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Abstract

It’s been a long history that most object detection meth-
ods obtain objects by using the non-maximum suppression
(NMS) and its improved versions like Soft-NMS to remove
redundant bounding boxes. We challenge those NMS-based
methods from three aspects: 1) The bounding box with
highest confidence value may not be the true positive hav-
ing the biggest overlap with the ground-truth box. 2) Not
only suppression is required for redundant boxes, but also
confidence enhancement is needed for those true positives.
3) Sorting candidate boxes by confidence values is not nec-
essary so that full parallelism is achievable.

In this paper, inspired by belief propagation (BP), we
propose the Confidence Propagation Cluster (CP-Cluster)
to replace NMS-based methods, which is fully parallelizable
as well as better in accuracy. In CP-Cluster, we borrow the
message passing mechanism from BP to penalize redundant
boxes and enhance true positives simultaneously in an iter-
ative way until convergence. We verified the effectiveness
of CP-Cluster by applying it to various mainstream detec-
tors such as FasterRCNN, SSD, FCOS, YOLOv3, YOLOv5,
Centernet etc. Experiments on MS COCO show that our
plug and play method, without retraining detectors, is able
to steadily improve average mAP of all those state-of-the-
art models with a clear margin from 0.3 to 1.9 respectively
when compared with NMS-based methods.

1. Introduction

The occurrence of convolutional neural networks has
brought in revolutionary improvements in various object de-
tection tasks [10, 14, 24, 41]. Generally, two-stage/multi-
stage detectors [4, 9, 15, 31, 51] can achieve higher accu-
racy, while one-stage detectors [1, 16, 23, 26, 30, 37, 38]
take better accuracy-performance balance. Recently, other
than achieving better state-of-the-art results and less infer-
ence cost, some research attentions are also paid to simplify

*Equal contributions.

training and inference pipelines. [21,36,46,52] got rid of the
predefined anchors. [5,34,39,52,55] designed specific one-
one label assignment strategies to train end-to-end detection
models without need of post-processing methods. [8, 52]
make use of only one output feature map.

Nowadays some NMS-free methods have gained reason-
able accuracies, but they still suffer from more or less sacri-
fice in accuracies, performance, training time and flexibility
of design choices. Especially, when real-time inference is
not required, the ensembles of detection models equipped
with NMS are used to achieve better results [33, 54]. Be-
sides, in autonomous vehicles systems, researchers usually
apply NMS to combine objects detected from multiple sen-
sors. Therefore the majority of those mainstream detec-
tors [23, 31, 36, 37] still employ NMS or Soft-NMS [2] to
remove redundant bounding boxes in inference stage. Stan-
dard NMS greedily suppresses all neighboring bounding
boxes around the box with highest confidence value. Fol-
lowing this, researchers proposed several methods to im-
prove the standard NMS accuracy [2, 19, 25, 50]. Among
them, Soft-NMS [2] was proved to achieve general im-
provements for various detectors, while others are either de-
signed for specific detectors or require retraining with spe-
cific tricks. In addition, some methods are proposed to par-
allelize the NMS [3, 49], while those methods still rely on
confidence sorting in their pipelines.

With those NMS-based methods, all candidate boxes are
firstly sorted according to their detection scores, and then
the bounding box with the highest score in each cluster is se-
lected as a representative. Other objects with slightly lower
scores are simply thrown away or assigned with a smaller
confidence, as does not make full use of relations between
candidate boxes.

In this paper, we aim to replace the NMS-based meth-
ods with a better clustering framework (CP-Cluster) for
object detectors, as is able to achieve better accuracy and
meanwhile fully parallelizable. As illustrated by Fig. 1,
CP-Cluster firstly constructs a graph set from all candidate
boxes based on their overlaps, then both positive messages
and negative messages are propagated among boxes belong-
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Figure 1. Overall pipeline of CP-Cluster. CP-Cluster converts all candidate boxes from an object detector into a set of graphs. Positive
messages (blue arrows) and negative messages (orange arrows) are propagated within each graph iteratively, amplifying true positives and
suppressing redundant boxes simultaneously.

ing to the same graph to tune each box’s confidence value
until convergence. In detail, to conquer the deficiencies
of NMS-based methods, CP-Cluster is sophisticatedly de-
signed to incorporate below strategies:

1) To make full use of relationships between candidate
boxes, we propagate messages among them to tune
their confidence values. Specifically, CP-Cluster gen-
erates positive messages to enhance true positive boxes
and composes negative messages to penalize redun-
dant boxes simultaneously.

2) To further maximize the confidence margin between
true positives and redundant boxes, the confidence
message propagations are performed multiple times it-
eratively.

3) To achieve full parallelism, the message propagation is
restricted within neighboring candidate boxes, so that
each candidate box manages to update itself indepen-
dently.

We summarize our contributions as below:

1) We propose a new fully parallelizable clustering
framework (CP-Cluster) applicable for all object de-
tectors which require post-processing, and this new
clustering framework outperforms NMS-based meth-
ods in accuracies.

2) We apply CP-Cluster to various mainstream detectors
without retraining them, including FasterRCNN [31],
SSD [26], FCOS [36], yolov5 [37] etc. On MS COCO,
experimental results show general improvement for
all mainstream detectors by just setting CP-Cluster as
post-processing step.

3) By applying CP-Cluster to CenterNet [52], we show
that some of NMS-free detectors can also be explicitly
improved by this clustering framework.

To our knowledge, after Soft-NMS [2], CP-Cluster is the
only bounding box clustering method which manages to
achieve general improvements on most of mainstream ob-
ject detectors in a plug and play manner. Furthermore, it

shows huge potential to be applied in real-time tasks due to
its full parallelism.

2. Related Works
Two-stage object detection. Traditional object detec-

tion pipelines mostly employ the sliding window strategy,
running a classifier on all ROIs. Early neural network based
methods also follow this way, say the two-stage detectors
[9, 12, 13, 31, 51]: Candidate ROIs are generated in the first
stage, then are further classified in the second stage. Some
subsequent works further improve the accuracy by import-
ing multi-stage detection [4, 42], and [27] tries to build re-
lationships between candidate ROIs with RNN. Generally,
by employing hierarchical stages, those two-stage methods
have the merits of high accuracy, but also suffer from high
inference cost and complex training strategies.

One-stage object detection. One-stage detectors [1, 11,
16, 23, 26, 28–30, 36, 38] were proposed with the merits of
simpler training pipeline and less inference cost. Some
early one-stage detectors were not comparable with two-
stage detectors in accuracy, but later works have hugely
improved model quality by better training samples selec-
tions/assignment strategies [46,53], stronger neural network
architectures [11,30,35,40], more sophisticatedly designed
loss functions [22, 23, 32, 48] and combination of all those
techniques [1,36–38,47]. Latest methods like YOLO5 [37]
have achieved both high accuracy as well as very low in-
ference cost. One-stage and two-stage detectors are not al-
ways competing but can also co-work together as a stronger
detector. For instance, most of those one-stage detectors
can be integrated into a two-stage detection framework like
FasterRCNN [31], working as the Region Proposal Net-
work [51].

Simplified detectors. Recently, some research efforts
are taken to further simplify the one-stage detectors. The
first direction is to remove predefined anchor boxes dur-
ing training, simplifying the positive and negative samples
assignment strategy [5, 21, 34, 36, 52]. Secondly, some
methods like CenterNet [52] and Yolof [8] only employ
one output feature maps, but still achieve reasonable ac-
curacies. Such simplification may benefit multi-task train-

1152



ing, as it allows several tasks to share a same backbone.
Thirdly, starting from keypoint-based detectors [20, 21, 52]
and transformer-based detectors [5, 55], researchers start
to investigate the possibility of end-to-end object detection
without post-processing. Specifically, those methods rely
on some carefully designed one-one assignment strategies,
such as Hungary matching [5] and minimum cost assign-
ments [34].

Non Maximum Suppression. Usually a one-one as-
signment strategy is necessary for an end-to-end detector.
However, on the other hand, such strategy restricts detec-
tors from further improving accuracy and reducing infer-
ence time cost. Hence, NMS still works as the most effec-
tive post-processing step for the majority of popular object
detectors. Other than standard NMS, Soft-NMS [2] assigns
lower confidence values for bounding boxes rather than re-
moving them directly, which is more friendly to occlusion
case. [25] makes use of the density to improve clustering
quality specifically for pedestrian detection task. [17,19] in-
tegrate specific tricks into the training progress to co-work
with NMS. [18] converted NMS into a learnable neural net-
work. [48] improved NMS by proposing a better overlap
computation strategy. Also, there are some attentions paid
on parallelizing the NMS [3, 49], while they still rely on
confidence sorting so that they are not fully parallelizable.

Belief Propagation in computer vision. Graph-model
based methods have a long history of being applied in com-
puter vision tasks. Some stereo matching tasks [43, 45]
make use of BP to smooth the disparity maps. For scene
segmentation tasks, early versions of DeepLab [7] also em-
ploy BP as the post-processing step to generate fine-grained
segmentation results. Recently, some face clustering meth-
ods are fully built upon graph theories to pinpoint face clus-
ters [44]

Relations to previous methods. CP-Cluster differenti-
ate from previous NMS-based methods on:

1. CP-Cluster is fully built upon graph models and confi-
dence message propagations who no longer follow the
framework of NMS.

2. CP-Cluster is the first bounding box clustering pipeline
who tries to enhance true positives and penalize redun-
dant boxes simultaneously.

3. CP-Cluster does not rely on sorting bounding boxes
with confidence values so that full parallelism could
be achieved.

Although implemented in different frameworks, CP-Cluster
is also compatible with some tricks from previous NMS-
based methods: 1) Box coordinates weighting such as
[33, 50]. 2) Different overlaps calculation strategies such
as CIOU [48].

3. Confidence Propagation Cluster
In this section, we discuss details of how CP-Cluster

fuses candidate boxes step by step. We firstly describe how
to convert the boxes clustering task to a graph model prob-
lem to maximize the confidence margin between true pos-
titives and redundant boxes. Then we discuss the details
of how positive messages and negative messages are com-
posed with heuristics from box distributions to update each
candidate box.

3.1. General Clustering Pipeline

Building MRFs for bounding boxes. To describe
the neighboring relationships between predicted bounding
boxes, we create connections between bounding boxes ac-
cording to their IOUs and then generalize them into Markov
Random Field (MRF) graphs. For an object detector model,
B = {b1, b2, b3, ...} is the raw bounding box set from
model output before post-processing. For each box pair
(bi, bj ∈ B), we draw an undirected edge between them
if their IOU is greater than θ, generating a set of MRFs
G = {g1, g2, ...}. For each graph gi ∈ G, we define Egi
as its edge set and Vgi as its node set. For a box bi ∈ Vgn ,
its neighboring node set Nbi accommodates all nodes con-
nected to bi in gn.

Fig. 2 is an example of how G is generated from B
with θ = 0.6, where B = {A,B,C,D,E, F} and
G = {g1, g2}. In detail, Vg1 = {A,B,C,D}, Eg1 =
{(A,B), (B,C), (A,C), (C,D)}, Vg2 = {E,F}, Eg2 =
{(E,F )}. Taking the box A ∈ B for example, its neighbor-
ing nodes NA is {B,C}. From Fig. 2, it’s noticeable that
the number of graphs in G is same to the number of target
boxes, while such equivalence doesn’t hold true when two
heavily occluded ground-truth boxes have overlap greater
than θ.

Probabilistic objective. Given a bounding box bi ∈ B,
we define P̂(bi) = P̂(bi|Nbi , bi) to be the confidence value
of bi from model output given its neighboring boxes and
itself, thus the objective of the clustering process can be
defined as:

P̂(bi) = P̂(bi|Nbi , bi) =
{

1.0 bi ∈ Bp
0.0 bi ∈ Bn

(1)

where Bp stands for the set holding true positive candidate
boxes having largest overlaps with ground-truth boxes, and
Bn is the set of redundant bounding boxes. bi is the ob-
served confidence of bi from object detectors. Equation (1)
is targeted to maximize the confidence values of true posi-
tives, and meanwhile minimize the confidence values of re-
dundant boxes. Compared with the objective of traditional
NMS, CP-Cluster’s objective is different in three aspects:

1. NMS-based clustering methods assume that the box of
largest confidence value is always the best choice to be
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(a) Example of raw detection results before clustering.
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(b) Graph set generated by overlaps of bounding boxes.

Figure 2. Example of building MRF from bounding boxes by their
IOUs(θ = 0.6)

selected, but in Equation (1) this assumption doesn’t
hold all the time.

2. We should not only suppress those redundant boxes,
but also need to enhance the confidence value of those
true positives.

3. Each candidate box is only impacted by its neighbor-
ing bounding boxes.

Clustering pipeline. In our task, unlike the typical case
of belief propagation, neighboring bounding boxes not
only smooth each other, but also compete with each other.
Hence, we borrow the idea of iterative message pass-
ing from belief propagation but generate the messages by
heuristics of bounding box distributions instead of tradi-
tional ways in BP such as sum-product or max-product.
Specifically, we design the positive message Mp to reward
those true positives, and negative messages Mn to penal-
ize those redundant boxes. Both Mp and Mn only update
confidence values of the bounding boxes by default.

In Algorithm 1, the graph model construction step (line
2) is similar to overlap matrix calculation step in tradi-
tional NMS. Fgp is the function to generate positive mes-
sages by G (Sec. 3.2), and Fgn generates negative messages
(Sec. 3.3). Line 8 indicates that θ will be increased by λ
in each iteration where λ is always positive, leading to in-
cremental IOU threshold during the iterative message pass-
ing process. The motivation behind this incremental over-
lap threshold is: higher overlap two bounding boxes have,

Algorithm 1 Confidence Propagation Clustering

Require: B, θ, Fgp, Fgn
1: for iteration = 1, 2, . . . , N do
2: Calculate G with θ
3: for all bi in B do
4: Mp(i)← Fgp(G) . Positive msg in Sec. 3.2
5: Mn(i)← Fgn(G) . Negative msg in Sec. 3.3
6: P̂(bi)← P̂(bi) +Mp(i)−Mn(i)
7: end for
8: θ ← θ + λ
9: end for

more reasonable one of them should be suppressed more
than once. Furthermore, Algorithm 1 is fully parallelizable
because the confidence value updating step for each box is
completely independent.

Fig. 3 is an example of comparison between standard
NMS and CP-Cluster. Images in the first row and sec-
ond row are generated by same Yolov5 model but clustered
by standard NMS and CP-Cluster separately and visualized
with a constant confidence threshold (conf > 0.4). Com-
pared with output boxes from NMS, CP-Cluster not only
obtains more objects but also generates higher confidence
values for those true positive boxes.

NMS

CP-
Cluster

Figure 3. Example of how CP-Cluster enhances true positives and
removes redundant boxes in the same time.

3.2. Positive Messages Generation

One key target of Equation (1) is to increase the rank of
true positive candidate boxes. For a specific box bi, positive
messages are generated from its neighboring nodes Nbi to
increase P̂(bi).

Weaker friends aggregation (WFA). In contrast to high
confidence candidate boxes, low confidence boxes are one
of the least engaged in traditional post-processing pipelines.
As more firewood produce stronger flame, we consider that
those low confidence boxes are sometimes evidences to
prove their stronger neighbors to be true positives. With
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a bounding box bi ∈ Vgn , his weaker friend set Wbi is a
subset of its neighbors Nbi , where IOU(bj , bi) > θn and
P̂(bj) < P̂(bi) for each bj ∈ Wbi . Usually θn is greater
than the overlap threshold θ in Algorithm 1, saying that
only close enough neighbors can be treated as bi’s friends.
Specifically, we found that the enhancement of a bounding
box is mostly affected by below two factors:

1. The number of its weaker friends, where such friends
indicate stronger enhancement motivation.

2. The confidence value of its weaker friends. As more
friends with high confidence values are evidences to
prove that the box itself is true positive. After trying
many options, the maximum confidence value of its
weaker friends is proved to work best in Equation (2).

Therefore, we give the definition of positive message gen-
eration for a box bi (Line 4 of Algorithm 1) as below:

Mp(i)←
Q

Q+ 1
∗ (1− P̂(bi)) ∗ max

b̂∈Wbi

P̂(b̂) (2)

where Q is the number of bi’s weaker friends, and (1 −
P̂(bi)) is the normalization term to ensure that the maxi-
mum value of P̂(bi) won’t be greater than 1.0 after applying
the positive message.

0.85
0.87

(a) Before WFA.

0.92
0.87

(b) After WFA.

Figure 4. Confidence value of the bounding box (red solid box)
with more weaker friends is enhanced after WFA.

Fig. 4 is an example on how WFA tune confidence values
of bounding boxes. The red solid box is enhanced during
the progress of WFA because it has many weaker friends
around (red dashed boxes), while the green solid box is not
impacted by positive message update due to lack of weaker
friends.

SNMS-WFA. To verify the effectiveness of our posi-
tive message generation step separately, we integrated the
weaker friends aggregation step into standard Soft-NMS,
leading to SNMS-WFA. Specifically, we perform Equa-
tion (2) to amplify those important boxes before their
weaker friends are suppressed. In Sec. 4 we will also dis-
cuss experimental results of SNMS-WFA and compare it
with CP-Cluster.

3.3. Negative Messages Generation

Other than enhancing true positive boxes, suppressing
redundant boxes is another objective as indicated by Equa-
tion (1).

Given a bounding box bi ∈ Vgn , his stronger neighbors
Sbi is a subset ofNbi , where IOU(bj , bi) > θ and P̂(bj) >

P̂(bi) for each bj ∈ Sbi . In each iteration of Algorithm 1, if
a bounding box’s stronger neighbor set is not empty, it will
be suppressed by one of its stronger neighbor bj ∈ Sbi . As
to which bounding box is selected to suppress bi, we design
the negative impact factor T(bj ,bi) from bj ∈ Sbi to bi as
below:

T(bj ,bi) ← α ∗ P̂(bj)/P̂(bi) + (1− α) ∗ IOU(bj , bi)/θ

(3)

In Equation (3), when we set α = 1.0, the box with largest
confidence value in Sbi is selected. On the contrary, the
nearest stronger neighbor with maximum IOU(bi, bj) is se-
lected from Sbi if α = 0.0.

Another problem between bi and Sbi is worthwhile to be
discussed: How many times is a certain box bj ∈ Nbi al-
lowed to suppress bi? For flexibility, we define the suppres-
sion counting matrix SUPj,i to count the times bj has sup-
pressed bi, and ζ is the maximum suppression time. We will
discuss more details about how to configure ζ in Sec. 4.1.

Based on above discussion, the negative message (Line 5
of Algorithm 1) for a box bi is generated by below equation:

Mn(i)← P̂(bi) ∗ IOU(bi, argmax
bj∈Nbi

,SUPj,i<=ζ
T(bj ,bi))

(4)

Where SUPj,i is used to restrict the times for bi to be sup-
pressed by bj , and the box with maximum negative impact
factor will be picked up to penalize bi.

3.4. More Details Behind Confidence Propagation

Message Flow Directions. As is shown in Sec. 3.2, pos-
itive messages are passed from weaker boxes to stronger
boxes. On the contrary, negative messages flow from
stronger boxes to weaker boxes as discussed in Sec. 3.3.

Parallelism We have already briefly discussed the par-
allelism of Algorithm 1 in Sec. 3.1. Specifically, as each
candidate box is only impacted by his neighbors within one
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iteration, K threads can be created to handle each box in
parallel, where K is the number of candidate boxes. Ac-
tually, we can further improve the parallelism by combin-
ing the graph generation step and message propagation, and
K*K threads can be created to handle the message passing
between two boxes.

4. Experiments

Dataset. We conduct experiments on COCO 2017
dataset [24]. Evaluation results are reported on the COCO
val and test-dev dataset.

Experiments. We didn’t train new models but directly
downloaded models from model zoo for those mainstream
detectors. Then we replace the NMS-based post-process
step with CP-Cluster and run the evaluation on COCO val
and test-dev dataset.

Baselines. We take standard NMS and Soft-NMS
as baselines to compare with our CP-Cluster. We also
performed exhaustive experiments on other plug-and-play
NMS versions like weighted-NMS [50] and Clustered-
NMS [49], but usually they cannot compete with Soft-NMS
or even have negative impacts on some detectors. For other
NMS-based methods like [17, 18, 25], they either require
retraining models with extra architecture modifications, or
are targeted for special tasks. To save space, we only report
baseline metrics for standard NMS and Soft-NMS. In addi-
tion, we also report experimental results on WFA-SNMS to
prove the effectiveness of our positive message generation
strategy separately.

4.1. Ablation Studies

All experiments in this section are performed with
Yolov5s model downloaded from Yolov5 model zoo. Fig. 5
shows how mAP, AP50, AP75 are impacted by different hy-
perparameters separately.

Number of iterations. CP-Cluster provides an iterative
way to enhance true positive boxes and meanwhile suppress
redundant boxes. As illustrated by red columns in Fig. 5a,
usually 2 iterations have already been good enough to run
the clustering process into convergence.

Negative Impact Factor. In the negative message gen-
eration step, negative impact factor is designed to pick up
the most appropriate strong neighbor to penalize a box bi if
necessary. The strong neighbor selection criterion is con-
trolled by the parameter α. After trying different options,
we found the best result is usually achieved when we ap-
ply different α in each iteration. In detail, we pick up the
box with largest confidence value (α = 1.0) in the first it-
eration, while in the second iteration we select the box of
biggest overlap with bi (α = 0.0).

Incremental IOU threshold. From Algorithm 1, the pa-
rameter λ is used to increment the overlap threshold in each

iteration. Intuitively, higher is λ, less boxes will be penal-
ized in the second iteration. From green columns in Fig. 5,
a smaller λ leads to better AP50 but worse AP75. In below
experiments, we set λ = 0.2 to achieve the most balanced
improvements on all buckets.

Thresholds to select weaker friends. In the positive
message generation step, the parameter θn decides how
many boxes are incorporated in the weaker friend set of bi.
Specifically, larger θn means less friends of bi. As shown
by blue columns in Fig. 5, the best accuracy can usually be
achieved when θn is around 0.8.

Maximum suppression time. In equation (4), ζ is used
to decide the maximum times a box bi can be suppressed by
bj . From yellow columns in Fig. 5, ζ = 2 is beneficial to
AP50, while we can get slightly better AP75 when ζ = 1.
As we found that ζ = 2 leads to more stable improvements
in most cases, we adopt this setting in our following exper-
iments.

4.2. Experiments in MMDetection

MMDetection [6] is a toolbox with a collection of pop-
ular object detector implementations. We implemented our
CP-Cluster in mmcv, which is a tool library used by MMDe-
tection.

Since CP-Cluster doesn’t require retraining models, we
download those popular models from MMDetection model
zoo and get them evaluated along with CP-Cluster. Experi-
mental results are reported on both COCO val and test-dev
dataset in Tab. 1.

From Tab. 1, with CP-Cluster, the average mAP of all
those popular models are improved by 0.3 − 0.7 compared
with standard NMS. And compared with Soft-NMS, CP-
Cluster still achieved 0.2 − 0.6 improvements on average
mAP.

4.3. Experiments With Yolov5

Recently Yolov5 [37] is getting popular due to its ex-
treme balance in accuracy and time cost.

In our experiments, we download the pretrained check-
points (v6 on 1/10/2022) and pair them with our CP-Cluster.
For default NMS, we reproduce the evaluation result on
COCO test-dev with suggested IOU threshold θ = 0.65.
While for CP-Cluster, we employ a slightly smaller θ = 0.6.

Experimental results are reported on COCO test-dev
dataset in Tab. 2, which shows that CP-Cluster manages to
achieve 0.3−0.4 improvements on average mAP compared
with standard NMS. To save table size, we don’t report eval-
uation results for Soft-NMS and SNMS-WFA. In fact, Soft-
NMS fails to make explicitly positive impact on most of
Yolov5 models, while SNMS-WFA can achieve similar im-
provements compared with CP-Cluster.
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Figure 5. Accuracies with different hyperparameters on Yolov5s.

MAP (val/test-dev) nms soft-nms snms-wfa cp-cluster

ssd512 29.5/29.6 29.8/29.9 30.0/30.0 30.1/30.1
frcnn-r50fpn 38.4/38.7 39.0/39.2 39.1/39.3 39.2/39.4
fcos-x101 42.7/42.8 42.7/42.8 42.8/42.9 43.0/43.2
retina-r50fpn 37.4/37.7 37.5/37.9 37.7/38.2 38.1/38.4
yolov3 33.5/33.5 33.8/33.8 33.6/33.7 34.1/34.1
yolof 37.5/37.8 37.6/37.8 38.0/38.4 38.1/38.4
autoassign-fpn50 40.4/40.6 40.5/40.7 40.6/40.8 41.0/41.2

Table 1. CP-Cluster with various popular models in MMDetection on COCO val/test-dev.

4.4. Experiments With Keypoint-based Detectors

Keypoint-based object detectors [20, 21, 52] are among
the earliest attempts to remove the NMS post-process step.
Specifically, they replaced the NMS with a simple maxpool-
ing operation to pick up peak points in predicted heatmaps.
As discussed in [52], NMS methods show positive impacts
for some Centernet models but lead to negative results for
others.

In our experiments, we download the pretrained models
directly from official Centernet repo [52]. For those non-
maxpooling based experiments, the maxpooling step is re-
placed by Soft-NMS and CP-Cluster respectively with IOU
threshold θ = 0.5. Experimental results on COCO test-dev
are reported in Tab. 3, where “dla34 flip scale” means the
model with “dla34” arch, augmented by rescaling and flip-
ping.

Compared with default maxpooling post-processing
step, all Centernet models are improved with a margin
0.6 − 1.9 on average mAP when paired with CP-Cluster,
including those models with multi-scale and flip augmen-
tations. Furthermore, Soft-NMS method can also improve
the accuracy of Centernet when they replaced maxpooling
in those experiments on single models, while it has neg-
ative impacts in multi-scale fusion experiments. The sta-
ble improvements provided by CP-Cluster on multi-scale
tests show its potential as a better cluster to handle bound-
ing boxes from multiple models.

4.5. Experiments for Instance Segmentation

Instance segmentation methods are usually built upon
object detectors to gain accurate instance area for detected
objects. Still with MMDetection, we apply CP-Cluster to
various MaskRCNN models from model zoo, and experi-
mental results on COCO test-dev are shown in Tab. 4. Com-
pared with standard NMS, CP-Cluster shows considerable
improvements on both BOX-AP as well as MASK-AP. Al-
though Soft-NMS and CP-Cluster achieve similar accuracy
on the X101 model, CP-Cluster outperforms Soft-NMS on
all other more lightweight MaskRCNN models.

4.6. Runtime Measurements

We measure the runtime cost for both CPU and GPU
versions of CP-Cluster along with Yolov5 framework. CP-
Cluster is compared with CPU Soft-NMS in mmcv and
GPU NMS in torchvision. Note that CP-Cluster does not
rely on sorting bounding boxes by their confidence values.
However, to make the APIs consistent with torchvision, an
extra box sorting step is appended at the end of our CP-
Cluster to make sure that true positive boxes are returned
in descending order by their confidence values. When mea-
suring runtime of CP-Cluster on GPU, we exclude the step
of box sorting. The measurements are run on a workstation
with a 9th-Gen Core-i7 CPU and a Titan-V GPU.

As shown in Tab. 5, our GPU implementation of CP-
Cluster(Iter = 2) is comparable to the NMS implementa-
tion in torchvision. Actually, we are still working on further
optimizing the GPU implementation as it will benefit from
more sophisticatedly designed CUDA tricks.
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Model Method AP AP50 AP75 APS APM APL AR100

s 640
nms 37.1 55.7 40.2 20.1 41.5 45.2 55.1
cp-cluster 37.4 56.0 40.8 20.3 41.9 45.5 57.2

m 640
nms 45.5 64.0 49.7 26.6 50.0 56.6 62.2
cp-cluster 45.8 64.2 50.3 26.9 50.3 56.9 64.3

l 640
nms 49.0 67.3 53.4 29.9 53.4 61.3 64.6
cp-cluster 49.3 67.4 53.9 30.1 53.7 61.5 67.1

x 640
nms 50.7 68.8 55.1 31.9 54.9 63.4 66.6
cp-cluster 51.1 68.9 55.7 32.3 55.2 63.5 68.7

s6 1280
nms 44.3 62.7 48.8 27.0 48.3 53.6 62.3
cp-cluster 44.6 62.7 49.4 27.3 48.5 54.1 64.4

m6 1280
nms 51.2 69.2 56.2 33.5 55.1 62.1 68.1
cp-cluster 51.5 69.2 56.7 33.7 55.4 62.5 70.2

l6 1280
nms 53.8 71.6 58.9 36.3 57.8 64.9 70.3
cp-cluster 54.1 71.6 59.4 36.6 58.1 65.3 72.4

x6 1280
nms 55.1 72.8 60.4 37.8 58.9 66.5 71.5
cp-cluster 55.5 72.8 60.9 38.1 59.3 66.8 73.4

Table 2. CP-Cluster with 8 yolov5 models on COCO test-dev.

Model Method AP AP50 AP75 APS APM APL AR100

dla34
maxpool 37.3 55.1 40.7 18.6 41.1 49.2 55.8
soft-nms 38.1 57.0 41.1 18.7 40.8 50.7 56.8
cp-cluster 39.2 57.9 43.0 20.4 42.4 51.3 58.0

dla34
flip scale

maxpool 41.7 60.6 45.1 21.7 44.0 56.0 60.4
soft-nms 40.6 58.7 43.8 21.2 43.1 54.8 57.4
cp-cluster 43.3 61.8 47.6 24.3 45.9 56.4 62.7

hg104
maxpool 40.2 59.1 43.8 22.5 43.4 50.8 56.0
soft-nms 40.6 58.7 44.5 23.1 43.9 51.0 57.4
cp-cluster 41.1 59.9 45.0 24.4 44.6 51.0 58.4

hg104
flip scale

maxpool 45.2 64.1 49.3 26.7 47.2 57.9 63.2
soft-nms 44.3 62.8 48.3 26.2 46.5 57.0 60.8
cp-cluster 46.6 65.0 51.5 28.9 49.0 58.3 65.1

Table 3. CP-Cluster for Centernet on COCO test-dev.

NMS Soft-NMS CP-Cluster
Box AP Mask AP Box AP Mask AP Box AP Mask AP

MaskRCNN R50 3X 41.5 37.7 42.0 37.8 42.2 38.1
MaskRCNN R101 3X 43.1 38.8 43.6 39.0 43.7 39.2
MaskRCNN X101 3X 44.6 40.0 45.2 40.2 45.2 40.2

Table 4. CP-Cluster for MaskRCNN on COCO test-dev.

Runtime(ms) NMS Soft-NMS CP(Iter=1,2,3)

CPU(mmcv) N/A 11.1 32 52 63
GPU 1.4 N/A 1.0 1.3 1.5

Table 5. Runtime Comparison of CP-Cluster.

5. Conclusion

In this work, we have presented a new graph model based
bounding box clustering framework (CP-Cluster), which is
fully parallelizable. This framework can work as a general
post-processing step for all object detectors, replacing tra-
ditional NMS-based methods. Compared with NMS and
Soft-NMS, CP-Cluster is able to achieve better accuracy on
MS COCO dataset when applied to the same model.
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