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Abstract

Unsupervised learning has been popular in various com-
puter vision tasks, including visual object tracking. How-
ever, prior unsupervised tracking approaches rely heavily
on spatial supervision from template-search pairs and are
still unable to track objects with strong variation over a long
time span. As unlimited self-supervision signals can be ob-
tained by tracking a video along a cycle in time, we investi-
gate evolving a Siamese tracker by tracking videos forward-
backward. We present a novel unsupervised tracking frame-
work, in which we can learn temporal correspondence both
on the classification branch and regression branch. Specif-
ically, to propagate reliable template feature in the forward
propagation process so that the tracker can be trained in
the cycle, we first propose a consistency propagation trans-
formation. We then identify an ill-posed penalty problem in
conventional cycle training in backward propagation pro-
cess. Thus, a differentiable region mask is proposed to se-
lect features as well as to implicitly penalize tracking errors
on intermediate frames. Moreover, since noisy labels may
degrade training, we propose a mask-guided loss reweight-
ing strategy to assign dynamic weights based on the qual-
ity of pseudo labels. In extensive experiments, our tracker
outperforms preceding unsupervised methods by a substan-
tial margin, performing on par with supervised methods on
large-scale datasets such as TrackingNet and LaSOT. Code
is available at https://github.com/FlorinShum/ULAST.

1. Introduction

Visual tracking has become an integral part of various
video applications such as autonomous driving and video
recognition. In the mainstream of visual object tracking,
deep learning-based trackers are dominant [28], requiring

†Work performed when Qiuhong Shen is an intern at SenseTime.

a large number of labeled videos. Since the labeled data
occupy a relatively small portion of practical scenes, the
trained tracker cannot reliably track previously unseen ob-
jects. Thus, learning from unlabeled videos becomes a
promising approach. Prior works on unsupervised tracking
fall into two categories: exploiting self-supervision signals
in videos from either the spatial or temporal dimensions.
For the first category [24, 33], the focus is on how to con-
struct a template-search pair using a still frame. Since these
methods are limited by the inability to learn temporal cor-
respondence over long periods of time, trained trackers can
no longer track objects with strong variation. To cope with
the appearance variations that occur during online tracking,
we center our attention on methods in the latter category,
exploiting the temporal self-supervision signal in videos.

In supervised tracking methods, box-regression branch
has been demonstrated to be effective to capture the objects
with large scale variation along temporal dimension [4,22].
However, in existing unsupervised methods, this branch is
always absent [33,34,38]. Recently, USOT [47] introduced
a box-regression head, but the tracker is initially trained
with template-search pairs from single frames, followed by
cycle memory training to enhance the robustness of classifi-
cation branch, whereas the box-regression branch is trained
with spatial supervision alone. In this paper, we aim to train
a better tracker by learning temporal correspondence both
on the classification branch and on the regression branch.
However, we identify there are three critical challenges.

First, despite unlimited self-supervision can be obtained
by tracking a video along a cycle in time, how to explore the
self-supervision signal in temporal dimension of videos for
training a tracker equipped with a box-estimation branch is
not well explored in existing methods. In cycle training, as
illustrated in Fig. 1, a tracker is assumed to be capable of
tracking back to the initial location. The tracker is evolved
in the cycle by utilizing the inconsistency between start and
end location in initial frames. However, when training from
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Figure 1. Three challenges when learning a better tracker with
temporal correspondence on both classification and regression
branches. First, in forward propagation process, tracker often loses
target objects in intermediate frames, breaking down the train-
ing pipeline. Second, in backward propagation process, gradient
cannot flow through the whole framework due to the RoI-Align.
Third, the pseudo labels are often noisy, degrading the perfor-
mance. In this figure, T , S, R, B, and L denote template kernel,
search region, candidate boxes, pseudo labels, and loss value, re-
spectively. The subscript indexes the temporal order of frames.

scratch, it is hard for the tracker to find the target object.
The template kernel generated on the intermediate frames is
likely to not contain any features of the target object, which
means the tracker cannot return to the initial location. The
training pipeline will break down after several iterations.

Second, we identify misalignment in cycle training:
when the tracking result R2 is inaccurate, the generated
template kernel T2 is likely to embrace many distractor fea-
tures, but the imposed loss still forces the tracker to pre-
dict accurate target box by using such noisy template, which
causes an ill-posed penalty. From the gradient flow of cycle
training, we can observe the select operation like RoI-Align,
since the coordinate is quantized, is not differentiable on
boxes coordinate. Therefore the gradient cannot back prop-
agate to the node before R2. In other words, the tracking
errors on intermediate frames cannot be penalized in this
pipeline.

Third, as unsupervised tracking framework still relies
on the pseudo labels in initial frames and box-regression
branch training requires objects that have clear edges,
pseudo labels in initial frames are crucial. However, we
observe these labels are likely to be noisy, degrading the
tracking performance.

To address the aforementioned three challenges, we
propose a novel unsupervised tracking framework called
ULAST, which aims to learn temporal correspondence both
on the classification branch and regression branch. It con-
sists of three newly proposed components: consistency
propagation transformation, region mask operation, and
mask-guided loss re-weighting. Specifically, the consis-
tency propagation transformation aims to generate reliable
template kernel for tracking next frame, which uses both
long-term and short-term information from template ker-
nels and search regions of previous frames. As a result, it
enables our framework to exploit temporal self-supervision
signal and avoiding the training pipeline breaking down. In-
stead of using RoI-Align, our region mask operation selects

features with all candidates in R2 based on the search re-
gion feature and predicted bounding boxes from previous
frame, and makes regression and classification heads differ-
entiable to implicitly penalize tracking errors on intermedi-
ate frames. The mask-guided loss re-weighting strategy dy-
namically assigns weights to samples based on the quality
of their pseudo labels, which avoid using the noisy pseudo
labels.

We evaluate the trained tracker on five diverse bench-
mark datasets, and the favourable performance against
state-of-the-art methods demonstrate the effectiveness of
our proposed framework. The main contribution of this
work are summarized as follows:

• We propose a novel unsupervised learning framework
called ULAST, which can lean temporal correspon-
dence both on classification and regression branches.

• A consistency propagation transformation is proposed
to generate reliable template kernel, avoiding the train-
ing process of our ULAST framework breaking down.

• A differentiable region mask operation is proposed to
select features as well as implicitly penalize the track-
ing errors of intermediate frames in backward propa-
gation process.

• A mask-guided loss re-weighting strategy is proposed
to mitigate the negative impact of noise on training.

2. Related work

Supervised visual tracking The past few years have
witnessed significant performance improvement in deep-
learning based trackers. We can roughly divide these track-
ers into two categories: online-optimized trackers [2, 4–6]
and offline trackers [3,9,10,21,41,43,46]. Online-optimized
trackers rely on online update methods with dedicated de-
sign. The rough position of target objects are figured out
by ridge regression with updated template kernels. Then
refinement is applied to estimate accurate bounding boxes.
On the other hand, offline trackers learn to match the tem-
plate and search region in metric space instead. This cate-
gory is dominated by Siamese-network based trackers. The
pioneering work SiamFC [1] extracts features of template
and search patches with shared backbone network. Then
cross correlation is applied to generate response map for lo-
cating the target. Various efforts have been made in this cat-
egory, such as better backbone networks [21], target-aware
attentions [23, 43], anchor-free regression [10, 46], and ef-
fective template-search fusion [13, 45]. Efficient track-
ing [29, 42] with Siamese-based trackers is also explored
with pruning [11, 12] and network architecture search [31].
Nevertheless, all of these methods require extensive super-
vised training involving a large number of annotated videos
to learn the correspondence between template and search
region. In contrast, our work is an unsupervised learn-
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ing framework for accurate Siamese-based tracking, which
does not require a huge annotation cost.
Unsupervised visual tracking. Since it is costly to collect
annotations for videos, unsupervised tracking [33,35,38,47]
becomes a promising approach for training more robust
trackers. The pioneering work UDT [34] trained a Discrim-
inative Correlation Filters (DCF) based tracker by forward-
backward tracking frames with the supervision of consis-
tency loss. These works indicated that cycle consistency in
videos can be utilized to effectively train a robust tracker
by forward-backward tracking multiple frames. On the
other hand, s2siamfc [33] proposed a Siamese network
based unsupervised training framework by mining the self-
supervision in single frames, in which adversarial mask-
ing is learnt to construct template-search pairs from iden-
tity frame. However, tracking performance of these meth-
ods [34, 47] depends heavily on online updating schemes.
Without online updates, these unsupervised trained trackers
cannot handle challenging objects with dramatic variation.
Recently, acquiring self-supervision signals from both spa-
tial and temporal dimension becomes the promising way for
unsupervised tracking. Zheng et al. [47] proposed an un-
supervised training approach by naive training from single
frame in first stage, then cycle training is adopted to learn on
longer temporal spans. PUL [38] proposed to initially learn
a background discrimination model by contrastive learn-
ing. Then the model continues training with temporal corre-
sponding patches mined with a noise-robust loss. Besides,
various pretext tasks [17, 27,36] are constructed in learning
visual representation from videos by utilizing the forward-
backward tracking idea. Different from these works, our
framework mainly focuses on learning classification and re-
gression capability simultaneously from the temporal super-
vision, achieving superior tracking performance.

3. Proposed Method
3.1. Preliminary

Siamese-network based Tracker. To handle scale varia-
tion of the target in the cycle, our ULAST is built upon
Siamese-network based region proposal network [21]. Sup-
pose we need to use a template patch to find the target object
in a search region. The tracker first use a ResNet50 with
shared parameter to extract the feature from the template
and search region, and we denote the extracted feature from
the template and search region patches as T and S, respec-
tively. Then, a region proposal network is learnt to generate
the bounding box and the corresponding class. The network
is optimized with classification loss and regression loss:

Ll = λ1L
l
cls + λ2L

l
reg, (1)

where Ll
cls and Ll

reg are respectively the Focal loss [25] and
the L1 loss. λ1 and λ2 are coefficient to balance two terms,

the superscript of Ll denotes the conventional (legacy) loss
in Siamese pair training paradigm [22].
Cycle Training. Suppose we track three sampled frames in
a cycle with the given pseudo-label of the first frame. when
tracking the 2nd frame, we use the template kernel extracted
from patch in the 1st frame to predict candidate boxes on
search region. Then these boxes are leveraged to generate
new template kernel by selecting feature from search region.
When tracking subsequent frames, we use template kernels
generated from last search region to track. Generally, we
track frames in palindrome order (i.e frames are ordered as
1,2,3,2,1) to track the objects back to the first frame. The
tracker can be optimized by inconsistency the final track-
ing result and the pseudo label in the first frame. Formally,
we call this training pipeline cycle training, as opposed to
legacy training from single frames. The formulation of loss
Lc in cycle training is same as that in legacy training, which
consists of Focal loss [25] and L1 loss. Thus, the total loss
in cycle training is formulated as:

Ltotal = (1− λc)L
l + λcL

c, (2)

Here Ll is the loss for self-tracking, constructing
template-search pairs from first frames. The cycle loss Lc

is computed by tracking back to the first frame in the cycle,
λc is a manual weight parameter.

3.2. Overview

The architecture of our framework is shown in Fig. 2,
in which we use with three sparse sampled video frames
for illustration. Given a palindromic video sequence, we
first use a shared ResNet50 as the backbone to extract fea-
tures from template of the first frame and search patches
from the second frame and generate the template feature T1

and search region feature S2. Then, the extracted feature
T1 and S2 are fed into the regression branch and classifica-
tion branch of the region proposal network (RPN) to yields
box-regression result Preg and corresponding classification
confidence score Pcls. Then, we pass Pcls and Preg to the
region mask operation and generate the regional mask M2.
After that, our CPT module takes the search feature S2 and
corresponding regional mask M2 as input to generate the
template feature for the second frame T2. At the same time,
search region feature S3 is generated from 3rd frame. This
search feature and the template feature T2 are then fed into
RPN to predict box classification and regression results on
3rd frame. This process is repeated and finally generate the
tracking result at the first frame, which will be then used to
calculate the mask-guided loss based on the pseudo-label at
the first frame.

3.3. Training with cycle-consistency

Region mask. As introduced before, conventional cycle
training suffered from the ill-posed penalty. As the top-
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Figure 2. Overview of our Framework. Here we illustrates the overall framework with tracking 3 frames in 1 → 2 → 3 → 2 → 1 order.

n prediction results of classification and regression branch
are likely to be inaccurate in initial training stage. Gener-
ated new templates feature based on these top-n boxes may
do not contain any target object feature. Forcing such tem-
plate to track back to the initial target position leads to the
ill-posed penalty. And the feature selection operation like
RoI-Align is not differentiable on boxes coordinates, caus-
ing intermediate frames tracking error cannot be penalized.
Although Precise RoI-Pooling [18] can be used to make the
coordinate differentiable, it cannot pass the gradient to all
the candidate boxes. To address these issues, it is neces-
sary to introduce a module to that can select target features
from last search region involving all estimated boxes and be
differentiable on the coordinates.

Therefore, we propose a novel operation called region
mask to select region-wise features and make the classifica-
tion and regression branches differentiable in cycle training.
Suppose we need to calculate the region mask based on the
search region feature St ∈ RC×H×W , here subscript t de-
notes t th frame in sampled frames. The input of the region
mask operation is the output of the RPN, which consists of
the output Pcls and Preg from the classification and regres-
sion branch, respectively. We first introduce a grid of size
H ×W , same as the spatial resolution of search region fea-
ture St. In Fig 3, we illustrate the region mask operation
when using a grid of 4×4 size. Let us suppose there are to-
tally K estimated box in the output of the regression branch (𝑡𝑥!
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Figure 3. Region mask operation. We illustrate a grid map com-
puted for one predicted box on search region. For better presenta-
tion, the grid size is set as 4× 4. Better viewed with zoom in.

Preg and the grid map for the k th predicted box is denoted
as Gk. Denotes the k th predicted box as (x1, y1, x2, y2)
and the grid box at the position (i, j) as (xij

1 , y
ij
1 , xij

2 , y
ij
2 ).

The grid value G
(i,j)
k for the grid map Gk at i th row and

j th column can be calculated as follows:

G
(i,j)
k =

(x̂ij
2 − x̂ij

1 )(ŷ
ij
2 − ŷij1 )

(xij
2 − xij

1 )(y
ij
2 − yij1 )

, (3)

where (x̂ij
1 , ŷ

ij
1 ) and (x̂ij

2 , ŷ
ij
2 ) are the top-left and bottom-

right intersection corner, x̂ij
1 = max(x1, x

ij
1 ), ŷij1 =

max(y1, y
ij
1 ), x̂ij

2 = min(x2, x
ij
2 ) and ŷij2 = min(y2, x

ij
2 ).

Here, the grid value represents the overlap ratio of the fixed
grid with predicted box. Obviously, this formulation is nat-
urally differentiable on the coordinates like IoU (Intersec-
tion of Union). Therefore, the grid map for all the boxes
in this search region can be collected into a set {Gk}, for
k = 1, 2, . . . ,K.

As each bounding box predicted by the RPN has a cor-
responding confidence score, it is intuitive to combine these
grid maps with their confidence. After getting the grid map
set {Gk}, we aggregate it into a single channel regional
mask. For the same spatial grid with duplicated positive
grid values, we only use the grid value from the k th pre-
dicted box with the highest confidence score, and set the
grid value from the other predicted box as 0. With this pro-
cessing, we generate a new grid map {G̃k}, at most only
one grid map G̃k has grid value greater than 0 across K
grid maps for a certain spatial pixel (i, j). For final aggre-
gation, the regional mask of the search region feature St can
be calculated as follows:

Mt =

K∑
k=1

1(sk, TH) · skG̃k, (4)

where the indicator function is defined as:

1(sk, TH)

{
1, if sk ≥ TH
0, otherwise

. (5)

Here, Mt ∈ RH×W is the generated regional mask. TH

8104



𝐾!"#$

𝑉!"#$

Fusion

Softmax

𝐾!"#%

𝑉!"#%

Concatenate

𝑄!"#$

𝑄!"#%

𝑀&

𝑆&

𝑋&$𝑋&%

𝑇'

𝐻&('

Long-term

Short-term

𝐾$ 𝐾%

𝑉$ 𝑉%

𝑄$

𝑄%

𝑇&

𝐴) 𝐴$

Figure 4. Consistency propagation transformation. In this
transformation, we generate reliable template kernel from the last
search region by retrieving long-shot term features. Black lines
denote long-term target feature retrieval while orange lines denote
short-term target feature retrieval.

is a manually set threshold. sk denotes the classification
confidence score for k th grid map.
Consistency propagation transformation (CPT). As the
aforementioned pipeline broken problem, it is crucial to
ensure consistency propagation between frames, i.e., the
tracker should not lose the target object. In our frame-
work, we argue that the reason for this problem is the lack
of exploration of temporal consistency when introducing
the box-estimation branch. The predicted boxes of subse-
quent frames will be largely affected by those from current
frames. Namely, once the predicted box in the current frame
is inaccurate, it is difficult to generate accurate predicted
boxes in the subsequent frames. Therefore, we propose a
consistency propagation transformation (CPT) module to
exploit the self-supervision signal in the temporal dimen-
sion. Specifically, as illustrated in Fig. 4, our CPT module
aims to retrieve a new template kernel Tt from search region
feature St with regional mask Mt based on the predicted re-
sult on t th search frame. Specifically, to squeeze the noisy
features in the search region feature denoted as St, a long-
short term consistency module is introduced to retrieve fea-
tures from that. As the initial template feature denoted as
T1 comprises the most reliable features of the target, we get
the long-term feature conditioned on T1 ∈ RC×h×w. First,
the region mask Mt ∈ RH×W is multiplied with the search
feature St ∈ RC×H×W to generate a pre-selected search
feature denoted as S̃t:

S̃t = St ⊗Mt, (6)

where ⊗ denotes the element-wise multiplication. Then an
an 1 × 1 convolution denoted as KL

adj is applied to S̃t for
generating the long-term key features KL ∈ RC×H×W .
We also use another convolution denoted as QL

adj to ap-
ply on the template feature T1 and generate the long-term
query feature QL ∈ RC×h×w. The superscript L denotes
the long-term. Then, we reshape the query and key into the
shape of C×Nz and C×Nx respectively, where Nz = h×w

and Nx = H×W . Therefore, We can generate a long-term
affinity matrix AL ∈ RNz×Nx as:

AL = Softmaxcol((Q
L)TKL) ∈ RNz×Nx , (7)

where Softmaxcol is the softmax operation along the col-
umn dimension. We also use another 1 × 1 convolution
denoted as V L

adj to adjust S̃t for generating the long-term
value features V L ∈ RC×Nx , which will be multiplied with
the affinity matrix to generate the long-term feature XL

t :

XL
t = reshape(AL(V L)T ) ∈ RC×h×w. (8)

For the short-term feature generation, the only difference
from that for long-term is the input of the query adjust op-
eration is different. We use a hidden template Ht−1 ∈
RC×h×w as the input of the query adjust operation and gen-
erate the short-term query feature, where Ht−1 is calculated
when tracking the last frame:

Ht−1 = fϕ(concat(X
L
t−1, T1)), (9)

where concat(·) is the concatenation operation. fϕ denotes
the hidden template aggregation module, which is a conv-bn
block with learnable parameter ϕ.

Except for the difference mentioned above, the other op-
erations are the same as those for long-term feature genera-
tion. We use the similar manner to generate the short-term
feature XS

t .
Finally, with the long-term and short-term feature re-

trieved from current search feature St, we generate the out-
put of the CPT module, which can be formulated as:

Tt = hθ(concat(X
S
t , X

L
t )). (10)

Here, hθ denotes the aggregation operation implemented by
using a conv-bn block with the learnable parameter θ.

3.4. Learn from noise label

In our ULAST, we use the unsupervised trained opti-
cal flow model [26] to generate the pseudo labels of the
first frame, which will be used in the training process.
However, these pseudo labels often are noisy, which hin-
ders the performance of the trained tracker. Existing ap-
proaches [33,38] only use the classification confidence from
the response map to filter out label noise. We argue that the
classification result is not sufficient to evaluate the impor-
tance of each sample. Therefore, we also take the regression
result into consideration. Intuitively, template kernels gen-
erated from pseudo labels with more noise often produce
larger response area from background in search regions,
which can be identified from Fig 5. To this end, we pro-
pose a mask-guided loss re-weighting strategy to re-weight
the loss from the pseudo-labels of various qualities. Specif-
ically, suppose we have a video batch of size B. For the
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b-th sample in this batch, we first use the tracker to gener-
ate the classification output Pcls and regression output Preg

by constructing a template-search pair from the first frame.
Then, based on Pcls and Preg , we get the regional mask M̂ b

by using Eq. 3, 4 and 5 for this video. On the other hand,
given the pseudo-labelled first frame, we also calculate M̄ b,
the only difference is that we set K = 1 and sk = 1 in Eq.
4, as there is only one ground-truth box in the first frame
in this case. Then we learn a dynamic weight wb for each
sample in a batch according to the relatively high response
region in such formulation:

wb = logγ(α−
∑

p

∑
q 1(M̂

b
p,q, β)∑

p

∑
q 1(M̄

b
p,q, β)

)), (11)

where 1 is an indicator function defined as:

1(M̂ b
p,q, β)

{
1, if M̂ b

p,q ≥ β
0, otherwise

. (12)

Here, M̂ b
p,q and M̄ b

p,q are the grid at the p-th row and q-
th column of the regional mask for the b-th sample in this
batch. γ denotes the factor to scale the value of wb, α de-
notes threshold for assigning weights to noisy labels, and β
denotes threshold to filter out distractors of low response.

Therefore, the loss function can be formulated as:

L =
1

B

∑
b

wb(λ1Lcls + λ2Lreg), (13)

where Lcls and Lreg are the classification loss and regres-
sion loss introduced in Eq. 1. Here we omit superscript of
L as this formulation is both applied on Ll and Lc.

3.5. Online tracking

As legacy training and cycle training are both adopted in
offline training phase, the input of template kernel in RPN

Template Search region

Figure 5. Visualization of regional mask. The pseudo label
sample in the 3rd row encompasses only part of the target object,
which is noisy for training the tracker, resulting in regional mask
with larger high response area (green part in the 3rd row frames).

is compatible with template feature extracted from patches
or feature retrieved from historical search feature by CPT
module. For real-time tracking, our tracker can perform like
SiamRPN [21], operating at a high speed about 80 FPS. For
robust tracking, cycle training enables the tracker to update
with a memory queue. Detailly, a memory queue of length
NL stored with historical search features and region masks
is maintained, including features of initial frame and NL−1
historical samples of the highest score. Once the memory
queue is updated, the memory kernel will be updated. Be-
sides, the hidden template Ht is updated every Ns frames
with the highest score in this short interval. For the trade-
off between speed and accuracy, the classification map Rcls

from the legacy kernel and memory kernel is combined with
Rcls = (1− λm)RL

cls + λmRM
cls, λm denotes the weight to

balance the classification score, while the regression map is
generated with the template kernel extracted from the ini-
tial template patch. Here, RL

cls denotes the response map in
classification branch that applying the template kernel ex-
tracted from initial frame, while RM

cls is the classification
response map when applying the template kernel extracted
from online memory queue. Specifically, We set NL = 6
and Ns = 10 throughout all online updating experiments.

4. Experiments and Results

4.1. Implementation details

Data preparation. The labels of our training are gener-
ated by using the off-the-shelf unsupervised optical flow
model [26] on datasets Got10k [16], LaSOT [8], VID [32]
and YoutubeVOS [40], the data sampling strategy is similar
to USOT [47]. One reliable template frame and three search
region frames with large temporal gaps are sampled from
a video for cycle training. The template patch is cropped
as size 127 × 127, and the search frames are replicated as
palindromes for tracking back to the initial frame. The spa-
tial size of all input frames is resized as 640 × 480 with-
out crop. Specifically, our framework only requires objects’
initial box and subsequent center position, reducing the re-
liance on pseudo-labels. As the optical flow method strug-
gles with scale variation of target objects, in the cycle train-
ing, the search frames are cropped as 255 × 255 according
to the input object center and last frame estimated object
scale instead of the scale initialized in pseudo-labels.
Network architecture. The architecture of our network
follows conventional Siamese trackers. We adopt the
ResNet50 as the feature extractor. Features from layer 2, 3,
4 are used as inputs of the region proposal network (RPN),
and these features are interpolated to the same spatial res-
olution. Also, a learned weight is used to aggregate these
three correlation maps. The spatial resolution of search fea-
ture size is 31×31, the grid size in region mask operation is
the same as this. The anchor scale of RPN is set as 8, and the
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Table 1. Evaluation results on TrackingNet, VOT2016 and VOT2018 benchmark datasets. Unsup denotes unsupervised training.
TrackingNet VOT2016 VOT2018

Tracker Unsup
Suc ↑ Pre ↑ NPre ↑ EAO ↑ Acc ↑ Rob ↓ EAO↑ ACC↑ Rob↓

SiamFC [1] No 0.571 0.533 0.663 0.235 0.532 0.461 0.188 0.503 0.585
DaSiamRPN [48] No - - - 0.411 0.610 0.220 0.326 0.560 0.340
SiamRPN++ [21] No 0.733 0.694 0.800 - - - 0.414 0.600 0.234

ATOM [4] No 0.703 0.648 0.711 - - - 0.401 0.590 0.204
DiMP [2] No 0.740 0.687 0.801 - - - 0.440 0.597 0.153
KCF [15] Yes 0.447 0.419 0.546 0.192 0.489 0.569 0.135 0.447 0.773
ECO [5] Yes 0.561 0.489 0.621 0.375 0.550 0.569 0.280 0.270 0.480

S2SiamFC [33] Yes - - - 0.215 0.493 0.639 0.180 0.463 0.782
LUDT+ [35] Yes 0.563 0.495 0.633 0.299 0.570 0.331 0.230 0.490 0.412
USOT [47] Yes 0.599 0.551 0.682 0.351 0.593 0.336 0.290 0.564 0.435

USOT* [47] Yes 0.616 0.566 0.691 0.402 0.600 0.233 0.344 0.578 0.304
ULAST*-off Yes 0.649 0.585 0.725 0.397 0.599 0.224 0.347 0.569 0.304
ULAST*-on Yes 0.654 0.592 0.732 0.417 0.603 0.214 0.355 0.571 0.286

anchor ratio is set as [0.33, 0.5, 1, 2, 3], ATSS [44] is used
to assign anchor label with the top-15 candidates. There are
K = 3125 candidate boxes in the prediction result of RPN.
Training details. Hyper-parameters for loss are set as λ1 =
10, λ2 = 1.2, λc = 0.5. In the region mask, TH is set
as 0 to pass all predicted results. In the mask-guided re-
weight strategy, we set hyper parameters as γ = 5, α = 7
and β = 0.8smax, where smax denotes maximum score
when generating the regional mask. The feature extractor of
ResNet50 is initialized with Imagenet pretrain. The legacy
training of 5 epochs is adopted to initialize the tracker with
the ability to locate the rough position of the target object.
Then 20 epochs of cycle training with one template frame
and three search frames is adopted to enable the tracker to
track objects with strong variation in practical cases. In the
training process, we set the batch size as 8, and an SGD
optimizer is used. The initial learning rate is set as 1e−3,
which is gradually decayed to 5e−5 in logspace.

4.2. Comparison with SOTA

We compare our proposed method with unsupervised
and supervised methods on five challenging datasets, in-
cluding OTB2015 [39], VOT2016 [19], VOT2018 [20],
TrackingNet [30] and LaSOT [8]. The offline tracking mode
is denoted as ULAST*-off, while the online tracking mode
with memory update is denoted as ULAST*-on.
VOT2016. There are totally 60 videos in this dataset. In this
benchmark, three metrics are used to report tracking perfor-
mance: Robustness (Rob), Accuracy (Acc) and Expected
Average Overlap (EAO) [19]. Table 1 shows evaluation re-
sults of our tracker. Without online update, the ULAST*-off
achieves better robustness score than the USOT* with on-
line update. When aided with online update, our ULAST*-
on achieves the best tracking performance among these un-
supervised trackers according to these three metrics.
VOT2018. VOT2018 contains more challenging video se-
quences than VOT2016 datasets. As shown in Table 1, the
ULAST*-off has an EAO score of 0.347, which is superior

Table 2. Evaluation results on OTB2015 and LaSOT datasets.
OTB2015 LaSOTTracker Unsup Suc↑ Pre↑ Suc↑ Pre↑

SiamFC [1] No 0.582 0.771 0.336 0.339
SiamRPN [22] No 0.637 0.851 0.411 0.380

SiamRPN++ [21] No 0.696 0.923 0.495 0.493
KCF [15] Yes 0.485 0.696 0.178 0.166
DSST [7] Yes 0.518 0.689 0.207 0.189

LUDT+ [35] Yes 0.639 0.843 0.305 0.288
USOT [47] Yes 0.589 0.806 0.337 0.323
USOT* [47] Yes 0.574 0.775 0.358 0.340
ULAST*-off Yes 0.645 0.878 0.468 0.448
ULAST*-on Yes 0.648 0.879 0.471 0.451

to all unsupervised trackers without online update. Further-
more, ULAST*-on can realize performance improvement
with online update, achieving an EAO score of 0.355.
OTB2015. OTB2015 contains 100 video sequences with
various targets. We compare our proposed method with
eight representatives of supervised and unsupervised track-
ers, and evaluation results are shown in Table 2. ULAST*-
on achieves the best success and precision score among
these unsupervised tracking with Success score of 0.648.
And it is worth mentioning that our ULAST*-off outper-
forms methods [35, 47] that rely on online update.
TrackingNet. TrackingNet is a large-scale benchmark for
tracking in the wild. In addition to the precision and success
metric used in OTB2015, TrackingNet introduced another
metric called normalized precision (NPre). The evaluation
results are shown in Table 1. ULAST*-off achieves a Suc-
cess score of 0.649, outperforming the state-of-the-art unsu-
pervised methods by a large margin. And the ULAST*-on
achieves a gain of 0.5 on success score when applying the
online update with the CPT module.
LaSOT. This benchmark dataset is the largest annotated
one in the tracking community, consisting of 280 long
videos sequences. The evaluation metric of this bench-
mark is the same as the TrackingNet, and the evaluation
results are shown in Table 2. ULAST*-off and ULAST*-on
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both achieve significant performance improvement on this
benchmark with success score of 0.645 and 0.648.

4.3. Ablation Study and Algorithm Analysis

In this section, we conduct extensive experiments and
give detailed analysis of our proposed method. For simplic-
ity, region mask, region mask (detach head), Precise RoI-
pooling, mask-guided loss re-weighting, residual connec-
tion are abbreviated as RM, RM(D), PrPool, ReLoss and
Res respectively. Besides, models are all trained on La-
SOT [8] and Got10k [16] with half iterations per epoch of
the full version.
Table 3. Quantitative analysis of CPT module and region mask
with ULAST*-off on VOT2018 benchmark.

RM RM(D) PrPool CPT Res Acc↑ Rob↓ EAO ↑
✓ ✓ 0.560 0.272 0.346
✓ ✓ ✓ 0.560 0.304 0.317

✓ ✓ 0.558 0.337 0.322
✓ ✓ 0.552 0.342 0.301
✓ - - -

✓ 0.561 0.309 0.310

Consistency Propagation Transformation(CPT). For
evaluating the contribution of the CPT module, we conduct
three experiments. Notably, the output of this module does
not contain the common residual connection in attention-
based operations. The motivation of this design is to exploit
rich temporal feature of the target object, reducing the re-
liance on initial template feature. To validate that, we carry
out an experiment trained with residual connection in CPT
module by adding the initial template feature to the output.
As the result shown in Table 3, the EAO score drops from
0.346 to 0.317 with this residual connection, demonstrat-
ing that involving the initial template will cause a perfor-
mance drop. Besides, we remove the region mask to eval-
uate the CPT module alone, the EAO score drops to 0.310,
but compared to tracker trained with single frame (in Ta-
ble 4, EAO=0.296), i.e. spatial self-supervision only, this
model still has a performance improvement of 1.4 EAO. In
addition, we try to replace the CPT module with PrPool. As
mentioned above, the training pipeline is prone to breaks
down (gradient explosion) in this setting for the incorrect
prediction result of the tracker in intermediate frames.
Region mask. To better understand the proposed region
mask, here we perform two experiments. First, the re-
gion mask operation is substituted by the Precise RoI-
pooling [18] to select features from last frame. We pool the
candidate features from top-3 scored predicted boxes after
non-maximum suppression. Pooled features are then fused
by averaging, as shown in Table 3, the EAO score drops to
0.301. Second, we detach the gradient of candidate boxes
on search region when generating the regional mask. In this
form, the regional mask lost the ability to implicitly penal-
ize the intermediate tracking errors. As the RM(D) option
shown in Table 3, the EAO score drops from 0.346 to 0.322.

Table 4. Quantitative analysis of the mask-guided loss re-
weighting on VOT2018 benchmark.

RM CPT ReLoss Acc↑ Rob↓ EAO ↑
0.559 0.370 0.284

✓ 0.565 0.361 0.296
✓ ✓ 0.557 0.309 0.331
✓ ✓ ✓ 0.560 0.272 0.346

Table 5. Quantitative analysis of pretrain feature impact on
OTB2015 and LaSOT benchmark. * denotes the ULAST model
trained with ImageNet pretrain.

OTB2015 LaSOTsetting Suc↑ Pre↑ Suc↑ Pre↑
ULAST-on 0.610 0.811 0.433 0.407
ULAST-off 0.607 0.812 0.429 0.405
ULAST∗-on 0.643 0.862 0.442 0.418
ULAST∗-off 0.639 0.862 0.436 0.410

Mask guided sample re-weighting. Here we conduct ex-
periments on cycle training and legacy training (training by
template-search pairs from single frames) to validate the ef-
fectiveness of this strategy. As shown in Table 4, with this
strategy, both of the performances are boosted in EAO: from
0.331 to 0.346 and from 0.284 to 0.296 for cycle training
and legacy only training, respectively.
Impact of ImageNet pretrain. For fair comparison to
existing unsupervised tracking works, here we train our
tracker from scratch. Detailly, we substitute ResNet50 [14]
pretrained on ImageNet classification as DenseCL [37]
pretrain, which is self-supervised trained with contrastive
learning. Then the trained model is evaluated on OTB2015
and LaSOT benchmark datasets for comparison, results are
shown in Table 5. The performance of the ULAST-on and
ULAST-off have a relatively slight performance drop com-
pared to ULAST* model. It suggests that a better represen-
tation can contribute to unsupervised visual tracking.

5. Conclusion
In this paper, we propose a novel framework for unsu-

pervised tracking called ULAST. To generate reliable tem-
plate kernel in the forward propagation process and thus en-
able our framework to be trained with cycle consistency, we
first propose a consistency transformation. In the backward
propagation process, we propose a region mask operation to
implicitly penalize tracking error on intermediate frames.
Besides, a mask-guided loss re-weighting strategy is pro-
posed to assign dynamic weight to the loss from samples of
various pseudo label qualities. With these proposed compo-
nents, our ULAST can fully explore temporal supervision in
unsupervised tracking process and achieves state-of-the-art
performance.
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