
proaches have been proposed to accomplish the model per-
sonalization in FL [6, 10, 35, 37]. Among these different
paradigms, one popular solution is to directly assign person-
alized parameters for each local client. For this line of meth-
ods, the private personalized parameters are trained locally
and not shared with the central server. Existing works have
made attempts to achieve personalization by assigning per-
sonalized parameters in either top layers [2] or bottom lay-
ers [22]. However, these approaches usually require prior
knowledge for the determination of which layers to be per-
sonalized. More critically, we observe performance degra-
dation that existing PFL approaches fail to achieve a con-
sistent generalization over comprehensive settings of data
heterogeneity [29]. Additionally, existing layer-wise per-
sonalization approaches cannot effectively handle the dis-
crepancy between the learned local and global model rep-
resentations due to the weight divergence [49]. The infe-
rior performance of some local clients motivates us to seek
a more generic yet efficient combination between the local
and global information.

In light of these challenges, we propose CD2-pFed,
a novel Cyclic Distillation-guided Channel Decoupling
framework for model personalization in FL. As shown in
Figure 1, different from previous layer-wise personalization
approaches, e.g., FedPer [2] and LG-Fed [22], the proposed
novel channel decoupling paradigm dynamically decouples
the parameters at the channel dimension for personalization
instead. By employing learnable personalized weights at
all layers, our channel decoupling paradigm no longer re-
quires heuristics for designing specific personalization lay-
ers. More importantly, our method achieves model per-

sonalization for both low-level and high-level layers, which
facilitates tackling feature heterogeneity, distribution skew,
and concept shift.

To bridge the semantic gap between the learned visual
representation from the decoupled channels, we further pro-
pose a novel cyclic distillation scheme by mutually distill-
ing the local and global model representation (i.e., soft pre-
dictions by the private and shared weights) from each other.
Benefiting from the distilled knowledge, our channel decou-
pling framework enables synergistic information exchange
between the global and local model training, therefore pre-
venting biased local model training on non-IID data. Ex-
tensive experimental results on both heterogeneous data and
exterior unseen samples [22] demonstrate that our method
largely improves the generalization of FedAVG with negli-
gible additional computation overhead. Below, we summa-
rize the major contributions of this work.

• We propose a novel channel decoupling paradigm to
decouple the global model at the channel dimension
for personalization. Instead of using personalization
layers for tackling either feature or label distribution
skew, our approach provides a unified solution to ad-
dress a broad range of data heterogeneity.

• To further enhance the collaboration between private
and shared weights in channel decoupling, we design
a novel cyclic distillation scheme to narrow the diver-
gence between them.

• We compare our method with previous state-of-the-art
PFL approaches on four benchmark datasets, including
synthesized and real-world image classification tasks,
with different kinds of heterogeneity. Results demon-
strate the superiority of our method over state-of-the-
art PFL approaches.

2. Related Work
2.1. Data Heterogeneity

Federated Averaging (FedAVG) is a prevailing federated
learning algorithm to train a global model with distributed
data [28]. Under the assumption of unbalanced and IID (in-
dependent and identically distributed) characteristics, Fe-
dAvg has achieved notable empirical success on its robust-
ness and performance. However, facing the variety and di-
versity of real-world data, the condition of non-IID is unre-
alistic to be ensured. Instead, statistical data heterogeneity
is a more general case, where the data distribution of local
clients deviates significantly from the global distribution. It
results in sharp performance degradation, e.g., up to 11.0%
for MNIST and 51.0% for CIFAR-10 [49], where the com-
mon predictor does not generalize well on local data. One
of the most fundamental challenges in training a robust FL
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Figure 2. A schematic illustration of our proposed CD2-pFed framework for model personalization in federated learning. We use the blue
and green to mark out personalized channels and features, which reside locally; and the orange for global representations.

is the presence of non-IID data. Concretely, the underlying
distribution for arbitrary paired clients is very likely to differ
from each other. There are various formulations on the ex-
istence of non-IID, including the feature distribution skew,
label distribution skew, and the concept shift [11]. To tackle
the data heterogeneity, Li et al. proposed an optimization
scheme, namely FedProx, to re-parametrize FedAvg with
variable amounts of work to be performed locally across
devices [20]. FedBN employs local batch normalization to
alleviate the feature distribution skew before the model ag-
gregation [21].

2.2. Personalized Federated Learning

Three major challenges that restrict the generalization
ability of federated global model on local data are 1) device
heterogeneity, 2) data heterogeneity due to the non-IID dis-
tribution, 3) model heterogeneity to adapt to local environ-
ment [40]. Among those, data-IID is the most practical is-
sue. Yet, the privacy protection mechanisms in conventional
FL conflict with achieving higher performance for each in-
dividual user [44]. Subsequently, Personalized Federated
Learning (PFL) has received numerous attentions from re-
searchers to cope with the above three challenges. In PFL,
the global model is personalized for each local client and
plays an intermediate paradigm between pure local training
and FL [27]. Leveraging a personalized model per client,
PFL can integrate the client’s own dataset and orchestration
of data from other clients into the training process.

There are various techniques to adapt the global model
for personalization [15], including transfer learning [33],

multi-task learning [35], meta-learning [10], knowledge
distillation [45], and network decoupling [2,22]. We mainly
focus on the network decoupling methods, where the global
network is decoupled into personalized layers which reside
locally, and global layers. For example, FedPer splits a neu-
ral network architecture into base layers, which are trained
centrally by FedAvg, and the top personalized layers [2],
which are trained separately with the personalized layers.
Very similarly to FedPer, LG-Fed personalizes the bottom
layer, while keeping the top layers shared across all in-
volved clients [22]. FedPer shows its superiority with an
observable labeling skew such as on FLICKR-AES [30],
while LG-Fed with data skews such as CIFAR non-IID split.
However, both skews exist in real-world tasks. Therefore,
in this work, we attempt to bridge the gap between top lay-
ers personalization and bottom layers personalization with
a unified channel decoupling scheme.

2.3. Knowledge Distillation

The key idea of knowledge distillation (KD) is to trans-
fer the dark knowledge from a pre-trained teacher model
to a lightweight student network by learning its soft predic-
tions, intermediate features or attention maps [9,29,42]. KD
has broad applications in machine learning and computer
visions fields, including transfer learning, semi-supervised
learning, reinforcement learning [13,32,38,41,48]. KD has
also achieved remarkable performance as a regularization
scheme. For example, Yun et al. [46] distilled predictive
distribution between samples of the same label to mitigate
overconfident predictions and reduce intra-class variations
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Figure 3. Illustration of Channel Decoupling with progressive
model personalization.

in an image classification task.In FL scenarios, an ensem-
ble distillation scheme was proposed to replace the aggre-
gation for model fusion [23]. Besides, Li et al. [18] adopted
knowledge distillation to personalize the global model by
translating knowledge between participants.

3. Methodology

3.1. Problem Formulation

We consider a set of K clients, which are all connected
to a central server. Moreover, each client only has access
to its local data, denoted as Di, with no data sharing be-
tween clients. In a data heterogeneous setting, the underly-
ing distribution of Di, denoted as Pi are not identical, i.e.,
Pi ̸= Pj . Specifically, there are three common categories to
depict the non-IID characteristic in FL [11]: 1) feature dis-
tribution skew (covariate shift), i.e., Pi(x) ̸= Pj(x); 2) la-
bel distribution skew (prior probability shift), i.e., Pi(y) ̸=
Pj(y); and 3) same label but different features (concept
drift), i.e., Pi(x|y) ̸= Pj(x|y).

The goal of our work is to train a collection of K mod-
els to adapt to the local dataset without exchanging their
local data with other parties. The network at the i-th client
(i ∈ {1, · · · ,K}) is composed of private personalized pa-
rameters wi, and global shared parameters w0. More for-
mally, we formulate the loss function corresponding to the
i-th client as Fi : Rd → R, and then the overall objective in
personalized federated learning is defined as follows,

min
{wi}K

i=0

F (w0, w1, · · · , wK) =

K∑
i=1

αi · Fi(w0, wK). (1)

The balancing weight αi depends on the scale of the private
dataset, i.e., αi = |Di|∑

j |Dj | . In this scenario, we consider
supervised learning, leading to

Fi(w0, wi) = E(xj ,yj)∼Pi
[li(xj , yj ;w0, wi)] , (2)

where li measures the sample-wise loss between the pre-
diction of the network parameterized by (w0, wi) and the
ground truth label yj when given the input image xi.

3.2. Channel Decoupling for Model Personalization

As shown in Figure 2, we propose a vertically channel-
wise decoupling framework to personalize the global model
for non-IID federated learning. Concretely, we assign an
adaptive proportion of learnable personalized weights at
each layer from the target model, from top to bottom. In
this fashion, our framework is intended to achieve higher
personalization capacity for both simple and complex pat-
terns (e.g., image and label-level personalization). We de-
fine a uniform personalization partition rate p ∈ [0, 1] to de-
termine the precise proportion of the personalized channels
in each layer. It follows that these p proportion of channel
parameters are trained locally, without the aggregation by
the central server. Subsequently, these private weights vary
from each other, written as wi where the subscript is associ-
ated with its client ID. The remaining (1− p) percentage of
the shared weights, denoted as w0, are trained with common
FL algorithms, such as FedAvg [28].

A larger value in p represents a higher degree of per-
sonalization. Therefore, the case when p = 0 degenerates
into the conventional FedAvg [28] with no model personal-
ization, and conversely p = 1 denotes a full local training
procedure in an absence of the federated communications.
One significant benefit from our vertical decoupling strat-
egy, compared with horizontally layer-wise personalization
ones, such as LG-Fed [22] and Fed-Per [2], is to enable a
model personalization from lower to topper layers, result-
ing in a potential to a more general framework for weights
personalization, as well as improving its capacity to address
a broader range of data heterogeneity, such as both feature
and label distribution heterogeneity.

Progressive model personalization. One key element in
our proposed channel decoupling scheme is the determi-
nation of the personalized ratio p in each layer. As afore-
mentioned, the personalized ratio p controls the volume of
private weights to learn the local representation, which de-
termines the capacity to learn a good representation on the
heterogeneous data. We are motivated to provide a bet-
ter initialization for the personalization from the globally
learned representation. Thus, as shown in Figure 3, instead
of a fixed p, the model capability to learn local personalized
features is taken into account by a progressive increment
scheme. That is, in the initial stage, we set p to a small value
to facilitate learning global representation for faster conver-
gence, and afterwards gradually increase its value. Conse-
quently, we increase the value of p progressively depending
on the global epoch number T . Similar to the learning rate
schedule, a variety of schemes exist for the increment, such
as cyclical learning rate [34], cosine annealing [26]. For
simplicity, here we apply the linear growth scheme, i.e.,

pt = p · t

T
, (3)
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where T is the total global epoch number, t is the current
epoch number, and p is the maximum personalization ratio.

3.3. Cyclic Distillation

The backbone neural network is decoupled into person-
alized weights wi and shared weights w0 respectively, and
afterwards trained simultaneously by optimizing the local
supervised loss in Eq. (2). However, as the local personal-
ized and global parameters are learned with different distri-
bution data, the statics of these parameters suffer from di-
vergence and subsequently lead to the performance degra-
dation [49]. Additionally, explicit consistency regulariza-
tion between two parts is absent, during the optimization of
local supervised objectives in most previous works. To cope
with this issue, we make the first attempt at introducing self
distillation into PFL to improve the client-side weights in-
ner communications between the private and shared model
weights and thus reduce the gap between the learned rep-
resentations from local and global weights. Motivated by
inplace distillation [43], the key idea in the proposed Cyclic
Distillation is to impose a consistency regularization be-
tween wi and w0 in the local training procedure, as depicted
in Figure 2.

We write the subnet parameterized by wi, w0 as gwi
, gw0

,
and the network composed of (wi, w0) as gwi,w0

. Notably,
gwi intends to learn personalized local representation from
Di, whereas gw0 to learn global general representation. For
each input sample xi, we collect the predictions ỹi, ỹLi , ỹGi
from gwi,w0

, gwi
, gw0

, respectively. The overall prediction
ỹi minimizes the cross entropy loss LCE with ground truth
yi. The cyclic distillation loss is defined as:

LCD =
1

2

(
KL(ỹLi , ỹ

G
i ) +KL(ỹGi , ỹ

L
i )

)
, (4)

where KL(·, ·) denotes the Kullback-Leibler (KL) diver-
gence. It can impose an consistency regularization between
wi and w0, guiding the predictions from wi and w0 to align
with each other. Consequently, the overall loss function is

L = LCE + λ · LCD, (5)

with the balancing coefficient λ set to 1 in this work.

Temporal average moving for personalized weights. To
stabilize the training performance, we utilize an exponen-
tial moving average (EMA) scheme for the local weights
update in personalized channel wi for a more smoothing
training dynamics. We use the superscript l to mark the cor-
responded local epoch number, then the EMA update of wi

at t is
wl

i = βtw
′l
i + (1− βt)w

l−1
i , (6)

where w′l
i is the raw update from Eq. (5). The smoothing

coefficient βt depends on the current global epoch number

Algorithm 1 Local training with CD2-pFed at client i.

Input: local epoch number ηi
Output: wt

0

1: Download wt−1
0 from Central Server

2: Update Personalized Ratio p
3: for do l = 1, 2, · · · , ηi
4: Sample of Batch of Data from Di

5: Forward and Compute Cross Entropy Loss LCE

6: Compute Cyclic Distillation Loss LCD in Eq. (4)
7: Update the Weights
8: Adjust Personalized Weights wl

i with Eq. (6)
9: end for

10: Upload wt
0 to Central Server

and follows a ramp-up strategy in previous works [16] i.e.,

βt =

{
β · exp(−5(1− t

t0
)2), t ≤ t0

β, t > t0
, (7)

where β is set to 0.5, and t0 is set to 10% of the total feder-
ated epoch numbers.

Method overview. We summarize the thorough local
training procedure at each client in Alg. 1. Afterwards,
the central server collects all global weights w0 from each
client and adopts FedAvg to aggregate them.

4. Experiments
4.1. Datasets

Focusing on image classification tasks, we use four
benchmark datasets to evaluate the proposed CD2-pFed,
namely CIFAR-10, CIFAR-100, FLICKR-AES, and a com-
bination of public and private histology images, termed as
HISTO-FED in this paper.

CIFAR-10 contains a total number of 60000 color images
sized at 32 × 32 in 10 classes, with 5000 training images
and 1000 test images per class [14]. We focus on a highly
non-IID setting, i.e. characterized as label distribution skew.
We follow previous works [22,28] to assign images from at
most s ∈ {2, 3, 4, 5, 8, 10} classes to each client. A higher
s corresponds to higher variance in data distribution. For
example, s = 10 is an IID setting, while s = 2 is the highest
heterogeneous data split. We set the client number K = 10
for CIFAR-10, as the literature [2, 22].

CIFAR-100 contains 500 training images and 100 testing
images per class, with a total number of 100 classes [14].
Similar to CIFAR-10, the color images are scaled at 32×32.
We set the client number K = 30 and assign at most s = 40
classes to each client [2], which is also non-IID (i.e. label
distribution skew).
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FLICKR-AES is used to evaluate the performance of per-
sonalized image aesthetics in many literature [30]. The im-
ages are randomly split to 80% for training and 20% for
testing. Additionally, REAL-CUR is leveraged as an exter-
nal test set to evaluate the global model representation in
the context of real-world personal photo ranking. Images
from 14 personal albums, with an average of 197 to 222 im-
ages per album, were collected and rated by one user [30].
Due to the personal bias in aesthetic scoring, the non-IID is
characterized as concept shift, leading to non-IID data dis-
tribution. We use a subset of K = 30 users as clients, the
same as the setting in previous work [2].

HISTO-FED is a medical image datasets, consisting of
both public and private hematoxylin & eosin (H&E) stained
histological whole-slide images of human colorectal cancer
(CRC) and normal tissue. They are curated from four med-
ical centers. We set the client number K = 3 where each
of them uses images from one medical center, and the re-
maining center is used as the external test set. Client 1 and
client 2 use subsets of total slides number N = 86 and 50
from two public datasets NCT-CRC-HE-100K, CRC-VAL-
HE-7K respectively. Each of them has a number of 7180
image patches, spitted from slides. Client 3 and external
test set have 7000, and 4000 image patches respectively, cu-
rated from a private dataset of slides number N = 20 and
10. Each image is labeled with one of nine categories. All
images involved in this research received appropriate eth-
ical approval. Due to the stain variance [12], the images
between clients are highly non-IID, depicted as the feature
skew. (as illustrated in Figure 4).

Figure 4. Illustrate examples of stain variant histology whole
slides from different medical centers.

4.2. Experimental Settings

Backbone Architectures. We adopt the following network
backbones for performance evaluation: 1) LeNet-5 [17] for
CIFAR-10, 2) ResNet-34 [8] for CIFAR-100, FLICK-AES,
and 3) ResNet-32 for HISTO-FED, following the previous
works [2, 12, 22]. All backbone networks are trained from
scratch, without loading any pre-trained weights.

Hyper Parameters. At each local client, we employ
stochastic gradient descent optimizer where the Nesterov
momentum and the weight decay rate are set to 0.9 and
5 × 10−4 respectively. The local epoch number ηi = 1,
batch size b = 128 for CIFAR-10; ηi = 4, b = 128 for
CIFAR-100; ηi = 4 b = 4 for FLICK-AES and HISTO-

FED. The total epoch number T is set to 50. Additionally,
in CD2-pFed, we set maximum smoothing coefficient for
EMA α = 0.5 in Eq. (7), balancing coefficient in loss func-
tion λ = 1 in Eq. (5), and p = 0.5 on CIFAR-10/100 and
HISTO-FED and p = 0.8 on FLICK-AES in Eq. (3).

Comparison Methods. We compare our CD2-pFed with
FedAvg [28], local training, LG-Fed [22] and FedPer [2].
FedAvg is the conventional federated learning algorithm,
where no personalization is involved [28]. Local training
trains a collection of K models for each client, without
communications between clients. Personalized Federated
Learning models play an intermediate role between FedAvg
and local training, by personalizing the global structure with
local unshared weights. In this work, we primarily com-
pared our method with a model modification-based person-
alization scheme, which is more similar to ours. LG-Fed
jointly learns compact local representations on each device
with lower layers and a global model in top layers across
all clients [22]. FedPer designed a base plus top personal-
ization layer structure, conversely to LG-Fed which assigns
personalization to bottom layers.

Implementations. All experiments are conducted on one
NVIDIA Tesla V100 GPU with 32Gb memory. The pro-
posed CD2-pFed is implemented on Pytorch 1.6.0 in Python
3.7.0 environment. We used an public implementation for
FedAvg, LG-Fed, and FedPer for comparison. All the ex-
tra hyper-parameters involved in the compared methods are
retained as their original settings.

Evaluation Metrics. We use two metrics on CIFAR-10,
and CIFAR-100, following previous work [22]. 1) Local
Test Top-1 Classification Accuracy (%). We know pre-
cisely the client where the data sample belongs, thus we can
choose the particular trained local model to predict. It eval-
uates the performance of model personalization. 2) New
Test Top-1 Classification Accuracy (%). We do not know
the client where the data sample belongs to, thus we employ
an ensemble of all local models to derive averaged predic-
tions, where the local model will be uploaded to the central
server. This index measures the compatibility between lo-
cal and global model representation. On FLICKR-AES and
HISTO-FED, we use one more index, namely the External
Test Top-1 Classification Accuracy (%). Specifically, we
use external test samples in addition to the local or new test.
Thus, these images potentially are potentially sampled from
different distributions, intended to verify the generalization
on the global model representation. Notably, we do not per-
form the external validation on CIFAR-10/100 due to the
absence of external samples.

4.3. Experimental Results on Synthesized Data

Effect of Data Heterogeneity. We first evaluate the perfor-
mance on CIFAR-10 on different levels of data heterogene-
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ity, which is quantified by s. As shown in Figure 5, on all
degree of heterogeneity, i.e., s, CD2-pFed consistently out-
performs LG-Fed and FedPer. Moreover, the performance
gap monotonically increases with the heterogeneity. When
s = 10, i.e., in a IID setting, achieves very marginally the
same test accuracy. In the rest of this section, we focus on
the most non-IID settings.

Figure 5. Effect of data heterogeneity on model personalization.

Results on CIFAR-10. As shown in Table 1, our proposed
PFL frameworks significantly improve the backbone net-
work by 31.83%, on the highest degree of data heterogene-
ity, i.e., s = 2. This empirical success shows the effec-
tiveness of personalization by the channel-wise ensemble.
Additionally, compared with the state-of-the-art layer-wise
personalization scheme [2, 22], our approach achieves both
the best local and new classification accuracy, suggesting
our model learns more capable local and global represen-
tation. Additionally, the superiority of the new test accu-
racy suggests that our scheme also achieves higher general-
ization on unseen data in personalization, attributed to the
equal role of personalized and shared weights they played
in FL.

Table 1. Comparison of personalized federated learning methods
on CIFAR-10 with a highest heterogeneity non-IID split , i.e., s =
2. The best results are marked in bold, and results reported in
[22] are indicated by *. Two metrics namely the local test and
new test classification accuracy, are used for evaluating the model
personalization and generalization respectively.

Methods Local (↑) New (↑)
FedAvg [28]* 58.99±1.50 58.99±1.50
Local Train* 87.92±2.14 10.03±0.06
LG-Fed [22]* 91.77±0.56 60.79±1.45
FedPer [2] 83.29±0.98 57.77±1.98
Ours 91.82±0.43 61.31±1.53

Results on CIFAR-100. As illustrated in Table 2, a lo-
cal test accuracy improvement of 28.75% is achieved with
CD2-pFed, showing its effectiveness on model personal-
ization for the local dataset with more wealthy categories.

Meanwhile, there is a 5.92 new test accuracy improvement,
yielding its generalization on unseen data. We also outper-
form layer-wise personalization methods such as FedPer,
LG-Fed.

Table 2. Comparison of personalized federated learning methods
on CIFAR-100 with non-IID split s = 40. The best results are
marked in bold.

Methods Local (↑) New (↑)
FedAvg [28] 29.23±1.75 29.23±1.75
Local Train 44.59±0.90 11.98±0.22
LG-Fed [22] 56.77±0.75 34.50±1.02
FedPer [2] 53.24±2.33 30.47±1.73
Ours 57.98±0.64 35.15±0.56

4.4. Experimental Results on Real-world Data

Results on FLICKR-AES. We test the local training per-
formance on FLICKR-AES due to the small scale of lo-
cal clients, making it easy to suffer from overfitting. In,
FLICR-AES, the labeling distribution is non-IID, fitting the
philosophy of FedPer. With a marginal outperform to LG-
FED, FedPer shows its superiority of top layer personal-
ization in tackling with label distribution skew, while LG-
Fed suffers an inferior performance. It is worth noticing
that LG-Fed only slightly outperforms the baseline FedAvg,
this is attributed to the fact that skew exists in label dis-
tributions where the personalized bottom layers in LG-Fed
are difficult to learn. The empirical comparison is summa-
rized in Table 3, where our framework outperforms state-of-
the-art personalization schemes on both local and external
tests. Additionally, CD2-pFed can significantly reduce the
test variance, leading to more stable and robust predictions.
Conclusively, CD2-pFed equipped with both top and bot-
tom personalization does not suffer from the ill-effect on
LG-Fed in facing label distribution skew.

Table 3. Comparison of personalized federated learning methods
on FLICKR-AES, and the external validation of REAL-CUR. The
best results are marked in bold.

Methods Local (↑) External (↑)
FedAvg [28] 24.50±2.01 20.08±1.34
LG-Fed [22] 25.78±2.40 20.98±1.34
FedPer [2] 43.26±3.23 40.55±1.78
Ours 47.89±2.03 45.67±1.67

Results on HISTO-FED. The internal and external test re-
sults of CD2-pFed on four clients consistently outperform
the baselines, in Table 4. We achieve higher improvement
from the internal validation than the external one, which
suggests that our model can personalize the global model
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well. These empirical results show the robustness and suc-
cess of federated personalization of CD2-pFed on medical
images, in addition to natural image classification.

Table 4. Results of real-world medical images, i.e., stain variant
histology slides, on each clients. Performance are evaluated by
client side test accuracy. The best results are marked in bold.

Methods client #1 client #2 client #3 External (↑)
FedAvg [28] 65.23 65.31 65.45 60.03
Local Train 75.53 74.87 74.21 34.31
LG-Fed [22] 76.32 76.90 77.01 63.22
FedPer [2] 75.43 75.21 75.56 57.89
Ours 77.39 77.45 77.38 65.66

Discussion. Comprehensive experiments on four datasets,
characterized with different non-IID settings, confirmed
that our CD2-pFed is the only method to consistently
achieve state-of-the-art results. Although, LG-Fed per-
forms better to FedAvg in the existence of feature skew,
and FedPer better with a label distribution skew, their per-
formance sharply declines when the non-IID settings are
interchanged. It is assumed that LG-Fed personalizes the
bottom layer to better learn from highly heterogeneous im-
ages, while FedPer personalizes the top layer to distinguish
unbalanced samples. Our CD2-pFed, containing both the
low-level and high-level personalization can reduce the re-
liance on prior knowledge for personalization decisions.

4.5. Ablation Analysis

The proposed CD2-pFed is composed of three functional
components to assist the channel decoupling, namely the
progressive personalization ratio increment scheme (LI),
temporal average moving for the personalized weights (TA),
and cyclic distillation (CD). To test the effectiveness of each
scheme, we perform ablation studies on CIFAR-10 with a
s = 2 split. As shown in Table 5, we can observe that 1)
with all components, CD2-pFed achieves the best perfor-
mance, demonstrating the effectiveness of integrating three
schemes i.e. LI + TA + CD, with a 1.51% local test accu-
racy improvement to the origin channel decoupling; 2) CD
achieves the highest improvement, TA second, and LI the
least; 3) LI and TA can stabilize the training, resulting to
a smaller stand deviation. We also visualize the training
performance of non-IID CIFAR-10 in Figure 6, where our
CD2-pFed achieves a faster convergence compared with ex-
isting layer-wise personalization methods, which requires
fewer communication rounds during the federation.

5. Limitations and Conclusions

In this paper, we propose CD2-pFed to vertically decou-
ple channels in the global model for personalization. Our
vertical decoupling method can personalize the local model,

Figure 6. Effect on the performance of LeNet-5 on CIFAR-10,
compared with different PFL frameworks [2, 22]. As illustrated,
our CD2-pFed achieve higher test accuracy, together with a signif-
icant faster convergence speed.

Table 5. Ablation study on non-IID CIFAR-10 split, with s = 2,
to evaluate the effectiveness of each component.

LI TA CD Local (↑) New (↑)
90.31±0.67 59.12±0.32

✓ 90.36±0.65 59.14±0.30
✓ 90.45±0.21 59.45±0.54

✓ 90.58±0.44 60.57±0.32
✓ ✓ 91.67±0.54 61.20±2.03

✓ ✓ 91.00±1.03 59.84±1.53
✓ ✓ 90.81±0.38 59.34±0.56
✓ ✓ ✓ 91.82±0.43 61.31±1.53

with guidance towards learning on high- and low-level fea-
ture representation. Subsequently, it can handle a variety of
settings of data heterogeneity including the feature skew, la-
bel distribution skew, and concept shift. Empirically, com-
pared with the previous layer-wise split which only learns
one part of them, our framework shows a consistent success
on four benchmark datasets. We also propose cyclic distilla-
tion to impose a consistency regularization and prevent the
weights divergence in personalization. However, the cyclic
distillation is currently designed by using soft predictions,
which restricted itself to classification tasks. The extensions
to segmentation and detection are left to future work. To sta-
bilize the training process, we leverage a temporal average
moving for personalized weights and a progressive increase
scheme for the personalization ratio. Yet, we primarily as-
sign a fixed personalization ratio for all layers, which yields
an interesting future direction on searching a layer-specific
optimal ratio.
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[29] Joaquin Quiñonero-Candela, Masashi Sugiyama, Neil D
Lawrence, and Anton Schwaighofer. Dataset shift in ma-
chine learning. Mit Press, 2009. 2, 3

[30] Jian Ren, Xiaohui Shen, Zhe Lin, Radomir Mech, and
David J Foran. Personalized image aesthetics. In Proceed-
ings of the IEEE international conference on computer vi-
sion, pages 638–647, 2017. 3, 6

[31] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster r-cnn: Towards real-time object detection with region
proposal networks. NeurIPS, 28:91–99, 2015. 1

[32] Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou,
Antoine Chassang, Carlo Gatta, and Yoshua Bengio. Fitnets:
Hints for thin deep nets. arXiv preprint arXiv:1412.6550,
2014. 3

[33] Johannes Schneider and Michail Vlachos. Personalization of
deep learning. arXiv preprint arXiv:1909.02803, 2019. 3

[34] Leslie N Smith. Cyclical learning rates for training neural
networks. In 2017 IEEE winter conference on applications
of computer vision (WACV), pages 464–472. IEEE, 2017. 4

[35] Virginia Smith, Chao-Kai Chiang, Maziar Sanjabi, and
Ameet Talwalkar. Federated multi-task learning. arXiv
preprint arXiv:1705.10467, 2017. 2, 3

[36] Jingwei Sun, Ang Li, Binghui Wang, Huanrui Yang, Hai Li,
and Yiran Chen. Soteria: Provable defense against privacy
leakage in federated learning from representation perspec-
tive. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 9311–
9319, June 2021. 1

[37] Alysa Ziying Tan, Han Yu, Lizhen Cui, and Qiang Yang.
Towards personalized federated learning. arXiv preprint
arXiv:2103.00710, 2021. 2

[38] Antti Tarvainen and Harri Valpola. Mean teachers are bet-
ter role models: Weight-averaged consistency targets im-
prove semi-supervised deep learning results. arXiv preprint
arXiv:1703.01780, 2017. 3

[39] Paul Voigt and Axel Von dem Bussche. The eu general
data protection regulation (gdpr). A Practical Guide, 1st
Ed., Cham: Springer International Publishing, 10:3152676,
2017. 1

[40] Qiong Wu, Kaiwen He, and Xu Chen. Personalized federated
learning for intelligent iot applications: A cloud-edge based
framework. IEEE Open Journal of the Computer Society,
1:35–44, 2020. 3

[41] Guodong Xu, Ziwei Liu, Xiaoxiao Li, and Chen Change Loy.
Knowledge distillation meets self-supervision. In European
Conference on Computer Vision, pages 588–604. Springer,
2020. 3

[42] Junho Yim, Donggyu Joo, Jihoon Bae, and Junmo Kim. A
gift from knowledge distillation: Fast optimization, network
minimization and transfer learning. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 4133–4141, 2017. 3

[43] Jiahui Yu and Thomas S Huang. Universally slimmable net-
works and improved training techniques. In Proceedings
of the IEEE/CVF International Conference on Computer Vi-
sion, pages 1803–1811, 2019. 5

[44] Tao Yu, Eugene Bagdasaryan, and Vitaly Shmatikov. Sal-
vaging federated learning by local adaptation. arXiv preprint
arXiv:2002.04758, 2020. 3

[45] Tao Yu, Eugene Bagdasaryan, and Vitaly Shmatikov. Sal-
vaging federated learning by local adaptation. arXiv preprint
arXiv:2002.04758, 2020. 3

[46] Sukmin Yun, Jongjin Park, Kimin Lee, and Jinwoo Shin.
Regularizing class-wise predictions via self-knowledge dis-
tillation. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 13876–
13885, 2020. 3

[47] Lin Zhang, Yong Luo, Yan Bai, Bo Du, and Ling-Yu Duan.
Federated learning for non-iid data via unified feature learn-
ing and optimization objective alignment. In Proceedings of
the IEEE/CVF International Conference on Computer Vision
(ICCV), pages 4420–4428, October 2021. 1

[48] Zizhao Zhang, Han Zhang, Sercan O Arik, Honglak Lee, and
Tomas Pfister. Distilling effective supervision from severe
label noise. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 9294–
9303, 2020. 3

[49] Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon
Civin, and Vikas Chandra. Federated learning with non-iid
data. arXiv preprint arXiv:1806.00582, 2018. 2, 5

[50] Weiming Zhuang, Xin Gan, Yonggang Wen, Shuai Zhang,
and Shuai Yi. Collaborative unsupervised visual represen-
tation learning from decentralized data. In Proceedings of
the IEEE/CVF International Conference on Computer Vision
(ICCV), pages 4912–4921, October 2021. 1

10050


