
When to Prune? A Policy towards Early Structural Pruning

Maying Shen, Pavlo Molchanov, Hongxu Yin, Jose M. Alvarez
NVIDIA

{mshen, pmolchanov, dannyy, josea}@nvidia.com

Abstract

Pruning enables appealing reductions in network mem-
ory footprint and time complexity. Conventional post-
training pruning techniques lean towards efficient inference
while overlooking the heavy computation for training. Re-
cent exploration of pre-training pruning at initialization
hints on training cost reduction via pruning, but suffers
noticeable performance degradation. We attempt to com-
bine the benefits of both directions and propose a policy
that prunes as early as possible during training without
hurting performance. Instead of pruning at initialization,
our method exploits initial dense training for few epochs
to quickly guide the architecture, while constantly evaluat-
ing dominant sub-networks via neuron importance ranking.
This unveils dominant sub-networks whose structures turn
stable, allowing conventional pruning to be pushed earlier
into the training. To do this early, we further introduce an
Early Pruning Indicator (EPI) that relies on sub-network
architectural similarity and quickly triggers pruning when
the sub-network’s architecture stabilizes. Through exten-
sive experiments on ImageNet, we show that EPI empow-
ers a quick tracking of early training epochs suitable for
pruning, offering same efficacy as an otherwise “oracle”
grid-search that scans through epochs and requires orders
of magnitude more compute. Our method yields 1.4% top-1
accuracy boost over state-of-the-art pruning counterparts,
cuts down training cost on GPU by 2.4×, hence offers a
new efficiency-accuracy boundary for network pruning dur-
ing training.

1. Introduction
The success of convolutional neural networks (CNNs)

fuels the recent progress in computer vision, boosting up
performance for classification, detection, and segmentation
tasks [16, 35, 37]. While enjoying the accuracy benefits
CNNs bring, a simultaneous increase in network complex-
ity imposes higher memory footprint and computing power
consumption, making deployment of CNNs on resource-
constrained devices a challenging task [7, 29, 30]. In lieu of

Figure 1. Pruning paradigm overview. Train-Prune-Finetune
prunes after training, effective but costs additional training time;
Prune-at-Initialization prunes right before training towards a
smaller network, cuts down on training time but suffers notable
performance degradation; Pruning-aware-Training (ours) prunes
during training aiming at benefits from two worlds. It governs on
post-pruning performance while aiming to minimize training time,
via a new policy around Early Pruning Indicator (EPI) that signals
an early optimal point to start pruning during training.

computation-intensive networks, recent work turn to com-
pression techniques for efficient models leveraging prun-
ing [3, 15, 25, 29], quantization [5, 43, 46], knowledge dis-
tillation [19, 31, 45], neural architecture search [38, 41, 44],
and architecture redesigns [21, 28, 39]. Among these, prun-
ing demonstrates to be a widely adopted method that com-
presses pre-trained models before deployment. The primary
goal of pruning aims to remove insignificant network pa-
rameters without impacting accuracy. In particular, struc-
tural pruning removes entire filters (or neurons) as such
the resulting structural sparsity benefits legacy off-the-shelf
platforms, e.g., CPUs, DSPs, and GPUs.

In general, network pruning involves three key steps: (i)
original training of a dense model for high accuracy, (ii)
pruning away insignificant weights to remove redundancy,
and finally (iii) fine-tuning the pruned model to recover per-
formance [15, 26, 30]. Despite remarkable compactness de-
livered by the last two steps, the original training of an over-
parameterized network remains mostly untouched. Such
approaches require a twice long time (resource) as an origi-
nal training recipe given similar required computes for fine-

12247

tuning, making the entire pipeline slow, sometimes infeasi-
ble. For example, a very recent breakthrough in language
modeling, a GPT-3 model [4], requires millions of dollars
(more than 300 NVIDIA V100 GPU years) just for the ini-
tial training. Already aware of post-training redundancy, an
interesting question arises - can we somehow prune a net-
work during its initial training, as such the resulting sparsity
can (i) immediately benefit training and (ii) save us from the
costly additional fine-tuning upon training ends?

One intuitive and ideal solution to this problem is prun-
ing the network right at initialization even before training
starts. The intriguing observation from the Lottery Ticket
Hypothesis [9] hints potential to this task: it shows the
(i) existence of small sub-models, identifiable via prun-
ing, within a large dense model, that can (ii) be trained in
isolation to achieve the same accuracy as its dense coun-
terpart [9, 25]. This field has quickly evolved and recent
approaches have enhanced policy for optimal sub-network
at the initialization by preserving the loss or the gradient
flow [8, 24, 42]. Despite rapid progress, the approaches of
sub-network identification at the initialization remain chal-
lenging and still suffer noticeable accuracy loss [10, 12].

Instead of zero training, in this work, we showcase the
benefits and practicability of pruning early during training.
Doing so allows one to (i) save compute by training only
pruned models most of the time, (ii) alleviate any extra fine-
tuning by aligning the process with original training, while
(iii) suppressing accuracy loss by moving slightly later into
the training regime for pruning guidance. We name this ap-
proach pruning-aware-training (PaT). As shown in Fig. 1,
unlike pruning-at-initialization, PaT takes full advantage of
early-stage dense model training that is beneficial for rapid
learning and optimal architecture exploration [1, 11], while
aiming to identify the best sub-network as early as possi-
ble, rather than waiting till training ends as in conventional
pruning.

The key of benefiting from the training efficiency of PaT
and saving training time relies on finding an early yet eli-
gible point during training to start pruning. Existing meth-
ods that perform pruning during training [3,10,27,33] have
shown the efficacy of this direction by reducing the turn-
around time. However, in most cases a fixed initial interval
for pruning is set heuristically, or post-training statistics are
required. In this work we focus on understanding how the
starting point of pruning can be set automatically.

We start by analyzing in depth the evolution of pruned
architectures via performing trimming across all epochs rig-
orously and compare their suitability for pruning. Though
laborious, this oracle estimate offers key insights on pruning
during training. We observe an important property: agnos-
tic of magnitude or gradient criterion, (i) pruning at early
epochs results in different final architectures, but (ii) domi-
nant architecture emerges within just a few epochs and sta-

bilizes thereafter till training ends, allowing conventional
pruning to be pushed earlier into the training.

Amid such property we further propose a novel met-
ric, called Early Pruning Indicator (EPI), that estimates the
structure similarity between networks resulted in pruning at
consecutive epochs of the same base model. Given intrinsic
access to model weights and gradients during training, EPI
can be calculated very efficiently alongside initial training
without bells and whistles, while helping avoid the other-
wise lengthy grid search for starting epochs. Once the re-
sulting pruning structure will not vary between epochs we
argue and demonstrate it is safe to prune. As prior work [25]
and we observe, structural pruning acts as an architecture
search and tries to find the optimal number of neurons per
layer. Therefore, we hypothesize that pruning can be per-
formed as soon as the architecture of the dominant sub-
network becomes stable. We demonstrate that the proposed
metric works across varying network architectures, pruning
ratios, delivering consistent reductions in training time.

Our main contributions are as follows:
• We propose a novel metric called Early Pruning Indi-

cator (EPI) that indicates an early point to start pruning
during training. Our metric enables training to benefit
from sparsity, significantly reducing training resources
with minor accuracy drop.

• We demonstrate that for structural pruning (output
channel pruning), initial dense training fuels accuracy
boosts. Augmented by EPI, our pruning-aware-training
outperforms pruning-at-initialization alternatives by a
large margin.

• We show that EPI is agnostic to the pruning method
used by showing efficacy for both magnitude-based and
gradient-based pruning, enabling a new state-of-the-art
boundary for training speedup through in-situ pruning.

2. Related Work

Network pruning. Mainstream pruning methods can be
divided into three categories depending on when pruning is
performed: 1) train-prune-finetune, 2) prune at initializa-
tion, and 3) prune while training.

The first group, train-prune-finetune, performs pruning
on a densely pre-trained network and then, fine-tune the re-
sulting structure to recover the performance loss caused by
pruning. There are many methods aiming at preserving the
final accuracy [17, 29, 30] and minimize the output change
of each layer [18, 26]. A key focus of these work resides
in identifying redundant connections whose removal brings
the least perturbation to the overall performance. While en-
abling plausible performance and improving efficiency at
test time, the aforementioned approaches cannot yet bring
any efficiency benefit to training. Quite in contrary, most
recipes result in nearly doubled training time amid the re-

12248

quirement for lengthy fine-tuning.
Prune at initialization methods, backed by the Lottery

Ticket Hypothesis [9], question the necessity of dense train-
ing for performance convergence [25]. A forerunner in this
group is SNIP [24], an approach that identifies a trainable
sub-network at initialization. Subsequently, other methods
such as FORCE [8], GraSP [42], or SynFlow [40] have been
proposed to improve performance. These methods make the
training more efficient as they only train the sparse network.
However, the reliability of pruning at initialization remains
unsatisfactory facing inevitable performance gaps [10].

Prune while training methods rest in the middle by find-
ing a trade-off between training efficiency and final accu-
racy. Literature falls under two streams towards this task: a)
regularization-based methods that encourage sparsity dur-
ing training [3, 13, 27], and b) sub-ticket selection methods
via saliency that discard redundancy [2, 14, 17]. Our work
belongs to the latter given its efficacy to quickly enforce
a pruning ratio and ease-of-control during training. Un-
der this realm, one line of work learns sub-networks during
training [3,27,33]. Others, such as Frankle et al. [10], study
the need of few training iterations before pruning in order
to maximize the performance. These methods struggle to
automatically identify the starting points at which pruning
can be performed, while heavily relying on hand-crafted or
post-training heuristics for decision making.
Network similarity. Our policy explores the network sim-
ilarity of two sub-networks resulted from pruning. A com-
prehensive review of network similarity measures was pre-
sented in [23]. These methods aim at comparing the rep-
resentation between two fully trained models with different
initialization, hence are not applicable to in-training gaug-
ing for pruning where weights and dominant architectures
are both changing. To get the structural similarity for prun-
ing, we focus on the number of remaining neurons across
layers in a network when comparing with another one. The
difference between these skeletons using coefficients can
be directly measured by Spearman’s [36] and Kendall’s tau
[22] rank correlation. However, these rank correlation met-
rics take into account the specific ranking and, more impor-
tantly, they would rely on all neurons in the network. Thus,
they provide the same value for all pruning ratios.

Of particular relevance to this work is [10] by Frankle et
al. that proposes an approach to measure the instability of
a network structure to understand pruning viability. One
noticeable finding by this work shows that the best time
to perform iterative magnitude pruning tends to be after
some initial training. Interestingly it identifies a relation-
ship between the model instability and the accuracy of the
pruned network, though the instability measure proposed
by the method can only be measured after training is com-
pleted, hence remains insufficient to directly signal when to
start pruning during training. EarlyBERT [6], a work on

Algorithm 1 Iterative pruning within one epoch
1: For prune ratio α, schedule the number of neurons to prune per step

for S steps via exponential scheduler [8], forming m ∈ RS

2: while |P| ≤ α|F| do
3: Average importance calculated by (2) or (3) over multiple mini-

batches
4: P is the indices of mi bottom-ranked neurons
5: WP ← 0 ▷ remove pruned neurons
6: R = F − P ▷ the remaining neurons
7: Update WR; i← i+ 1
8: end while

NLP models, also studies the network similarity to guide
the pruning. However, it uses the mask Hamming distance
to measure the sub-network similarity. This requires the full
pruning mask to be fixed between sub-networks, selecting
the exact same neurons, thus impairing the flexibility.

3. Method
We next elaborate our early pruning algorithm in details.

3.1. Objective Function

Consider a neural network with L layers, each layer
specified by its weight Wl ∈ RCl

O×Cl
I×Kl×Kl

, K being
the kernel size and CI and CO being the number of in-
put and output channels/neurons, respectively. Altogether,
these parameters form the parameter set W = {Wl}Ll=1

for the network. Given a training set consisting of N input-
output pairs {(xi, yi)}Ni=1, learning the parameters of a net-
work under filter sparsity constraints can be expressed as
solving the following optimization problem:

argmin
W

1

N

N∑
i=1

ℓ(yi, f(xi,W)) + r(W), s.t.
|P|
|F|

≥ α

(1)
where ℓ(·) denotes the loss function that compares the net-
work prediction to the ground-truth, f(·) encodes the net-
work transformation, r(·) is a regularizer acting on the net-
work parameters, and α is the target pruning ratio. F =
{F l}Ll=1 represents the index set of all the neurons in the
network. This index set can be divided into two disjoints
sets P = {P l}Ll=1 and R = {Rl}Ll=1, representing the
index sets of the pruned and remaining neurons respec-
tively. We have F = P ∪ R and P ∩ R = ∅. PaT
involves three stages: dense training, network pruning,
and sparse training. During initial dense training, the for-
ward/backward passes are computed using all the filters in
the network f(xi,WF). While during sparse training, the
forward/backward passes only use the remaining neurons
f(xi,WR). Akin to [29, 30], we follow the paradigm of
iterative pruning that finishes within one epoch. More pre-
cisely, as shown in Algorithm 1, the process consists of the
following two steps. First, at each training iteration, we

12249

compute the importance metric of each neuron according
to a pruning criterion. Meanwhile we keep updating net-
work weights as normal. Then, at each pruning step, we
get the averaged importance score for all neurons, and then
remove the neurons with the smallest importance values.
Each pruning step is carried out after seeing multiple train-
ing batches, usually several hundreds of batches are more
than sufficient [29]. Note that though containing several
quick interactive steps, the entire pruning can be finished
very quickly within one training epoch.

For comprehensiveness we consider two popular criteria
from literature - both magnitude-based and gradient-based
schemes for neuron importance ranking:
Magnitude-based criterion uses the l2-norm of the neuron
weights to measure the relevance of a neuron:

Il
n = ||Wl

n||2/
√
P l, (2)

where P l = Cl
I ×Kl ×Kl denotes the number of parame-

ters per filter at layer l, and n specifies the output neuron in-
dex within Wl. Such normalization ensures its comparabil-
ity for neurons from different layers with different sizes [3].
Gradient-based criterion considers the Taylor expansion of
the loss change to approximate the importance of a neuron.
Initially, Molchanov et al. [30] proposed to estimate impor-
tance as a magnitude of the gradient-activation product, and
more recently, SNIP [24] and FORCE [8] extended the idea
to a parameter level. Specifically, gradient-based criterion
using Taylor expansion for neurons can be defined as:

Il
n =

∣∣∣∣∑w∈Wl
n

gww

∣∣∣∣ , (3)

where gw is the gradient of the weight w. The metric esti-
mates an approximate change in the loss function once the
neuron is removed. As suggested in [29], for networks us-
ing batch normalization, the best way to apply pruning is on
the batch normalization layers instead of convolutional fil-
ters directly. Additionally, the loss of removing the channel
can be approximated via accumulative effect of the learn-
able scale and shift: Il

n =
∣∣gγl

n
γl
n + gβl

n
βl
n

∣∣, where γ and
β are the weight and bias of the batch normalization layer,
respectively. We empirically observe slight improvements
using L1 for pruning during training rather than the original
L2 as in [29] for post-training pruning.

3.2. Towards Early Pruning

Recall that our goal is to maximize the accuracy of the
network while minimizing the compute required for train-
ing. This compute is usually dominated by the amount of
time performing dense training. The sooner we prune the
network, the less resources it requires to finish training.

As both prior work [11] and we empirically observe,
the early stage of neural network training imposes a rapid

Figure 2. Structure of different sub-networks. Colored circles and
solid lines are active neurons and connections. Sub-figures (a), (b)
and (c) are three different sub-networks of the original network
on the left. While these sub-networks having the same number of
neurons in total, sub-networks (b) and (c) are in higher similarity.

motion in parameter space with large gradient magnitudes.
This generates fruitful information for initial network con-
vergence and a quick accuracy boost. With such a fact,
an intuitive option for early pruning can be to analyze the
emergence of important neurons at different training stages
that the network gradually picks up for the underlying task,
and then prune the insignificant ones right away.

Given its intrinsic access to weights and gradients, train-
ing allows one to quickly rank all the neurons globally with
very little extra compute. This allows the network to take a
quick glimpse into the problem from the architecture space
that is empirically observed informative [16, 20, 37], while
we can quite efficiently track architectural convergence.

To this end, we check after each training epoch for a
sub-network specified by the top k most important neurons
globally according to the chosen pruning criterion. Close
to but different from a final winning ticket, an interme-
diate helps identify dominant neurons, but remains not as
strong as its final version, while constantly changing dur-
ing training. However, as we will show later, the architec-
ture of such sub-network changes rapidly in the first few
epochs, then surprisingly shows minimal changes thereafter
for the remaining epochs. Knowingly exploiting such fast
convergence to stability and slow changes of dominate sub-
network thereafter, we argue and demonstrate pruning can
be started as early as when its Top-k sub-network stabilizes.
Next, we explore network similarity to signal such stability.

3.3. Early Pruning Indicator (EPI)

We look into the structural similarity between dominant
sub-networks to quantify architectural changes during train-
ing. Under a global neuron pruning scheme, merely using
pruning ratio as a guidance fells short for this task: each
pruning ratio can be easily satisfied by multiple variants,
each sharing the same number of neurons while differing in
architectures (see examples in Fig. 2). As an alternative, we
examine the distribution of the number of remaining neu-
rons across all layers per pruned network.

Consider two sub-networks N1 and N2 under the same
prune ratio containing the same number of remaining neu-
rons. Let n(1,l) and n(2,l) be the number of neurons
of lth layer in nets N1 and N2 respectively, then set
{n(1,1), n(1,2), · · · , n(1,L)} describes the structure of the

12250

sub-network N1, and similarly for N2. For the lth layer,
we define the normalized difference between N1 and N2 as

dl(N1,N2) =
|n(1,l) − n(2,l)|
n(1,l) + n(2,l)

, (4)

yielding a range from zero to one. The lower the distance,
the closer the layer structure is. On top of this we can now
construct a pruning stability indicator Ψ combining the sim-
ilarity for all the layers in the network:

Ψ(N1,N2) = 1− 1

L

∑L

l=1
dl(N1,N2), (5)

where Ψ ranges from 0 to 1, with a lower value indicates
high variations between the two sub-networks, and a high
value indicates stability in the resulting network structure.

Given a pruning stability indicator, the algorithm to de-
cide when to prune is described in Algorithm 2. We first
calculate the neurons’ importance scores according to the
pruning criterion at the end of each epoch t. Get the top
k neurons by ranking the importance scores and the resul-
tant sub-network structure Nt = {n(t,1), n(t,2), · · · , n(t,L)}
where

∑L
l=1 n(t,l) = k and nt,l is the number of neurons in

the lth layer. Then calculate the sub-network structure sim-
ilarities between Nt and Nt−j for 1 ≤ j ≤ r where r is the
range of past epochs that we want to have a structure com-
parison. We use the averaged structure similarity to reflect
the structure stability, namely:

EPIt =
1

r

∑r

j=1
Ψ(Nt,Nt−j). (6)

This structure stability score is constantly increasing dur-
ing training. When it reaches a certain threshold τ , we
can safely say that the resultant sub-network is reliable to
achieve a good performance and we can start the pruning.

4. Experiments
We next experiment with varying architectures and prun-

ing methods to showcase the strength of our proposed
method for the classification task. In the appendix, we also
demonstrate applicability to the task of object detection.
Experimental Settings. We prune ResNet34, ResNet50
and MobileNetV1 neural network architectures on the Im-
ageNet ILSVRC 2012 dataset [34] (1.3M images, 1000
classes). Unless otherwise stated each pruning uses one
single node with 8 NVIDIA Tesla V100 GPUs. All ex-
periments share the original training pipeline following Py-
Torch mixed-precision training under NVIDIA’s recipe [32]
with 90 epochs in total. The learning rate is warmed up lin-
early in the first 8 epochs, then follows a cosine decay over
the entire training. We use PyTorch Distributed Data Paral-
lel training and for each GPU with an individual batch size
at 128. Our unpruned models achieve 77.32% top-1 accu-
racy with ResNet50, 74.36% with ResNet34 and 72.93%
with MobileNetV1.

Algorithm 2 Pruning-aware-Training (PaT)
Input: Network with random initialized weights WF,0, stability thresh-
old τ , pruning ratio α, total epochs T as in original recipe
Output: Pruned structureR; trained weights WR,T

1: enforce epoch status ∈ {dense, prune, sparse}
2: epoch status← dense
3: for epoch t = 0, 1, . . . , T do
4: if epoch status is dense then
5: Train WF,t by gradient descent
6: Get importance score averaged over the epoch
7: Get (1− α)|F| top ranked neurons to formNt

8: Get EPIt with Eq. (6)
9: if (EPIt ≥ τ) and (EPIt ≥ EPIt−j)1≤j≤5 then

10: epoch status← prune
11: end if
12: else if epoch status is prune then
13: Prune α|F| neurons with Algorithm 1
14: Get P , updateR
15: epoch status← sparse
16: else
17: Train WR,t by gradient descent
18: end if
19: end for
20: ReturnR, WR,T

0 10 20 30 40 50 60 70 80 90

prune epoch

70

71

72

73

74

T
o
p
1
 A

c
c
(%

)

50%-PaT

50%-lottery ticket hypothesis

Figure 3. Accuracy as a function of the pruning epoch for prune
aware training (PaT) in green, and the lottery ticket in gray for
a ResNet50 on ImageNet. The dense version achieves 77.32%
accuracy. PaT yields better performance if the pruning starts after
a few training epochs. However, if pruning occurs too late, the
accuracy for PaT drops significantly.

4.1. Understanding Early Pruning Epochs

We start with understanding in depth the variations in
final accuracy as a function of the starting pruning epoch.
To do so, we analyze the accuracy changes by varying the
starting pruning epoch, and continue training to the final
epoch and check the associated accuracies.
Pruning at different epochs. Fig. 3, in green, shows the
top-1 accuracy obtained by pruning 50% of the neurons on
a ResNet50 using gradient-based criterion at various epochs
during the 90-epoch training cycle. As shown, the accuracy
drop for late pruning is significant as there is not enough
time left for recovering. We also observe that, compared to
pruning at initialization (at epoch 0), pruning after a few
epochs consistently yields better performance. However,
for all these experiments there is always a certain accuracy
drop compared to the unpruned upper bound (77.32%).
Lottery ticket hypothesis for structural pruning. To bet-
ter understand the role of early training with a dense model
rather than a pruned model, we evaluate the idea of lottery-
ticket hypothesis for structural pruning. We follow [9] and

12251

train from scratch a sub-network obtained by pruning using
the original initialization. All pruning masks are collected
from the previous experiment (Fig. 3). Results are shown
in the same plot with a gray line. Note that, due to iterative
nature of the pruning algorithm, for pruning at 0 we use the
mask when the epoch is finished. When it is applied at the
initialization as a lottery ticket, the final accuracy is slightly
different. From these results, we can conclude that, in the
structural pruning case, the lottery ticket hypothesis may not
hold. Pruning the network during training performs better
than training a winning ticket in isolation from scratch.
Varying pruning ratio and architecture. We now take a
closer look at the accuracy drop incurred when pruning oc-
curs during the early stage of training (first 30 epochs from
Fig. 3). Fig. 4 shows these results for different architectures
using magnitude-based and gradient-based pruning respec-
tively. As we can see, for magnitude-based pruning, there is
a significant drop in accuracy if the pruning occurs too early,
especially for large prune ratios. This effect is particularly
clear if, for instance, we prune 50% neurons of a ResNet50
at epoch 0 which makes the network not trainable. This
is expected as the pruning ratio is large and the weights
have not been updated at all. Therefore, it is not possible
to estimate the importance of each neuron correctly. For
gradient-based pruning, the accuracy drop varies depending
on the architecture. In this case, pruning at initialization
has less impact compared to magnitude-based pruning. For
instance, pruning a ResNet34 or a MobileNetV1 leads to
minimal drop in accuracy. For ResNet50, however, the ac-
curacy drop increases as the pruning ratio increases. Thus,
late pruning would be preferred to maximize performance.
Let’s see how we can find the optimal pruning epoch during
a single training session.

4.2. EPI-guided Pruning

Given the previous results, we now demonstrate the abil-
ity of our approach to determine the optimal pruning epoch.
Thus, in this experiment we compare our policy to a heuris-
tic and a random policies. For heuristic policy, we consider
setting the pruning epoch to 0 which is equivalent to prun-
ing at initialization [8,24]. For the random policy, we select
randomly a pruning epoch during the early stage of train-
ing, i.e. in the range [0, 30]. We repeat the random policy
experiment 100 times and report the mean of the results.
Selecting the EPI threshold (τ). Our method introduces
a hyperparameter τ such that when EPI (Eq. 6) reaches it
we can start pruning. We find that a universal value can
be used for all architectures and all pruning ratios, how-
ever, it is sensitive to the pruning algorithm. To this end,
we perform a sensitivity analysis on ResNet50 over prun-
ing ratios of 10%–50% with increments of 10% and use a
grid search to set the value that yields the best pruning re-
sult. As a result, we find τ = 0.983 for magnitude-based

Network(s) Starting epoch for pruning
Random Init. [8, 24] Pre-defined [11] EPI (ours)

M
ag

ni
tu

de ResNet50 0.940 3.604 0.115 0.091
ResNet34 0.267 0.838 0.353 0.169

MobileNet-v1 6.285 – 0.135 0.135
Overall 2.497 2.221 0.201 0.132

G
ra

di
en

t ResNet50 0.992 2.738 0.267 0.092
ResNet34 0.153 0.122 0.221 0.195

MobileNet-v1 0.132 0.186 0.110 0.178
Overall 0.426 1.015 0.199 0.155

Table 1. Absolute top-1 accuracy change relative to the results
per oracle grid search for optimal pruning starting point. Lower is
better. Init. refers to pruning at initialization using a structural ver-
sion of FORCE [8], also equivalent to the structural and iterative
SNIP [24]. Pre-define refers to heuristically pre-define a prun-
ing start epoch 30, which we find empirically the last epoch not
leading to a significant accuracy drop. This is aligned with [10]
suggesting waiting for several training iterations before pruning.

pruning and τ = 0.944 for gradient-based pruning to be the
best. We tuned this value for ResNet50, however, we will
show its generalizability by performing tests on ResNet34,
MobileNetV1 in the main text and SSD in the Appendix.
Policy comparison. Tab. 1 shows the results of experi-
ments for importance and magnitude based pruning under
the guidance of our proposed EPI and the universal EPI
threshold τ . We compare the results with random policy and
heuristic policy of pruning at initialization. We report the
average accuracy drop compared to best accuracy achieved
via grid search for each network. The values for ResNet50
gradient-based pruning is averaged over prune ratios 10%–
90%; all the rests are averaged over prune ratios 10%–50%.
We also report the overall average accuracy drop over three
networks when using different policies to guide the prun-
ing in row “overall”. As shown, our policy clearly yields a
significantly higher performance compared to random prun-
ing. In the case of gradient-based pruning, our approach
performs on par compared to heuristics on ResNet34 and
MobileNetV1. Overall our approach performs better with
less top-1 accuracy change. For magnitude-based pruning,
our approach yields significantly better results compared to
heuristics. The optimal pruning epoch varies for different
architectures and different prune ratios, see the appendix
for the sensitivity analysis to the stability threshold.

4.3. Training Speedup

We also calculate the actual training speedup when using
our proposed EPI (Eq. 6) policy and the heuristic ones on
ResNet50 gradient-based pruning. Fig. 5 shows the policies
comparison result.
Comparing to pruning at initialization. When compared
with pruning at initialization (heuristic pruning at epoch 0),
we achieve larger speed-up although we start prune later.
That happens because of structural pruning, where pruning
at different epochs might result in different structures: faster

12252

0 5 10 15 20 25 30

 prune epoch

60

62

64

66

68

70

72

74

 T
o
p
1
 A

c
c
(%

)

 MobileNetV1

0 5 10 15 20 25 30

 prune epoch

64

66

68

70

72

74

 T
o
p
1
 A

c
c
(%

)

 ResNet34

0 5 10 15 20 25 30

 prune epoch

69

71

73

75

77

 T
o
p
1
 A

c
c
(%

)

 ResNet50

(a) Magnitude-based pruning

0 5 10 15 20 25 30

 prune epoch

66

68

70

72

74

 T
o

p
1

 A
c
c
(%

)

 MobileNetV1

0 5 10 15 20 25 30

 prune epoch

64

66

68

70

72

74

 T
o
p
1
 A

c
c
(%

)
 ResNet34

0 5 10 15 20 25 30

 prune epoch

72

74

76

78

 T
o
p
1
 A

c
c
(%

)

 ResNet50

0 5 10 15 20 25 30

 prune epoch

45

50

55

60

65

70

75

 T
o

p
1

 A
c
c
(%

)

 ResNet50 (larger prune ratios)

(b) Gradient-based pruning

Figure 4. The final ImageNet Top-1 accuracy of the pruned network when pruning occurs at different epochs during the early stage of
training. We observe pruning at initialization tends to result in untrainable network with magnitude-based pruning method. For gradient-
based method, we observe a higher degradation occur when more filters are pruned, and show pruning ratios up to 90% on ResNet50.
[Pruned Ratio] denotes the percentage of neurons removed. Results on MobileNetV3 are shown in the appendix.

0.9 1 1.1 1.2 1.3 1.4 1.5 1.6

 Train Speedup

-12

-10

-8

-6

-4

-2

0

 T
o

p
1

 A
c
c
 C

h
a

n
g

e
(%

)

10%

20%

30%

40%

50%

60%

70%

Init.[6, 20]

EPI (ours)

EPI-latency aware (ours)

Figure 5. Actual training speed-ups on ResNet50 with different
prune ratios using different pruning policies. Actual speed mea-
sured on an NVIDIA TITAN V GPU at batch size 64. Top-right
corner is preferred.

or slower. It turns out that pruning at epoch 0 is very inef-
ficient, as most neurons pruned are from deeper layers re-
sulting in slow models; therefore, training speed-up is not
huge and training such a model is more expensive than the
one resulted from pruning at a later epoch. In the meantime,
pruning at zero leads to larger accuracy drop especially with
large prune ratios.
Latency-aware pruning. We further apply latency-aware
pruning using our policy, which aims to reduce the latency
of the model and not only the number of parameters. For
that, we penalize the neuron group’s saliency with the la-
tency reduction resulting from pruning them. Those neu-
rons requiring larger compute will have lower importance
and, therefore, more likely to be pruned. As shown in
Fig. 5, using EPI-latency aware pruning yields models that
are more GPU-friendly and faster.
Training cost comparison. Training a dense ResNet50 on
ImageNet with 8 NVIDIA Tesla V100 GPUs takes around

Method Top-1 acc. ↑ FLOPs (G)↓ Starting epoch ↓ Total train
FLOPs reduc.(%) ↑

ResNet34 GPWP [2] 73.64 3.087 40 13.8
PaT (ours) 73.50 2.911 11 25.6

ResNet50
PT [27] 74.73 2.303 - 30.0

LFPC [17] 74.18 1.612 35 37.2
PaT (ours) 74.85 1.695 13 50.3

Table 2. Comparison with state-of-the-art in-training pruning
methods. For a fair comparison we report here 10% filter pruning
for ResNet34 and 40% filter pruning for ResNet50 as literature.

9 hours and costs around $220 on AWS. Considering a 50%
pruning ratio, the training cost of our method is $154 as
we achieve up to 30% training time reduction. In contrast,
the total training cost for train-prune-finetune methods is
around $364 as they need 90 additional retraining epochs.
Thus, a 2.4× training cost reduction.

4.4. Comparisons with the State-of-the-art

We also compare our method to prior arts on Ima-
geNet dataset and present results in Tab. 2. Compared to
GPWP [2], our method yields lower accuracy but a higher
reduction in FLOPs. Compared to PruneTrain [27], we
achieve higher accuracy and a significantly larger training
FLOPs saving. LFPC [17] yields 0.67% larger accuracy
loss. Even with less FLOPs remaining in pruned model,
LFPC requires 13% more total training FLOPs as it needs
more epochs for dense train. Overall, we prune much earlier
than other techniques, and, therefore, reduce more training
time. Moreover, while other techniques use heuristics to de-
fine the pruning epoch, we propose an automatic metric that
scales with a universal threshold to automatically determine
an early point. This helps create a new benchmark protocol
by evaluating prior methods under the same setting.

12253

(a) magnitude-based EPI (b) gradient-based EPI

Figure 6. Structure stability analysis for ResNet architectures for (a) magnitude-based and (b) gradient-based pruning. Dashed line shows
the EPI threshold selected for each network under the pruning criterion. Results for MobilnetV1 can be found in the supplemental material.

4.5. Ablation Studies

Stability analysis. The goal of this experiment is to demon-
strate that during the early stage of training, the dominate
sub-network architecture varies significantly and slowly
converges to the final architecture as the training progresses.
To this end, we train different architectures to convergence
and, in the process, we compute their EPI scores for sub-
networks under different pruning ratios. Fig. 6 shows the re-
sults for this experiment for magnitude-based and gradient-
based criterion respectively. As shown, the EPI score de-
creases as the pruning ratio increases. We also observe
that, independently of the pruning method used, the stability
grows rapidly in the early stage of training and then contin-
ues increasing steadily for later stages. These results are
consistent with those presented in [11] showing a signifi-
cant change in the network architecture at the beginning but
not towards the end of training.

Performance with similar structures. We now provide
empirical support to the assumption that sub-networks with
similar structures will likely perform similarly. That is, the
performance relies on the structure rather than the neurons
being selected during pruning. We use the ResNet50 and
obtain the pruning mask with 50% neurons off at epoch
10 using gradient-based ranking. Next, we obtain 10 vari-
ations of this mask by selecting different neurons in each
layer while maintaining the number of neurons per layer.
As a result, we get different neuron masks but the same sub-
network structure. We train the initially pruned network to
convergence and obtain a top1 accuracy of 73.98%. Finally,
we evaluate the performance of training to completion the
checkpoint pruned using the 10 mask variations yielding an
average top1 accuracy difference of only 0.36% ± 0.13%.
We also randomly generate 5 variations of masks that lead
to different sub-network structures, which have an around
0.8 similarity score to the structure resulted from the orig-
inal mask. We get an average performance difference of
0.53% ± 0.39%. Note that, for a fair comparison, we use
the same checkpoint for prune to minimize randomness due
to different initialization. From these results, we can con-
clude networks with the same structure perform similarly.
With different structures, the performance varies more.

Compared to pruning pre-trained models. In many prac-
tical scenarios, people train a model (or use a pre-trained

prune ratio post trained pruning EPI, equal epochs EPI, equal training time
10% 77.17% 77.69% 77.74%
20% 76.78% 76.82% 76.83%
30% 76.18% 76.23% 76.55%

Table 3. Comparison between pruning during training with EPI
and pruning a pre-trained model.

backbone) to solve the task at hand. However, there are
computation or latency constraints at deployment. People
might want to train a smaller model from scratch or prune
and finetune the existing model. Both scenarios would ben-
efit from EPI, as we show next.

We compare pruning during training versus pruning pre-
trained models in Tab. 3. For pruning a pre-trained model
(loading Pytorch weights from ResNet50 trained for 90
epochs, with acc. 77.32%), we do pruning in the same
setting and then finetune it for 90 epochs (marked as post
trained pruning). For a fair comparison when we apply EPI
on a model trained from scratch we increase the total num-
ber of epochs to 90+90 = 180 (column EPI, equal epochs).
We clearly outperform pruning pre-trained weights, while
saving compute costs. We get pruned models earlier, mak-
ing the training even faster. Models from EPI can be fine-
tuned for the same amount of clock time as post trained
pruning, shown as column EPI, equal training time. This
improves results even more as models get trained for more
epochs. Again, applying EPI speeds up training right after
pruning is complete, while pruning on pre-trained benefits
pruning only after the training is finished.

5. Conclusions
We have introduced an approach to automatically deter-

mine when pruning can be performed during training with-
out affecting the final accuracy and with the additional con-
straint of doing so as early as possible. To this end, we have
proposed a policy based on Early Pruning Indicator (EPI), a
metric to measure the stability of the sub-network structure.
Our experiments on multiple pruning algorithms and prun-
ing ratios have demonstrated the benefits of our method to
reduce the accuracy drop when pruning a network and ob-
serve a significant reduction in training time.
Limitations. Our experiments are mainly focused on image
classification and object detection (in supplementary mate-
rial). We leave for future work checking the generalizability
of our policy to other learning tasks.

12254

References
[1] Alessandro Achille, Matteo Rovere, and Stefano Soatto.

Critical learning periods in deep networks. In International
Conference on Learning Representations, 2018. 2

[2] S. A. Aketi, S. Roy, A. Raghunathan, and K. Roy. Gradual
channel pruning while training using feature relevance scores
for convolutional neural networks. IEEE Access, 8:171924–
171932, 2020. 3, 7

[3] Jose M Alvarez and Mathieu Salzmann. Learning the num-
ber of neurons in deep networks. In Advances in Neural In-
formation Processing Systems, pages 2270–2278, 2016. 1,
2, 3, 4

[4] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Sub-
biah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakan-
tan, Pranav Shyam, Girish Sastry, Amanda Askell, et al.
Language models are few-shot learners. arXiv preprint
arXiv:2005.14165, 2020. 2

[5] Yaohui Cai, Zhewei Yao, Zhen Dong, Amir Gholami,
Michael W Mahoney, and Kurt Keutzer. Zeroq: A novel
zero shot quantization framework. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 13169–13178, 2020. 1

[6] Xiaohan Chen, Yu Cheng, Shuohang Wang, Zhe Gan,
Zhangyang Wang, and Jingjing Liu. Earlybert: Efficient
bert training via early-bird lottery tickets. arXiv preprint
arXiv:2101.00063, 2020. 3

[7] Xiaoliang Dai, Peizhao Zhang, Bichen Wu, Hongxu Yin, Fei
Sun, Yanghan Wang, Marat Dukhan, Yunqing Hu, Yiming
Wu, Yangqing Jia, P Vajda, M Uyttendaele, and Niraj K
Jha. ChamNet: Towards efficient network design through
platform-aware model adaptation. In CVPR, 2019. 1

[8] Pau de Jorge, Amartya Sanyal, Harkirat S Behl, Philip HS
Torr, Gregory Rogez, and Puneet K Dokania. Progressive
skeletonization: Trimming more fat from a network at ini-
tialization. arXiv preprint arXiv:2006.09081, 2020. 2, 3, 4,
6

[9] Jonathan Frankle and Michael Carbin. The lottery ticket hy-
pothesis: Finding sparse, trainable neural networks. In Inter-
national Conference on Learning Representations, 2019. 2,
3, 5

[10] Jonathan Frankle, Gintare Karolina Dziugaite, Daniel M
Roy, and Michael Carbin. Linear mode connectivity and the
lottery ticket hypothesis. In International Conference on Ma-
chine Learning, 2020. 2, 3, 6

[11] Jonathan Frankle, David J. Schwab, and Ari S. Morcos. The
early phase of neural network training. In International Con-
ference on Learning Representations, 2020. 2, 4, 6, 8

[12] Trevor Gale, Erich Elsen, and Sara Hooker. The state of spar-
sity in deep neural networks. In International Conference on
Machine Learning, 2020. 2

[13] Susan Gao, Xin Liu, Lung-Sheng Chien, William Zhang, and
Jose M Alvarez. Vacl: Variance-aware cross-layer regular-
ization for pruning deep residual networks. In Proceedings
of the IEEE/CVF International Conference on Computer Vi-
sion Workshops, pages 0–0, 2019. 3

[14] Yue-Seng Goh and Eng-Chong Tan. Pruning neural net-
works during training by backpropagation. In Proceedings

of TENCON’94-1994 IEEE Region 10’s 9th Annual Interna-
tional Conference on:’Frontiers of Computer Technology’,
pages 805–808. IEEE, 1994. 3

[15] Song Han, Huizi Mao, and William J Dally. Deep com-
pression: Compressing deep neural networks with pruning,
trained quantization and huffman coding. arXiv preprint
arXiv:1510.00149, 2015. 1

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. corr
abs/1512.03385 (2015), 2015. 1, 4

[17] Yang He, Yuhang Ding, Ping Liu, Linchao Zhu, Hanwang
Zhang, and Yi Yang. Learning filter pruning criteria for deep
convolutional neural networks acceleration. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 2009–2018, 2020. 2, 3, 7

[18] Yang He, Ping Liu, Ziwei Wang, Zhilan Hu, and Yi Yang.
Filter pruning via geometric median for deep convolutional
neural networks acceleration. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 4340–4349, 2019. 2

[19] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distill-
ing the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015. 1

[20] A. Howard, Menglong Zhu, Bo Chen, D. Kalenichenko, W.
Wang, Tobias Weyand, M. Andreetto, and H. Adam. Mo-
bilenets: Efficient convolutional neural networks for mobile
vision applications. ArXiv, abs/1704.04861, 2017. 4

[21] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-
dreetto, and Hartwig Adam. Mobilenets: Efficient convolu-
tional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861, 2017. 1

[22] Maurice G Kendall. A new measure of rank correlation.
Biometrika, 30(1/2):81–93, 1938. 3

[23] Simon Kornblith, Mohammad Norouzi, Honglak Lee, and
Geoffrey Hinton. Similarity of neural network representa-
tions revisited. volume 97 of Proceedings of Machine Learn-
ing Research, pages 3519–3529, 09–15 Jun 2019. 3

[24] Namhoon Lee, Thalaiyasingam Ajanthan, and Philip Torr.
SNIP: Single-shot network pruning based on connection sen-
sitivity. In International Conference on Learning Represen-
tations, 2019. 2, 3, 4, 6

[25] Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and
Trevor Darrell. Rethinking the value of network pruning.
In International Conference on Learning Representations,
2019. 1, 2, 3

[26] Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A filter
level pruning method for deep neural network compression.
In Proceedings of the IEEE international conference on com-
puter vision, pages 5058–5066, 2017. 1, 2

[27] Sangkug Lym, Esha Choukse, Siavash Zangeneh, Wei Wen,
Sujay Sanghavi, and Mattan Erez. Prunetrain: fast neural
network training by dynamic sparse model reconfiguration.
In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis,
pages 1–13, 2019. 2, 3, 7

12255

[28] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun.
Shufflenet v2: Practical guidelines for efficient cnn architec-
ture design. In Proceedings of the European conference on
computer vision (ECCV), pages 116–131, 2018. 1

[29] Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri Frosio,
and Jan Kautz. Importance estimation for neural network
pruning. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 11264–11272,
2019. 1, 2, 3, 4

[30] Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila,
and Jan Kautz. Pruning convolutional neural networks for re-
source efficient inference. arXiv preprint arXiv:1611.06440,
2016. 1, 2, 3, 4

[31] Ravi Teja Mullapudi, Steven Chen, Keyi Zhang, Deva Ra-
manan, and Kayvon Fatahalian. Online model distillation for
efficient video inference. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 3573–
3582, 2019. 1

[32] Nvidia. Convolutional networks for image classi-
fication in pytorch. https : / / github . com /
NVIDIA / DeepLearningExamples / tree /
master/PyTorch/Classification/ConvNets#
convolutional - networks - for - image -
classification-in-pytorch, 2020. 5

[33] Oyebade Oyedotun, Djamila Aouada, and Bjorn Ottersten.
Structured compression of deep neural networks with debi-
ased elastic group lasso. In The IEEE Winter Conference on
Applications of Computer Vision, pages 2277–2286, 2020. 2,
3

[34] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, Alexander C. Berg, and
Li Fei-Fei. Imagenet large scale visual recognition challenge.
Int. J. Comput. Vision, 115(3):211–252, Dec. 2015. 5

[35] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. In In-
ternational Conference on Learning Representations, 2015.
1

[36] Charles Spearman. The proof and measurement of associa-
tion between two things. 1961. 3

[37] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,
Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent
Vanhoucke, and Andrew Rabinovich. Going deeper with
convolutions. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 1–9, 2015.
1, 4

[38] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan,
Mark Sandler, Andrew Howard, and Quoc V Le. Mnas-
net: Platform-aware neural architecture search for mobile.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 2820–2828, 2019. 1

[39] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model
scaling for convolutional neural networks. In International
Conference on Machine Learning, pages 6105–6114. PMLR,
2019. 1

[40] Hidenori Tanaka, Daniel Kunin, Daniel LK Yamins, and
Surya Ganguli. Pruning neural networks without any data

by iteratively conserving synaptic flow. arXiv preprint
arXiv:2006.05467, 2020. 3

[41] Arash Vahdat, Arun Mallya, Ming-Yu Liu, and Jan Kautz.
Unas: Differentiable architecture search meets reinforce-
ment learning. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 11266–
11275, 2020. 1

[42] Chaoqi Wang, Guodong Zhang, and Roger Grosse. Pick-
ing winning tickets before training by preserving gradient
flow. In International Conference on Learning Representa-
tions, 2020. 2, 3

[43] Tianzhe Wang, Kuan Wang, Han Cai, Ji Lin, Zhijian Liu,
Hanrui Wang, Yujun Lin, and Song Han. Apq: Joint search
for network architecture, pruning and quantization policy. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 2078–2087, 2020. 1

[44] Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang,
Fei Sun, Yiming Wu, Yuandong Tian, Peter Vajda, Yangqing
Jia, and Kurt Keutzer. Fbnet: Hardware-aware efficient con-
vnet design via differentiable neural architecture search. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 10734–10742, 2019. 1

[45] Hongxu Yin, Pavlo Molchanov, Jose M Alvarez, Zhizhong
Li, Arun Mallya, Derek Hoiem, Niraj K Jha, and Jan Kautz.
Dreaming to distill: Data-free knowledge transfer via Deep-
Inversion. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 8715–
8724, 2020. 1

[46] Chenzhuo Zhu, Song Han, Huizi Mao, and William J
Dally. Trained ternary quantization. arXiv preprint
arXiv:1612.01064, 2016. 1

12256

