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Abstract

Current methods of multi-person pose estimation typi-
cally treat the localization and association of body joints
separately. In this paper, we propose the first fully end-to-
end multi-person Pose Estimation framework with TRans-
formers, termed PETR. Our method views pose estimation
as a hierarchical set prediction problem and effectively re-
moves the need for many hand-crafted modules like RoI
cropping, NMS and grouping post-processing. In PETR,
multiple pose queries are learned to directly reason a set
of full-body poses. Then a joint decoder is utilized to fur-
ther refine the poses by exploring the kinematic relations
between body joints. With the attention mechanism, the
proposed method is able to adaptively attend to the fea-
tures most relevant to target keypoints, which largely over-
comes the feature misalignment difficulty in pose estimation
and improves the performance considerably. Extensive ex-
periments on the MS COCO and CrowdPose benchmarks
show that PETR plays favorably against state-of-the-art ap-
proaches in terms of both accuracy and efficiency. The code
and models are available at https://github.com/
hikvision-research/opera.

1. Introduction

Multi-person pose estimation (aka, keypoint detection)

aims to detect all the instances and identify the kinematic

joints of each person simultaneously. It is one of the

fundamental computer vision tasks and has a wide range

of applications such as action recognition [9], human-

computer interaction [15], pedestrian tracking [1, 31] and

re-identification [22], etc.

Existing mainstream methods solve this challenging

task with two-stage frameworks, including top-down and

bottom-up approaches. Top-down methods [5, 10, 12, 33,

39], as illustrated in Figure 1a, first detect each individual

by a person detector and then transfer the task to a sim-
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Figure 1. Comparison of mainstream pose estimation frame-
works. SPPE in (a) indicates single-person pose estimation. We

proposed a fully end-to-end framework as show in (c).

pler single-person pose estimation problem. The top-down

pipeline comes with the following drawbacks: 1) the pose

estimation accuracy heavily relies on the performance of

person detector, incurring inferior performance in complex

scenarios [7]; 2) the computational cost is expensive due

to the use of the isolated detector [26, 32] and the running

time depends on the number of instances in the image. On

the other hand, bottom-up methods [3,17,27,30] (shown in

Figure 1b) first detect all potential keypoints in the image

in an instance-agnostic manner, and then perform a group-

ing post-processing to get instance-aware full-body poses.

The grouping process is usually heuristic, hand-crafted and
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Framework RoI-free Grouping-free NMS-free

Two-stage
Top-down �
Bottom-up �

Single-stage
Non end-to-end � �
Fully end-to-end � � �

Table 1. Comparison of pose estimation frameworks.

cumbersome [27], involving several hyper-parameters and

tricks. These kinds of methods split the pose estimation

problem into two steps and are often not optimized in a fully

end-to-end fashion.

Recently, there has been a great interest to directly es-

timate multi-person poses from the input image in a sin-

gle stage [26, 29, 32, 34, 36, 41]. SPM [29] propose a

structured pose representation that unifies person instance

and body joint position representations and simplifies the

multi-person pose estimation pipeline. FCPose [26] and In-

sPose [32] propose a fully convolutional multi-person pose

estimation framework using dynamic instance-aware con-

volutions, which is compact and efficient. These methods

eliminate the need for RoI (Region of Interest) cropping

and keypoint grouping post-processing and achieve a good

trade-off between accuracy and efficiency. However, they

still rely on “taking-peak” on the heatmap [29, 41] or score

map [26, 32] and hand-crafted NMS (Non-Maximum Sup-

pression) post-processing [26, 32, 36], which are still not

end-to-end optimized.

Inspired by the paradigm emerged in object detection

[4, 42], we present a fully end-to-end multi-person pose es-

timation framework (Sec. 3.1) with transformers, termed

PETR. The proposed method unifies person instance and

fine-grained body joint localization by formulating pose es-

timation as a hierarchical set prediction problem. Given

multiple randomly initialized pose queries, a pose decoder

(Sec. 3.3) learns to reason about the relations of objects [14]

and estimate a set of instance-aware poses under the global

image context. Then, a joint decoder (Sec. 3.4) is designed

to explore the structured relations between different joints

and further optimize the full-body poses at a finer level.

Compared with existing single-stage methods, PETR could

hierarchically attend to the features most relevant to target

keypoints, largely overcomes the feature misalignment is-

sue [11, 34] and improves the performance considerably.

Our end-to-end query-based framework is learned via the

bipartite matching strategy that avoids the heuristic label as-

signment and eliminates the need for NMS post-processing.

We illustrate and compare the mainstream pose estima-

tion frameworks in Figure 1 and Table 1. The main contri-

butions of this work are summarized as follows.

• We propose the first fully end-to-end learning frame-

work for multi-person pose estimation. The proposed

PETR method directly predicts instance-aware full-

body poses and eliminates the need for RoI cropping,

grouping, and NMS post-processings.

• We design hierarchical decoders to deal with the fea-

ture misalignment issue, and capture both relations be-

tween person instances and kinematic joints by the at-

tention mechanism.

• PETR surpasses all single-stage and bottom-up meth-

ods and is comparable to top-down methods on COCO

dataset. Besides, PETR performs well in crowded

scenes and establishes a new state of the art on Crowd-

Pose dataset.

2. Related Work

2.1. Multi-Person Pose Estimation

The existing multi-person pose estimation approaches

can be summarized into three categories: top-down meth-

ods, bottom-up methods and recent single-stage methods.

Top-down methods. The top-down methods first em-

ploy an object detector to obtain the bounding box of each

person instance in an image. Then the instance is cropped

from the bounding box for single-person pose estimation.

Representative works include Hourglass [28], RMPE [10],

CPN [5], SimpleBaseline [39], HRNet [33] and so on. In

general, top-down methods have a slow inference speed.

They break the multi-person pose estimation task into two

steps: person detection and single-person pose estimation.

Instead of cropping RoIs from the original image, Mask R-

CNN [12] utilizes RoIAlign operation to extract features of

RoIs from the feature maps of the detector, significantly

speeding up the inference. Moreover, top-down methods

are highly dependent on the performance of the detector.

Bottom-up methods. The bottom-up methods detect

all keypoints in an instance-agnostic fashion, and then

group them into individuals. Most existing bottom-up meth-

ods mainly focus on how to associate the detected keypoints

that belong to the same person. OpenPose [3] utilizes part

affinity fields to establish connections between keypoints of

the same instance. Associative embedding [27] produces a

detection heatmap and a tagging map for each body joint,

and then groups keypoints with similar tags into an indi-

vidual. PersonLab [30] groups keypoints by directly learn-

ing a 2D offset field for each pair of keypoints. PifPaf [17]

learns a Part Assiciation Field (PAF) to connect the key-

points into full-body poses. Compared to top-down meth-

ods, bottom-up methods are usually more efficient because

of their simpler pipeline of sharing convolutional computa-

tion. However, the grouping post-process is heuristic and

involves many tricks which often makes its performance in-

ferior to top-down methods.
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Figure 2. The overall architecture of PETR. C3 to C5 are multi-scale feature maps extracted from the backbone network (e.g., ResNet-

50). The visual feature encoder takes the flattened image features as inputs and refines them. Given N pose queries and the refined

multi-scale feature tokens, pose decoder predicts N full-body poses in parallel. After that, an additional joint decoder takes each scattered

pose (i.e., kinematic joints of each pose) as its reference points and outputs the refined pose as final results. K is the number of keypoints

for each instance (e.g., K = 17 in COCO [21] dataset).

Single-stage methods. To avoid the aforementioned

limitations in both top-down and bottom-up methods, the

single-stage methods [26, 29, 32, 34, 36, 41] are proposed to

densely regress a set of pose candidates over spatial loca-

tions, where each candidate consists of the keypoint posi-

tions that are from the same person. SPM [29] proposes

a structured pose representation to unify position informa-

tion of person instances and body joints. Due to the weak

regression results, CenterNet [41] proposes to match the

regressed keypoint positions to the closest keypoints de-

tected from the keypoint heatmaps. Point-set anchors [36]

adopt deformable-like convolutions to refine the predefined

pose anchors, mitigating the difficulties of feature mis-

alignment. FCPose [26] and InsPose [32] utilize dynamic

instance-aware convolutions to solve the multi-person pose

estimation problem, achieving better accuracy/efficiency

trade-off than other single-stage methods. Although these

approaches obtain competitive performance, they are not

fully end-to-end optimized and still need heuristic post-

processing like NMS or keypoint location correction [41].

2.2. Transformer in Vision

Transformer [35] has been widely applied in natural lan-

guage processing. Recently, many works attempted to in-

volve transformer architecture in computer vision tasks and

showed promising performances [4,6,8,37,42]. ViT [8] ap-

ply the transformer to encode a sequence of image patches

for image classification. DETR [4] and Deformable DETR

[42] adopt transformer architecture together with bipartite

matching to perform object detection in an end-to-end fash-

ion. MaskFormer [6] and SOIT [40] employ transformer

decoders to predict a set of binary masks directly, and ef-

fectively remove the need for many hand-crafted compo-

nents. SAANet [37] proposes a scene-adaptive transformer

network for crowd counting, achieving highest accuracy on

several benchmarks. PRTR [20] and TFPose [25] formulate

the pose estimation task as a regression problem by trans-

formers. However, they still follow the top-down frame-

work and need the hand-crafted RoI cropping operation. In

this paper, we use transformer to build a fully end-to-end

framework for multi-person pose estimation.

3. Methodology

3.1. Overall Architecture

As depicted in Figure 2, the proposed framework con-

sists of three key modules: visual feature encoder, pose de-

coder and joint decoder, where (1) the visual feature en-

coder is applied to refine the multi-scale feature maps ex-

tracted from the backbone network, (2) the pose decoder

is employed to predict multiple full-body poses, and (3)

the joint decoder is designed to further refine the full-body

poses at a joint level.

Given an image I ∈ R
H×W×3, we extract multi-scale

feature maps C3, C4 and C5 from the last three stages of

the backbone (e.g., ResNet [13]), whose strides are 8, 16

and 32, respectively. The multi-scale feature maps are pro-

jected to the ones with 256 channels by a spatial-wise fully-

connected (FC) layer and then flattened into feature tokens

C ′
3, C ′

4 and C ′
5. Specifically, the shape of C ′

i is Li × 256,
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Figure 3. Detailed structure of the pose decoder. Given N
pose queries, the pose decoder outputs N instance-aware full-body

poses. The progressive deformable cross-attention module can at-

tend to the visual features most relevant to the target keypoints.

where Li = H
2i × W

2i . Next, using the concatenated fea-

ture tokens [C ′
3, C

′
4, C

′
5] as input, the visual feature encoder

outputs the refined multi-scale feature tokens F ∈ R
L×256,

where L = L3 + L4 + L5 is the total number of feature

tokens. After that, N randomly initialized pose queries are

utilized to directly reason N full-body poses (and their cor-

responding confidence score) under the global image con-

text. Finally, we scatter each full-body pose into a sequence

of body joints and adopt a joint decoder to further refine

them.

3.2. Visual Feature Encoder

High-resolution and multi-scale feature maps are impor-

tant for the pose estimation task [7, 33]. Since the multi-

head self-attention module [4,8] has quadratic computation

complexity to input size, we employ the deformable atten-

tion module [42] to implement our feature encoder.

Due to the low computational complexity of the de-

formable attention layer, our encoder can merge and re-

fine the multi-scale feature maps. Concretely, each encoder

layer comprises a multi-scale deformable attention mod-

ule and a feed-forward network (FFN). In order to iden-

tify which feature level each feature token lies in, we add

a scale-level embedding, in addition to the positional em-

bedding. There are six deformable encoder layers stacked

in sequence in our visual feature encoder. After that, we can

obtain the refined multi-scale visual feature memory F .

3.3. Pose Decoder

In the pose decoder, we aim to reason a set of full-body

poses under the global image context (i.e., feature memory

F ). Similar to the visual feature encoder, we use the de-

formable attention module to build our pose decoder due

to its efficiency. Specifically, given N randomly initial-

ized pose queries Qpose ∈ R
N×D, the pose decoder out-

puts N full-body poses {Pi}Ni=1 ∈ R
N×2K , where Pi =

{(xj
i , y

j
i )}Kj=1 denotes the coordinates of K joints for the

ith person and D indicates the dimension of the query em-

bedding.

The detailed structure of the pose decoder is illustrated in

Figure 3. First, the query embeddings are fed into the self-

attention module for interacting with each other (i.e., pose-

to-pose attention). Then each query extracts features from

the multi-scale feature memory F via the deformable cross-

attention module (i.e., feature-to-pose attention). There are

K reference points, serving as the initial locations of a

full-body pose in our deformable cross-attention module,

in contrast to [42]. Subsequently, the instance-aware query

features are fed into the multi-task prediction heads. The

classification head predicts the confidence score for each

object by a linear projection layer (FC). The pose regres-

sion head predicts the relative offsets w.r.t. the K reference

points using a multi-layer perceptron (MLP) with a hidden

size of 256. There are three decoder layers applied sequen-

tially in our pose decoder.

Instead of only using the final decoder layer to predict the

pose coordinates, inspired by [42], we leverage all the de-

coder layers to estimate the pose coordinates progressively.

Specifically, each layer refines the poses based on the pre-

dictions from the previous layer. Formally, given a normal-

ized pose Pd−1 predicted by the (d−1)th decoder layer, the

dth decoder layer refines the pose as

Pd = σ(σ−1(Pd−1) + ΔPd), (1)

where ΔPd are predicted offsets at the dth layer, σ and σ−1

denote the sigmoid and inverse sigmoid function,

respectively. In this way, Pd−1 serves as the new reference

point of cross-attention module in the dth decoder layer.

The initial reference point P0 is a randomly-initialized ma-

trix and jointly updated with the model parameters during

training. As a result, the progressive deformable cross-

attention module can attend to the visual features most rel-

evant to the target keypoints, which overcoming the feature

misalignment issue naturally.

3.4. Joint Decoder

As shown in Figure 4, the joint decoder is proposed to

explore the structured relations between articulated joints

and further refine full-body poses at a joint level. We em-

ploy deformable attention module to build our joint decoder
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Figure 4. Detailed structure of the joint decoder. Each one of

the K joint queries takes a keypoint location of the full-body pose

predicted by the pose decoder as its reference point for further

refinement.

as in the pose decoder. Concretely, given K randomly ini-

tialized joint queries Qjoint ∈ R
K×D, the joint decoder

takes the joint locations of each full-body pose predicted by

preceding pose decoder as their initial reference points and

then further refine the joint locations. Note that all the poses

can be processed in parallel since they are independent of

each other in the joint decoder.

The detailed structure of the joint decoder is illustrated

in Figure 4. The joint queries firstly interact with each

other via a self-attention module (i.e., joint-to-joint atten-

tion), and then extract visual features in a deformable cross-

attention module (i.e., feature-to-joint attention). Subse-

quently, a joint regression head predicts the 2-D joint dis-

placement ΔJ = (Δx,Δy) by applying an MLP. Similar

to the pose decoder, the joint coordinates are progressively

refined. Formally, let Jd−1 be the normalized joint coor-

dinates predicted by the (d − 1)th decoder layer, the pre-

dictions of the dth decoder layer are Jd = σ(σ−1(Jd−1) +
ΔJd), where J0 is joint locations of the pose predicted by

the proceeding pose decoder.

3.5. Loss Functions

Following [4], we use a set-based Hungarian loss that

forces a unique prediction for each ground-truth pose. The

same classification loss function (denoted as Lcls) as in [42]

is used for classification head in our pose decoder. Besides,

we adopt both L1 loss (denoted as Lreg) and OKS loss (de-

noted as Loks) for pose regression head and joint regression

head in our pose decoder and joint decoder, respectively.

OKS loss. The most commonly-used L1 loss have dif-

ferent scales for small and large poses even if their rela-

tive errors are similar. To mitigate this issue, we propose to

use the Object Keypoint Similarity (OKS) loss additionally,

which can be formulated as,

Loks(P, P
∗) =

∑K
i exp(−‖Pi − P ∗

i ‖/2s2k2i )δ(vi > 0)
∑K

i δ(vi > 0)
,

(2)

where ‖Pi − P ∗
i ‖ is the Euclidian distance between the ith

predicted keypoint and ground-truth one, vi is the visibility

flag of the ground truth, s is the object scale, and ki is a per-

keypoint constant that controls falloff. As shown above, the

OKS Loss is normalized by the scale of the person instance

with the importance of keypoints equalized.

Heatmap loss. Similar to [26,32], we use the auxiliary

heatmap regression training for fast convergence. We gather

the feature tokens from C3 outputs of visual feature encoder

and reshape the tokens into the original spatial shape. The

result is denoted by FC3
∈ R

(H/8)×(W/8)×D. We apply

a deformable transformer encoder to generate the heatmap

prediction. Then, we compute a variant of focal loss [18]

between the predicted and ground-truth heatmaps (denoted

as Lhm). Note that the heatmap branch is only used for

aided training and is discarded in inference.

Overall loss. Formally, the overall loss function of our

model can be formulated as:

L = Lcls + λ1Lreg + λ2Loks + λ3Lhm (3)

where λ1, λ2 and λ3 are the loss weights, respectively.

4. Experiments
4.1. COCO Keypoint Detection

We evaluate the performance on the COCO dataset [21],

which contains over 200K images and 250K person in-

stances labeled with 17 keypoints. All the models are

trained on the train2017 set (57K images). We use the

val2017 set (5K images) as validation for our ablation

experiments and compare with other state-of-the-art meth-

ods on the test-dev set (20K images).

Evaluation metrics. The standard evaluation metric

is based on Object keypoint Similarity (OKS). We report

standard average precision and recall scores1: AP50 (AP

at OKS = 0.50), AP75, AP (mean of AP scores from

OKS = 0.50 to OKS = 0.95 with the increment as 0.05),

APM for persons of medium sizes and APL for persons of

large sizes.

Training details. Following the setting of [26, 32], we

augment the input image by random crop, random flip, and

random resize (the shorter sides in [480,800] and the longer

1http://cocodataset.org/#keypoints-eval
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Method Backbone AP AP50 AP75 APM APL Time [ms]

Two-stage methods

T
o
p
-d

o
w

n

Mask R-CNN [12] ResNet-50 62.7 87.0 68.4 57.4 71.1 89
Mask R-CNN∗ ResNet-50 63.9 87.7 69.9 59.7 71.5 89
Mask R-CNN∗ ResNet-101 64.3 88.2 70.6 60.1 71.9 108
CPN [5] ResNet-Inception 72.1 91.4 80.0 68.7 77.2 >472

SimpleBaseline† [39] ResNet-152 73.7 91.9 81.1 70.3 80.0 >784
PRTR [20] HRNet-w32 72.1 90.4 79.6 68.1 79.0 -

HRNet† [33] HRNet-w32 74.9 92.5 82.8 71.3 80.9 >632

HRNet† [33] HRNet-w48 75.5 92.5 83.3 71.9 81.5 >857

B
o
tt

o
m

-u
p

CMU-Pose‡ [3] 3CM-3PAF 61.8 84.9 67.5 57.1 68.2 -
CMU-Pose [2] VGG-19 64.2 86.2 70.1 61.0 68.8 74

AE† [27] Hourglass-4 stacked 62.8 84.6 69.2 57.5 70.6 139
PifPaf [17] ResNet-152 66.7 - - 62.4 72.9 260

HrHRNet† [7] HRNet-w32 66.4 87.5 72.8 61.2 74.2 400

DEKR† [11] HRNet-w32 67.3 87.9 74.1 61.5 76.1 411

SWAHR† [24] HRNet-w32 67.9 88.9 74.5 62.4 75.5 406

Single-stage methods

N
o
n

en
d
-t

o
-e

n
d

DirectPose [34] ResNet-50 62.2 86.4 68.2 56.7 69.8 74
FCPose [26] ResNet-50 64.3 87.3 71.0 61.6 70.5 68
InsPose [32] ResNet-50 65.4 88.9 71.7 60.2 72.7 80
DirectPose [34] ResNet-101 63.3 86.7 69.4 57.8 71.2 -
FCPose [26] ResNet-101 65.6 87.9 72.6 62.1 72.3 93
InsPose [32] ResNet-101 66.3 89.2 73.0 61.2 73.9 100
CenterNet [41] Hourglass-104 63.0 86.8 69.6 58.9 70.4 160

Point-Set Anchors†‡ [36] HRNet-w48 68.7 89.9 76.3 64.8 75.3 -

F
u
ll

y
en

d
-t

o
-e

n
d PETR (Ours) ResNet-50 67.6 89.8 75.3 61.6 76.0 89

PETR‡ (Ours) ResNet-50 69.2 90.5 77.1 64.2 76.4 -
PETR (Ours) ResNet-101 68.5 90.3 76.5 62.5 77.0 95

PETR‡ (Ours) ResNet-101 70.0 90.9 78.2 65.3 77.1 -
PETR (Ours) Swin-L 70.5 91.5 78.7 65.2 78.0 133

PETR‡ (Ours) Swin-L 71.2 91.4 79.6 66.9 78.0 -

Table 2. Comparisons with state-of-the-art methods on COCO test-dev dataset. † and ‡ denote flipping and multi-scale test,

respectively. Mask R-CNN∗ are the results from Detectron2 [38], which are better than the original results reported in the Mask R-

CNN paper [12]. We measure the inference time of other methods on the same hardware if possible and all the times are counted with

single-scale test. Note that some top-down methods need extra inference time of person detector which is not contained in this table.

sides less or equal to 1333). The models are trained with

Adam optimizer [16] with base learning rate of 2 × 10−4,

momentum of 0.9 and weight decay of 1 × 10−4. Specif-

ically, we train the model for 50 epochs with a total batch

size of 32 and the initial learning rate is decayed at 40th

epoch by a factor of 0.1 in ablation experiments. For the

main results on test-dev set, the model is trained for

100 epochs and the initial learning rate is decayed at 80th

epoch by a factor of 0.1.

Testing details. The input images are resized to have

their shorter sides being 800 and their longer sides less or

equal to 1333. For the multi-scale test, we resize the origi-

nal images with their short sides being 800, 1000, and 1200

respectively. All reported numbers have been obtained with

single model without model ensemble. The inference time

is measured using a single NVIDIA Tesla V100 GPU.

4.2. Results on COCO test-dev

We firstly make comparisons with the state-of-the-art

methods, as shown in Table 2. When using the same back-

bone network as the feature extractor, our PETR outper-

forms all existing bottom-up methods as well as the single-

stage methods with or without multi-scale test. Without

any bells and whistles, the proposed method achieves 67.6

and 68.5 AP scores, with ResNet-50 and ResNet-101 as the

backbone, respectively. Our best model with Swin-L [23]

achieves 71.2 AP score on COCO test-dev2017.

Comparison with single-stage methods. Our method

significantly outperforms existing single-stage methods,

such as DirectPose [34], CenterNet [41], Point-Set Anchors

[36] and InsPose [32]. The performance of our method is

2.2 points higher compared with InsPose [32] with both

ResNet-50 and ResNet-101 as the backbone. Our PETR
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Figure 5. Visualization results of PETR. The first row and the second row show the visualization results on COCO val2017 and

CrowdPose test set, respectively. PETR performs well on a wide range of poses, containing viewpoint change, occlusion, motion blur and

crowded scene. Best viewed in color.

with ResNet-101 even outperforms Points-Set Anchors with

HRNet-w48, which has a much larger size than ResNet-

101, recording 70.0 vs. 68.7 in AP score. Note that our

approach is NMS-free which make it more efficient com-

pared with these single-stage methods.

Comparison with two-stage methods. With a more

compact pipeline, we even outperforms the state-of-the-

art bottom-up methods, such as CMU-Pose [2], AE [27],

PifPaf [17], HigherHRNet [7], DEKR [11] and SWAHR

[24]. With single-scale test, PETR achieves significantly

improvement over HigherHRNet [7], 68.5 vs. 64.7 in

AP score, in which our PETR using a smaller backbone

ResNet-101 than HRNet-w32 used in HigherHRNet [7].

Our method also outperforms the latest proposed SWAHR

[24], 68.5 vs. 67.9, with a smaller backbone. More-

over, PETR outperforms previous strong baseline Mask R-

CNN [12] with backbone ResNet-101 (68.5 vs. 64.3 in AP),

while maintain a competitive inference speed.

Comparison of inference time. We measure the infer-

ence time of our models with different backbones and other

methods on the same hardware if possible. As shown in

Table 2, PETR with ResNet-50 could achieve competitive

inference speed to the typical top-down method, Mask R-

CNN [12], and the single-stage method InsPose [32], i.e.

89ms vs. 89ms vs. 80ms. We also show the speed-accuracy

trad-off between our PETR and state-of-the-art methods in

Figure 6, and PETR surpasses all those bottom-up methods

in both speed and accuracy field. Although it seems a little

slower than some of the other methods (FCPose [26]), we

should note that current computational devices like GPU are

not specifically optimized for the transformer-based archi-

tecture.
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Figure 6. The speed-accuracy trade-off comparison. PETR-

R50-600 indicates a variant of PETR with ResNet-50 backbone

where the short side of the input image is 600 pixels.

4.3. Ablation Study

We perform a number of ablation experiments to analyze

effectiveness of the proposed pose/joint decoders and OKS

loss on the COCO val2017 dataset.

Pose and joint decoders. PETR use hierarchical de-

coders (i.e., the pose decoder and joint decoder) to regress

keypoint locations progressively. The pose decoder alone

already estimates full-body poses, which could be refined

by the joint decoder further. As shown in Table 3, the joint

decoder improves the AP by 1.0 points. Note that the im-

provement of AP75 is more significant (1.3 points), indicat-

ing a finer prediction offered by the joint decoder. More-

over, we conduct another experiment where both the pose
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Pose decoder Joint decoder AP AP50 AP75 APM APL AR

49.4 75.7 55.1 46.4 54.3 60.4

� 66.4 87.2 73.6 60.6 74.8 73.7

� � 67.4 87.0 74.9 61.7 75.9 74.8

Table 3. Ablation experiments: ablation of the proposed pose de-

coder and joint decoder on COCO val2017. The first row means

that the refined multi-scale feature tokens are directly utilized to

regress full-body poses, which incurs severe feature misalignment

as mentioned in [34].

OKS loss OKS matching AP AP50 AP75 APM APL AR

64.2 86.7 70.1 58.4 73.5 73.9

� 65.6 87.7 72.1 60.3 73.9 74.8

� 66.9 86.6 74.4 60.9 75.8 74.5

� � 67.4 87.0 74.9 61.7 75.9 74.8

Table 4. Ablation experiments: the effect of the OKS loss and its

matching cost on COCO val2017.

decoder and joint decoder are disabled. In this case, we

only utilize the multi-scale feature tokens refined by the

visual feature encoder to regress full-body poses directly.

The performance (1st row in Table 3) drops remarkably due

to the misalignment between features and target joints, as

mentioned in [11, 34].

OKS loss and OKS matching cost. Following DETR

[4], we use a bipartite matching mechanism to indicate

the relationship between the training samples and ground

truths, and then compute several types of loss to supervise

the model. OKS is a commonly-used evaluation metric in

pose estimation benchmarks. However, most methods use

L1 loss for training, therefore leave a gap between optimiz-

ing the loss and maximizing the OKS metric. To our knowl-

edge, this is the first work to adopt OKS as the loss func-

tion in the pose estimation field. We conduct experiments to

study the impact of OKS loss and its matching cost, respec-

tively. As shown in Table 4, the OKS loss brings 1.4 AP

score improvement and using OKS for matching cost gains

2.7 AP score. When combining both two components, the

performance is significantly improved from 64.2 to 67.4.

4.4. CrowdPose

We further evaluate our approach on the CrowdPose [19]

dataset that is more challenging and includes many crowded

scenes. It consists of 20K images, containing about 80,000

persons. Each person is labeled with 14 body joints. The

train, val and test datasets contain about 10K, 2K and 8K
images, respectively. We train our models on the train and

val sets and report the results on the test set as done in [7].

Evaluation metrics. The standard average precision

based on OKS which is the same as COCO is adopted as

the evaluation metrics. The CrowdPose dataset is split into

three crowding levels: easy, medium and hard. We report

Method AP AP50 AP75 APE APM APH

Top-down methods

Mask R-CNN [12] 57.2 83.5 60.3 69.4 57.9 45.8
AlphaPose [10] 61.0 81.3 66.0 71.2 61.4 51.1
SimpleBaseline [39] 60.8 81.4 65.7 71.4 61.2 51.2
SPPE [19] 66.0 84.2 71.5 75.5 66.3 57.4

Bottom-up methods

OpenPose [3] - - - 62.7 48.7 32.3
HrHRNet† [7] 65.9 86.4 70.6 73.3 66.5 57.9
DEKR† [11] 67.3 86.4 72.2 74.6 68.1 58.7
SWAHR† [24] 71.6 88.5 77.6 78.9 72.4 63.0

Fully end-to-end methods

PETR (Ours) 71.6 90.4 78.3 77.3 72.0 65.8
PETR† (Ours) 72.0 90.9 78.8 78.0 72.5 65.4

Table 5. Comparisons with state-of-the-art methods on Crowd-
Pose test dataset. Superscripts E, M, H of AP stand for easy,

medium and hard images, respectively. † denotes flipping test.

the following metrics: AP, AP50, AP75, as well as APE ,

APM and APH for easy, mudium and hard images.

Test set results. The results of our approach and other

state-of-the-art methods on the test set are shown in Table 5.

Different from the top-down methods which have lost their

superiority in crowded scenes, our approach shows its ro-

bustness and achieves 72.0 AP score, which surpasses the

latest bottom-up method SWAHR [24], especially on APH

item. Our PETR does not depend on detection results like

top-down methods, and does not need NMS to suppress re-

dundant results like bottom-up and other single-stage meth-

ods, which makes it more flexible and suitable to estimate

human pose under the crowded scenes.

5. Conclusion

This paper presents the first fully end-to-end multi-

person pose estimation framework, termed PETR. It refor-

mulates multi-person pose estimation as a hierarchical set

prediction problem, which effectively removes the need for

many hand-crafted components like RoI cropping, group-

ing, and NMS post-processings. PETR is simple and direct,

offering a better trade-off between accuracy and efficiency

than other methods.
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