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Abstract

Graph Neural Networks (GNNs) with attention have
been successfully applied for learning visual feature match-
ing. However, current methods learn with complete graphs,
resulting in a quadratic complexity in the number of fea-
tures. Motivated by a prior observation that self- and
cross- attention matrices converge to a sparse represen-
tation, we propose ClusterGNN, an attentional GNN ar-
chitecture which operates on clusters for learning the fea-
ture matching task. Using a progressive clustering mod-
ule we adaptively divide keypoints into different subgraphs
to reduce redundant connectivity, and employ a coarse-to-
fine paradigm for mitigating miss-classification within im-
ages. Our approach yields a 59.7% reduction in runtime
and 58.4% reduction in memory consumption for dense de-
tection, compared to current state-of-the-art GNN-based
matching, while achieving a competitive performance on
various computer vision tasks.

1. Introduction
Finding correspondences between images is an essen-

tial task for many computer vision applications such as Si-
multaneous Localization and Mapping (SLAM) [14, 20],
Structure-from-Motion (SfM) [32, 43] and camera pose es-
timation [48]. Given a pair of images, correspondences
can be established through point-to-point feature matching.
Classical pipelines typically obtain correspondences with a
nearest neighbor (NN) search of feature descriptors and re-
ject outliers based on their match score or using a mutual
NN check. Such methods focus only on the local similarity
between feature descriptors while ignoring geometric infor-
mation and the global receptive field.

Recent works [5, 30, 35] have proposed to learn the task
of feature matching using graph neural networks (GNNs)

*These authors contributed equally to this work.
†Corresponding authors.

Figure 1. Sparse attention in cluster-based feature matching. Each
keypoint interacts only with points within its cluster (proposed
method) instead of interacting with all keypoints as in current
GNN-based feature matching [30].

and attention. In SuperGlue [30], Transformer [40] based
GNNs are applied on the complete graph of keypoints
within (intra graph) and between (inter graph) images. Each
node is represented with an encoded keypoint descriptor and
updated using self- and cross- multi-head attention, while
alternating between the intra- and inter- complete graphs,
respectively. Learning complete graphs with attention suf-
fers from a computational and memory complexity which is
quadratic in N, where N is the number of keypoints. How-
ever, keypoints typically show a strong correlation with just
a small number of points (sparse adjacency matrix). Fur-
thermore, in the context of feature matching, a large portion
of keypoints are non-repeatable and irrelevant for matching.
A complete graph representation is thus redundant and re-
sults in wasteful attention-based message passing.

Efforts to reduce the quadratic complexity of attention
mainly focused on self-attention. For example, reducing
the attention dimension by splitting the input sequence into
local windows [23] or by approximating attention with ker-
nels [8]. However, these works are less suitable for fea-
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ture matching, where we are required to perform self- and
cross- attention on features within and between images, re-
spectively. Inspired by the Routing Transformer [27], we
propose a coarse-to-fine cluster-based GNN to learn the fea-
ture matching task with a lower redundancy and compu-
tational complexity. We extract query and key features of
keypoints across images to classify the points with strong
correlation into the same cluster and establish local graphs
using points from the same category. Each point interacts
only with points in the same local graph resulting with a
sparser attention computation (Fig. 1) . Since clustering
keypoints across images may lead to an erroneous group-
ing within images, we take a coarse-to-fine approach and
first divide the points into a small number of major clus-
ters which are gradually divided into multiple smaller clus-
ters. We evaluate our method on multiple tasks, namely:
relative pose estimation, homography estimation and visual
localization. Our model achieves state-of-the-art accuracy
across tasks, with a significant improvement in efficiency
for dense detection (59.7% and 58.4% reduction in runtime
and memory, respectively).

In summary, our contributions are as follows:

1. We present a learnable, coarse-to-fine clustering
method to establish local graphs for feature matching,
which reduces the spread of redundant information and
makes message passing more effective.

2. We introduce the ClusterGNN architecture, an atten-
tional GNN for learning the feature matching task us-
ing gradually forming clusters, approximating atten-
tion on complete graphs.

3. The proposed ClusterGNN method achieves state-of
the-art results on various tasks, with a significant re-
duction in runtime and memory consumption on dense
detection (59.7% and 58.4%, respectively) compared
to the current leading feature matching method (Su-
perGlue).

2. Related Work
Visual Feature matching. Matching features between a

pair of images is used in different computer vision applica-
tions, such as visual localization and relative pose estima-
tion. In classical pipelines, keypoints are first detected and
described using hand-crafted methods such as SIFT [18]
and ORB [28]. The nearest neighbor of each descriptor is
obtained based on Euclidean distances, followed by filter-
ing of incorrect matches using mutual consistency check,
Lowe’s ratio test [18], matching scores and neighborhood
consensus.

In recent years, deep learning methods have been em-
ployed for improving different aspects of the feature match-

ing pipeline. Learning-based feature detectors and descrip-
tors such as SuperPoint [10], ASLFeat [19] and R2D2 [25],
were proposed for learning more robust, discriminative and
repeatable representations of keypoints. Other methods fo-
cused instead on the matching and filtering tasks [30,36,44].
A significant improvement in matching accuracy was re-
cently achieved by SuperGlue [30], an attentional GNN
architecture, which establishes complete graphs over key-
points within and between images and update their repre-
sentations with an attention-based message passing. Albeit,
since the runtime and memory complexity of attention is
quadratic in the number of nodes, operating on the com-
plete graph does not scale well. This in turns limits usabil-
ity of SuperGlue, especially when matching a large number
of points. In this work, we build on the success of Super-
Glue and propose a sparser alternative to reduce the prop-
agation of redundant messages, achieving a significant de-
crease in runtime and memory while preserving matching
performance.

Efficient Attention. The attention mechanism was pop-
ularized through the Transformer architecture [40], achiev-
ing state-of-the-art results across different natural language
processing and computer vision tasks [4, 11, 12]. In the
context of attentional GNNs, Transformers can be viewed
a graph-like model operating on the complete graph of to-
kens, which are updated using self- and cross- attention
[15, 41]. Since Transformers (and attentional GNNs oper-
ating on complete graphs) are hampered by the quadratic
complexity of attention in the sequence length (number of
nodes), different methods were recently proposed to spar-
sify connections or linearize the attention complexity.

In [5], a small set of reliable nodes are established as
seeds to reduce the cost of attention. In [6, 22, 23], data in-
dependent or fixed sparsity patterns were proposed to bound
temporal dependencies, such as local or strided attention.
Drawing inspiration from CNN networks, those works sug-
gested to apply attention within a fixed local neighborhood,
which bounds the complexity, but limits the ability to es-
tablish long range interactions. In the context of feature
matching, such methods may degrade performance since
the distribution of keypoints is not regular, and the two
matched images may have large scale and viewing angle
differences. Other approaches [2,7,42] proposed to approx-
imate attention by either lowering the sequence dimension
through pooling or lowering the attention matrix dimension
using low-rank methods. Such approximations, however,
include assumptions which are less appropriate for feature
matching.

Inspired by content-based sparse attention [16, 27],
which use data-driven methods to cluster tokens and oper-
ate within clusters, we propose a learned clustering module,
which utilizes k-means to construct sub-graphs in a coarse-
to-fine module, and passes messages within each local clus-
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Figure 2. The ClusterGNN architecture. Our model is composed on three components. A Complete Graph Initialization Module
(Section 3.3.1) first constructs and updates complete inter- and intra- graphs with attentional GNN layers. In order to leverage on the
inherent sparsity of keypoint attention maps, a ClusterGNN Module (Section 3.3.2), learns to hierarchically partition the joint complete
graph into smaller sub-graphs before applying attention-base updates. Finally, a Matching Module (Section 3.3.3), establishes the matching
probability matrix using dot product and the Dual Softmax operator. A learnable dustbin is further appended to account for non-matching
keypoints.

ter graph for saving memory and computations.

3. Method
3.1. Problem Definition

Given an image pair (Ia, Ib) and extracted keypoints
(Ka,Kb) with corresponding confidence scores (Ca, Cb) and
descriptors (Da,Db), the feature matching problem is de-
fined as pairing keypoints which match in real-world coor-
dinates:

Ma,b = {(i, j)|∥Ta(K(i)
a )− Tb(K(j)

b )∥ ≤ ϵ} (1)

where Tx represent the function which transfer pixel co-
ordinates to world coordinates. In practice, Tx is usually
obtained by homography matrix estimation based on pre-
dicted matches. When faced with large differences between
camera views and long-term environmental changes, tra-
ditional methods which rely on NN search often produce
wrong matches. Recent GNN-based methods apply atten-
tion in an iterative manner to remove matching-unrelated
environmental noise and learn global geometric distribution
information in order to achieve optimal matching and in-
crease matching robustness.

3.2. Motivation

Existing works [30, 35] which learn the feature match-
ing task with attention-based GNNs, use densely connected
graphs. However, as shown in Fig.3a, a large portion of key-
points are non-repeatable and irrelevant for feature match-
ing. In addition, the respective self- and cross- attention

matrices tend to converge to sparse matrices (visualized in
Fig.3b), where most of the attention values are distributed
around zero (Fig.3c). Therefore, it is important to design a
sparse structure for efficient feature matching.

In order to learn over sparse graphs and reduce redun-
dancy, we extract query and key features of keypoints to
classify strongly correlated points into the same cluster
(Fig.3d). The points in each cluster are used to build a small
sub-graph. Using attention, we can then pass information
and update keypoints representation within each local sub-
graph. Due to different descriptor statistics between images,
direct classification may cause points from the same image
to be wrongly classified into the same cluster. In order to
address this problem, we propose a cluster-based coarse-
to-fine paradigm and apply attentional GNN layers withing
clusters for learning feature matching between two sets of
feature points and their associated descriptors.

3.3. Network Architecture

Similarly to [30], our method first applies a Com-
plete Graph Initialization Module (Section 3.3.1), which
constructs complete graphs over encoded keypoints and
descriptors within and between images (intra- and inter-
graphs respectively), and updates them using attention. In-
stead of learning multiple attentional GNN layers over the-
ses complete graphs, we design a ClusterGNN module
(Section 3.3.2), which learns to hierarchically partition the
complete graph into smaller sub-graphs, and then applies
the attention update mechanism within these graphs. Fi-
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nally, the matching probability between keypoints is com-
puted with a Matching Module (Section 3.3.3), based on
the dot product of updated feature representations and the
Dual-Softmax operator [26, 35]. An overview of our pro-
posed method is shown in Fig. 2.

(a)

(b) (c) (d)

Figure 3. (a) Visualization of feature matching between two im-
ages. Keypoints and matches are represented by white points and
colored lines, respectively where color varies between green to red
according to the matching confidence (higher in red). (b) Cross
attention matrix of 50 sampled keypoints from two images. (c)
The distribution of attention values in an example row in the atten-
tion matrix. (d) The cluster attention matrix. The attention matrix
within each cluster is framed with a red box.

3.3.1 Complete Graph Initialization Module

Given input keypoints K, confidence scores C and local de-
scriptors D, we generate a joint representation as in [30] by
adding descriptors and encoded keypoints and confidence
scores. We then construct complete intra (within images)
and inter (between images) graphs over the keypoints in
(Ia, Ib) and apply multi-head attention as in [40] and [30]
for updating node representation. This construction and ini-
tialization process can be expressed as follows:

D0
a,D0

b = CA(SA(KE(Ia)), SA(KE(Ib))),
Di

a,Di
b = CA(SA(Di−1

a ), SA(Di−1
b )),

KE(Ix) = Dx +MLP (Kx ⊕ Cx), (2)

where SA/CA stands for self/cross attention (introduced
below), KE is the keypoint encoding layer, and ⊕ de-
notes the concatenation operator. For two input feature sets
(Fa,Fb), we implement attention-based GNNs to pass and

aggregate messages between nodes, as follows:

CA(Fa,Fb) = Fa,b +MLP (Fa,b ⊕Att(Fa,b,Fb,a)),

Att(Fa,Fb) = softMax(
QaK

T
b√

dim
)Vb,

(Qx,Kx, Vx) = Linear(Q,K,V )(Fx), x ∈ {a, b}, (3)
SA(Fx) = CA(Fx,Fx), x ∈ {a, b}. (4)

In practice, we use multi-head attention [40] to improve the
expressivity. In addition, all MLP operators are followed
with batch normalization and ReLU before the last layer.

3.3.2 Cluster GNN Module

Cluster-based Sparse Attention The computational bot-
tleneck of the attentional GNNs (Equation 3) is due to the
matrix multiplication operation between the query and the
key matrices. However, since keypoints are likely to be
correlated to only a small number of points (Fig.3b), it is
desirable to operate over local sub-graphs (where the cor-
responding matrices are much smaller). The Cluster-GNN
module implements a cluster-based sparse attention to ap-
proximate self- and cross- attention over complete graphs,
as follows:

Âtt(F̃) = M · softMax(
Q̃K̃T

√
dim

)Ṽ ,

F̃ = Fa ∪ Fb,

Q̃ = Qa ∪Qb, K̃ = Ka ∪Kb, Ṽ = Va ∪ Vb

(5)

where M = {mij} is the cluster matrix. mij = 1 when
queryi (the ith query vector of F̃) and keyj (the jth key
vector of F̃) belong to the same cluster. Note that with
this formulation, we no longer distinguish between features
from different images (like the self/cross attention in Sec-
tion 3.3.1), and directly operate on their union. While other
works also apply the K-NN or top-k operators to determine
the index matrix M , they do not apply well to cross atten-
tion in matching tasks.

Learnable Hierarchical Clustering. The key to our
clustering method is the definition of cluster centers and the
discrepancy function. We note that the attention map itself
provides a means for measuring similarity, where the atten-
tion weights between two features are determined according
to their query and key vectors, as follows:

αi,j =
exp(queryi · keyj)∑
k exp(queryi · keyk)

(6)

Since the query and key vectors are different linear projec-
tions derived from the input features (Eq. 3), αi,j ̸= αj,i is
satisfied in most cases. Thus, instead of directly clustering
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the feature vectors, we propose to cluster the union space
of the query and key vectors in order to get a better sparse
approximation.

Given k known cluster vectors {ci} and features {fi|fi ∈
Q∪K}, the discrepancy function is defined as follows:

dis(ci, fj) = 1− ci · fj
∥ci∥∥fj∥

, (7)

Using this function, we assign each feature with a cluster
center index cid based on its closest cluster and construct
the cluster Matrix M in Equation 5. Note that, in practice,
M does not need to be calculated explicitly.

During the training process, we initialize clusters centers
with the k-means algorithm, and update them as follows:

ci = βci + (1− β)(
∑

cidj=i

fj) (8)

where β is a weight to balance the old and new value of c,
which is set to 0.99. During test time, the trained cluster
centers are directly used to cluster the input features, thus
avoiding the iterative process used in traditional clustering
algorithms.

By using hierarchical clustering, we reduce the theo-
retical complexity of attention from O(n2) to O(n2k−2),
where n is the number of features and k is the number of
clusters. Since k controls the tradeoff between the qual-
ity of approximation (better for small values of k) and the
amount of calculations (smaller for large values of k), its
value should be set with consideration. In theory, the best
balance between clustering semantics and computational
complexity can be reached when we set cluster number
k =

√
n [27]. However, the input features processed in [27]

come from the same image and share similar statistics. For
the image matching problem, the input features are keypoint
descriptors extracted from two images, which may present
significant style differences. Directly using the fixed

√
n as

the number of clusters can thus lead to over-segmentation,
so that each cluster only contains features from the same im-
age. In order to mitigate this behavior we apply clusterGNN
with an increasing number of clusters, realizing a coarse-to-
fine semantic clustering (Fig. 4). We further carry an abla-
tion study to guide the choice of k and evaluate its effect.

3.3.3 Matching Module

We establish a matching confidence matrix C, by apply-
ing the dot product operator between the features computed
with the ClusterGNN module, {Fo

a(i), i = 1, 2, ..., n} and
{Fo

b (i), i = 1, 2, ...,m}:

C = {Ci,j = Fo
a(i) · Fo

b (j)} (9)

We further add an extra learnable dustbin channel on
both row and column of the confidence matrix C ( C̃) in or-
der to detect keypoints that are not matched. We adopt the

Figure 4. Visualization of hierarchical clustering. We show two
clusters (colored in red and blue, respectively) at four different
stages of ClusterGNN. The hierarchical clustering enables coarse-
to-fine grouping

Dual-softmax operator [26,35] for computing the matching
probability matrix P , by applying the log-softmax operator
on both the row and column dimensions of C̃, as follows:

Pi,j = logSoftMax(C̃i,·)j + logSoftMax(C̃·,j)i. (10)

At test time, we predict the matches using the argmax oper-
ator and a mutual check mechanism.

3.4. Loss

The ground truth matches set M and non-matching key-
points set (Ma,Mb) are supervised with the cross projec-
tion error (less than 3 pixels for matches and more than 5
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pixels for non-matches). The matching loss Lm is defined
as:

Lm = − |M|
∑

(i,j)∈M

Pij−

∣∣Ma

∣∣ ∑
i∈Ma

Pi,m+1 −
∣∣Mb

∣∣ ∑
j∈Mb

Pn+1,j

(11)

In order to achieve a better clustering effect and enable
semi-supervision, we further introduce a clustering loss:
Lc:

Lt
c =

∑
i,j

∥cti − f t
j∥. (12)

Our total loss consists of the matching loss Lm and the clus-
tering losses Lt

c computed across different clustering stages:

L = Lm + γ
∑

t∈{1,2,..,L}

Lt
c, (13)

where γ is set to 0.1 for balancing the two losses, t indi-
cates the clustering stage and L is the total number of stages.

3.5. Implementation Details

We train our model on the MegaDepth dataset [17], a
large outdoor dataset, including 1M internet images from
196 different locations and sparse 3D models computed
with COLMAP [32]. It also uses multi-view stereo to gener-
ate depth maps. We select training image pairs as in [13,21],
based on the overlap rate from the SfM co-visibility and re-
size images so that the larger edge is of size 1600.

Our model is optimized using Adam with an initial learn-
ing rate of 1 × 10−4. We implement attention with a four
heads multi-head attention throughout. Our Graph Initial-
ization module consists of three stacked self/cross attention
GNN layers. In order to reduce the GPU memory cost, we
further chunk query vectors into four parts for this module.
Our Cluster GNN module involves four stages with a dif-
ferent number of clusters, set as {16, 32, 64, 128}, respec-
tively, where each stage consists of two cluster-based GNN
attention layer.

4. Experiments
Feature matching is a challenging task due to differ-

ent factors such as occlusions, illumination and weather
changes. We evaluate ClusterGNN on three different tasks,
which heavily rely of feature matching, namely: pose esti-
mation, homography estimation and visual localization.

We compare our method with NN-search, SGMNet [5]
and SuperGlue [30], using both hand crafted features (SIFT
[18]) and learning-based features (ASLFeat [19] and Su-
perPoint [10]). For SGMNet, we retrain it ASLFeat using
the official training code. For SuperGlue, since the offi-
cial training code is not available and since its public model

(denoted as Superglue∗) was trained on MegaDepth [17],
Oxford and Paris datasets [24]), we retrain it with different
features following the training method described in the Su-
perGlue paper. We report both our own implementation and
the official results reported in the SuperGlue paper. We also
provide analysis of computation and memory efficiency. All
the reported experiments were run on a Tesla P-100 GPU
with 16GB memory.

4.1. Pose Estimation

We use the YFCC100M [38] dataset to evaluate the
performance of ClusterGNN on the pose estimation task.
This dataset provides a sparse reconstruction from SfM
[21,32,33] and ground truth poses. Following [3,30,44,45],
we report the AUC of pose errors at different thresholds
(5◦, 10◦, 20◦), where the pose errors are computed by the
maximum angular differences between estimated results
and ground truth in rotation and translation. For pose esti-
mation, we use RANSAC as a post-processing tool to com-
pute the essential matrix from predicted matches.

As shown in Table 1, ClusterGNN outperforms other
methods with ASLFeat. When using SuperPoint, our
method outperforms our re-implemented SuperGlue and
SGMNet, with a slight degradation compared to the official
version. When using SIFT, our method outperforms Su-
perGlue, with a slight degradation compared to SGMNet.
These results demonstrate the approximation and denois-
ing abilities of ClusterGNN. Qualitative inspection (Fig. 5),
further shows that ClusterGNN detects a larger number of
true matches compared to other methods, resulting in an im-
proved pose estimation.

4.2. Homography Estimation

We evaluate our method on the homography estimation
task using the HPathces dataset [1]. HPatches consist of 52
sequences that exhibit large illumination changes and 56 se-
quences under significant viewpoint changes. We follow the
setup proposed in Patch2Pix [47], and report the percentage
of correctly estimated homographies whose average corner
error distance is below 1/3/5 pixels. For all compared meth-
ods, we apply the OpenCV RANSAC toolbox to estimate
homography matrix. The local keypoints of SuperPoint [10]
and ASLFeat [19] are both tested in detail. To make a fair
comparison, we choose 4k keypoints for all methods and
use the same hyper-parameters.

As shown in Table 2, ClusterGNN achieves competitive
performance with a slight improvement compared to Super-
Glue and SGMNet.

4.3. Visual localization

Visual localization is one of the most important appli-
cations of feature matching and its performance heavily re-
lies on the matching quality. Given a query image, visual
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Figure 5. Qualitative results. The comparison of NN, Superglue, SGMNet and ClusterGNN on YFCC100M dataset with ASLFeat [19].
The number of keypoints is 2048. The red color indicates outliers and green color indicates inliers. ClusterGNN obtains more correct
matches.

Local Matcher Pose estimation

Features 5◦ 10◦ 20◦

SIFT [18]
NN 15.19 24.72 35.30

SGMNet 35.63 55.40 71.95
SuperGlue 30.12 47.25 63.05

ClusterGNN 32.82 50.25 65.89

SuperPoint [10]

NN 14.12 28.86 44.90
SGMNet 32.44 52.80 69.90

SuperGlue∗ 39.02 59.51 75.72
SuperGlue 34.93 55.31 72.34

ClusterGNN 35.31 56.13 73.56

ASLFeat [19]
NN 14.40 27.80 43.20

SGMNet 32.22 52.53 70.16
SuperGlue 37.50 58.30 75.07

ClusterGNN 42.62 61.22 76.75

Table 1. Pose estimation using the YFCC100M dataset. We
compare different matching methods (NN, SuperGlue, SGMNet
and ClusterGNN) across different keypoint extraction methods
(SIFT, ASLFeat and SuperPoint). We report the AUC of pose er-
rors at different thresholds (Section 4.1). Superglue∗ indicates the
officially released model. The best performance is highlighted in
bold.

localization aims to estimate its 6-DOF position, based on
a 3D reconstructed model. We integrate our method into
the official HLoc [29] pipeline for visual localization and
evaluate it on the Long-Term Visual Localization Bench-
mark [39]. This benchmark assesses performance under dif-
ferent conditions, such as texture-less scenes of indoor envi-
ronments and day-and-night changes, thus requiring highly
robust matching. Specifically, we use the Aachen Day-
Night dataset [31, 46] for evaluating outdoor localization
and the InLoc dataset [37] for evaluating indoor localiza-
tion. The Aachen Day-Night dataset provides 4328 images

Local Matcher overall Illumination viewpoint

Features Accuracy(%, ϵ < 1/3/5px)

SuperPoint [10]

NN 0.46 / 0.78 / 0.85 0.57 / 0.92 / 0.97 0.35 / 0.65 / 0.74
SGMNet 0.52 / 0.85 / 0.91 0.59 / 0.94 / 0.98 0.46 / 0.74 / 0.84

SuperGlue 0.51 / 0.83 / 0.89 0.61 / 0.93 / 0.98 0.45 / 0.73 / 0.83
ClusterGNN 0.52 / 0.84 / 0.90 0.61 / 0.93 / 0.98 0.44 / 0.74 / 0.81

ASLFeat [19]

NN 0.48 / 0.81 / 0.88 0.57 / 0.92 / 0.97 0.34 / 0.68 / 0.78
SGMNet 0.49 / 0.82 / 0.89 0.57 / 0.93 / 0.98 0.41 / 0.72/ 0.83

SuperGlue 0.49 / 0.83 / 0.89 0.57 / 0.92 / 0.98 0.41 / 0.72 / 0.81
ClusterGNN 0.51 / 0.83 / 0.89 0.61 / 0.95 / 0.98 0.42 / 0.72 / 0.82

Table 2. Homography Estimation on Hpatches. We report the
percentage of correctly estimated homographies under different
corner error distances.

of the Aachen city and 922 query images including 824
daytime images and 98 nighttime images taken by mobile
phone cameras. The InLoc dataset [37] offers 9972 refer-
ence images and 329 query images which contain signifi-
cant occlusions and variation in viewpoint and illumination.

We use the official HLoc [29] pipeline for visual local-
ization tasks. Consistent with the official benchmark, we
report the pose estimation accuracy under different thresh-
olds. Tables 3 and 4 report the results for indoor and out-
door localization, respectively. ClusterGNN achieves com-
petitive performance compared to Superglue on both indoor
and outdoor localization tasks, across different features.

4.4. Efficiency

Improving the processing efficiency and GPU memory
requirements, while maintaining or improving matching
performance is the main motivation for developing Clus-
terGNN. In this section, we compare the runtime and mem-
ory of our method with SGMNet and SuperGlue.

Fig. 6a and 6b, report the time and memory consumption
for different numbers of detected keypoints on a Telsa P-100
GPU with 16GB memory. Specifically, we test both run
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Local Matcher DUC1 DUC2

Features (0.25m,10◦) / (0.5m,10◦) / (1.0m,10◦)

SuperPoint [10]

NN 40.4 / 58.1 / 69.7 42.0 / 58.8 / 69.5
SGMNet 41.9 / 64.1 / 73.7 39.7 / 62.6 / 67.2
Superglue 49.0 / 68.7 / 80.8 53.4 / 77.1 / 82.4

ClusterGNN 47.5 / 69.7 / 79.8 53.4 / 77.1 / 84.7

ASLFeat [19]

NN 39.9 / 59.1 / 71.7 43.5 / 58.8 / 64.9
SGMNet 43.9 / 62.1 / 68.2 45.0 / 63.4 / 73.3
Superglue 51.5 / 66.7 / 75.8 53.4 / 76.3 / 84.0

ClusterGNN 52.5 / 68.7 / 76.8 55.0 / 76.0 / 82.4

Table 3. Indoor Localization Results (InLoc Dataset). We re-
port the percentage of correctly localized queries under different
thresholds. The evaluation metrics are defined according to the
leaderboard of Long-Term Visual Localization Benchmark [39].

Local Matcher Day Night

Features (0.25m,2◦) / (0.5m,5◦) / (1.0m,10◦)

SuperPoint [10]

NN 85.4 / 93.3 / 97.2 75.5 / 86.7 / 92.9
SGMNet 86.8 / 94.2 / 97.7 83.7 / 91.8 / 99.0
Superglue 89.6 / 95.4 / 98.8 86.7 / 93.9 / 100.0

ClusterGNN 89.4 / 95.5 / 98.5 81.6 / 93.9 / 100.0

ASLFeat [19]

NN 82.3 / 89.2 / 92.7 67.3 / 79.6 / 85.7
SGMNet 86.8 / 93.4 / 97.1 86.7/ 94.9 / 98.0
Superglue 87.9 / 95.4 / 98.3 81.6 / 91.8 / 99.0

ClusterGNN 88.6 / 95.5 / 98.4 85.7 / 93.9 / 99.0

Table 4. Indoor Localization Results (Aachen Day-Night
Benchmark(v1.0)). The evaluation metrics are refer to the leader-
board of Long-Term Visual Localization Benchmark [39].

(a) The comparison of time (b) The comparison of memory

Figure 6. Efficiency Comparison. We report the time and mem-
ory consumption with an increasing number of input keypoints.

time with Sinkhorn iterations and dual softmax. It should
be noted that memory consumption is consistent in both
Sinhorn and dual softmax. As shown in Fig. 6a, for 10k
keypoints(dense detection), ClusterGNN reduces the run-
time by 59.7%, compared to Superglue when using dual
softmax. Although SGMNet is more time efficient, Clus-
terGNN can achieve better memory efficiency and perfor-
mances at the same time. As shown in Fig. 6b,for dense
detection, our method the proposed reduces 58.4% of the
memory required by Superglue.

4.5. Ablation Study

We conduct ablation studies on the YFCC100M dataset
using ASLFeat [19] for detecting keypoints and the same

Methods Pose estimation

5◦ 10◦ 20◦

Fixed Cluster:16 31.26 48.55 64.50
Fixed Cluster:32 37.05 56.54 72.90
Fixed Cluster:64 37.44 56.58 72.68

Fixed Cluster:128 36.77 55.90 72.08
ClusterGNN 42.62 61.22 76.75

Table 5. The effect of fixing or varying the number of clus-
ters). We report pose accuracy under different thresholds based
on YFCC100M using 2K keypoints.

Methods Pose estimation Time Memory

5◦ 10◦ 20◦ (ms) (MB)

ClusterGNN w sinkhorn 38.83 58.87 75.11 68 94
ClusterGNN w dual softmax 42.62 61.22 76.75 61 94

Table 6. The effect of different operators for computing match-
ing probability. We report pose accuracy, processing time and
GPU memory for the YFCC100M dataset using 2K keypoints.

experimental setting as in Section 4.1. Our ablation focuses
on the effect of fixing or varying the number of clusters and
on the operator used for generating the matching probability
matrix.

Fixed vs. Varying Number of Clusters. Our Clus-
terGNN strategy gradually decreases the size of clusters
while increasing their number due to the tradeoff between
over segmentation and efficiency. In this experiment we
evaluate the effect of fixing the number of clusters versus
our choice to gradually increase it. Table 5 shows the re-
sults of fixing the number of cluster to {16, 32, 64, 128}
versus the results of our varying strategy. ClusterGNN with
a fixed number of cluster suffers from significant drop in
performance.

Sinkhorn vs Dual Softmax. Superglue [30] uses a dif-
ferential iterative optimal transport,namely Sinkhorn [9,34],
to solve the matching confidence. In our work, we adopt
non-iterative dual-softmax [26] operator for efficiency. As
shown in Table 6, dual-softmax achieves competitive per-
formance compared with Sinkhorn.

5. Conclusion
In this work, we have addressed the quadratic com-

plexity of GNN methods for feature matching. The pro-
posed method, named ClusterGNN, leverages on the inher-
ent sparsity of self- and cross- attention between keypoints
in the complete graph and dynamically constructs local sub-
graphs through a learned coarse-to-fine clustering. Exten-
sive evaluation on several computer vision tasks demon-
strates the effectiveness of our approach, achieving a com-
petitive performance while reducing runtime and memory
by 59.7% and 58.4%, respectively.
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